64
Views
65
CrossRef citations to date
0
Altmetric
Original Article

Regulation of the calpain-calpastatin system by membranes (Review)

&
Pages 217-224 | Received 29 Jul 1996, Published online: 09 Jul 2009

REFERENCES

  • Ando Y., Imanura S., Hong Y. M., Owada M. K., Kakunaga T., Kannagi R. Enhancement of calcium sensitivity of lipocortin I in phospholipid binding induced by limited proteolysis and phosphorylation at the amino terminus as analyzed by phospholipid affinity column chromatography. Journal of Biological Chemistry 1989; 264: 6948–6955
  • Arthur J. S. C., Crawford C. Investigation of the interaction of m-calpain with phospholipids: calpain-phospholipid interactions. Biochimica et Biophysica Acta 1996; 1293: 201–206
  • Balcerzak D., Poussard S., Brustis J. J., Elamrani N., Soriano M., Cottin P., Ducastaing A. An antisense oligodeoxyribo-nucleotide to m-calpain mRNA inhibits myoblast fusion. Journal of Cell Science 1995; 108: 2077–2082
  • Banik N. L., Chakrabarti A. K., Konat G. W., Gantt-Wilford G., Hogan E. L. Calcium-activated neutral proteinase (calpain) activity in C6 cell line: compartmentation of mu and m calpain. Journal of Neuroscience Research 1992; 31: 708–714
  • Banik N. L., DeVries G. H., Neuberger T., Russell T., Chakrabarti A. K., Hogan E. L. Calcium-activated neutral proteinase (CANP; calpain) activity in Schwann cells: immunofluorescence localization and compartmentation of μ and mCANP. Journal of Neuroscience Research 1991; 29: 346–354
  • Beckerle M. C., Burridge K., DeMartino G. N., Croall D. E. Colocalization of calcium-dependent protease II and one of its substrates at sites of cell adhesion. Cell 1987; 51: 569–577
  • Berti P. J., Storer A. C. Alignment/phylogeny of the papain superfamily of cysteine proteases. Journal of Molecular Biology 1995; 246: 273–283
  • Bhattacharya J., Dey R., Datta S. C. Calcium dependent thiol protease caldonopain and its specific endogenous inhibitor in Leishmania donovani. Molecular and Cellular Biochemistry 1993; 126: 9–16
  • Crawford C., Willis A. C., Gagnon J. The effects of autolysis on the structure of chicken calpain II. Biochemical Journal 1987; 248: 579–588
  • Cressman C. M., Mohan P. S., Nixon R. A., Shea T. B. Proteolysis of protein kinase C; mm and microm calcium-requiring calpains have different abilities to generate, and degrade the free catalytic subunit, protein kinase M. FEBS Letters 1995; 367: 223–227
  • Emori Y., Kawasaki H., Imajoh S., Imahori K., Suzuki K. Endogenous inhibitor for calcium-dependent cysteine protease contains four internal repeats that could be responsible for its multiple reactive sites. Proceedings of the National Academy of Sciences, USA 1987; 84: 3590–3594
  • Emori Y., Saigo K. Calpain localization changes in coordination with actin-related cytoskeletal changes during early embryonic development of Drosophila. Journal of Biological Chemistry 1994; 269: 25137–25142
  • Emori Y., Kawasaki H., Imajoh S., Minami Y., Suzuki K. All four repeating domains of the endogenous inhibitor for calciumdependent protease independently retain inhibitory activity. Expression of the cDNA fragments in Escherichia coli. Journal of Biological Chemistry 1988; 263: 2364–2370
  • Eto A., Akita Y., Saido T. C., Suzuki K., Kawashima S. The role of the calpain-calpastatin system in thyrotropin-releasing hormone-induced selective down-regulation of a protein kinase C isozyme, nPKC epsilon, in rat pituitary GH4C1 cells. Journal of Biological Chemistry 1995; 270: 25115–25120
  • Fox J. E. B., Reynolds C. C., Philips D. R. Calciumdependent proteolysis occurs during platelet aggregation. Journal of Biological Chemistry 1983; 258: 9973–9981
  • Fox J. E., Taylor R. G., Taffarel M., Boyles J. K., Goll D. E. Evidence that activation of platelet calpain is induced as a consequence of binding of adhesive ligand to the integrin, glycoprotein llb-llla. Journal of Cell Biology 1993; 120: 1501–1507
  • Garret C., Cottin P., Dufourcq J., Ducastaing A. Evidence for a Ca2+-independent association between calpain II and phospholipid vesicles. FEBS Letters 1988; 227: 209–214
  • Gopalakrishna R., Barsky S. H. Hydrophobic association of calpains with subcellular organelles. Compartmentalization of calpains and the endogenous inhibitor calpastatin in tissues. Journals of Biological Chemistry 1986; 261: 13936–13942
  • Hatanaka M., Yoshimura N., Murakami T., Kannagi R., Murachi T. Evidence for membrane-associated calpain I in human erythrocytes. Detection by an immunoelectrophoretic blotting method using monospecific antibody. Biochemistry 1984; 23: 3272–3276
  • Hayashi M., Inomata M., Kawashima S. Functions of calpains—Possible involvement in myoblast fusion. Advances in Experimental Medicine and Biology 1996; 389: 149–154
  • Huston R. B., Krebs E. G. Activation of skeletal muscle phosphorylase kinase by Ca2+. Biochemistry 1968; 7: 2116–2122
  • Imajoh S., Kawasaki H., Suzuki K. The amino-terminal hydrophobic region of the small subunit of calcium-activated neutral protease (CANP) is essential for its activation by phosphatidylinositol. Journal of Biochemistry 1986; 99: 1281–1284
  • Imajoh S., Kawasaki H., Suzuki K. Limited autolysis of calcium-activated neutral protease (CANP): reduction of the Ca2+-requirement is due to the NH2-terminal processing of the large subunit. Journal of Biochemistry 1986; 100: 633–642
  • Imajoh S., Kawasaki H., Suzuki K. The COOH-terminal E-F hand structure of calcium-activated neutral protease (CANP) is important for the association of subunits and resulting proteolytic activity. Journal of Biochemistry 1987; 101: 447–452
  • Inomata M., Kawashima S. The possible self-down-regulation of calpain triggered by cell membranes. Biochimica et Biophysica Acta 1995; 1235: 107–114
  • Inomata M., Hayashi M., Nakamura M., Saito Y., Kawashima S. Properties of erythrocyte membrane binding and autolytic activation of calcium-activated neutral protease. Journal of Biological Chemistry 1989; 264: 18838–18843
  • Inomata M., Hayashi M., vIwashita Y., Tsubuki S., Saido T. C., Kawashima S. Involvement of calpain in integrin-mediated signal transduction. Archives of Biochemistry and Biophysics 1996; 328: 129–134
  • Inomata M., Saito Y., Kon K., Kawashima S. Binding sites for calcium-activated neutral protease on erythrocyte membranes are not membrane phospholipids. Biochemical and Biophysical Research Communications 1990; 171: 625–632
  • Inoue M., Kishimoto A., Takai Y., Nishizuka Y. Studies on a cyclic necleotide-independent protein kinase and its proenzyme in mammalian tissues. II. Journal of Biological Chemistry 1977; 252: 7610–7616
  • Junco M., Webster C., Crawford C., Bosca L., Parker P. J. Protein kinase C V3 domain mutants with differential sensitivities m-calpain are not resistant to phorbol-ester-induced down-regulation. European Journal of Biochemistry 1994; 223: 259–263
  • Kapprell H. P., Goll D. E. Effect of Ca2+ on binding of the calpains to calpastatin. Journal of Biological Chemistry 1989; 264: 17888–17896
  • Kawasaki H., Emori Y., Imajoh-Ohmi S., Minami Y., Suzuki K. Identification and characterization of inhibitory sequences in four repeating domains of the endogenous inhibitor for calcium-dependent protease. Journal of Biochemistry 1989; 106: 274–281
  • Kawasaki H., Emori Y., Suzuki K. Calpastatin has two distinct sites for interaction with calpain—effect of calpastatin fragments on the binding of calpain to membranes. Archives of Biochemistry and Biophysics 1993; 305: 467–472
  • Kawasaki H., Imajoh S., Kawashima S., Hayashi H., Suzuki K. The small subunits of calcium-dependent proteases with different calcium sensitivities are identical. Journal of Biochemistry 1986; 99: 1525–1532
  • Kuboki M., Ishii H., Kazama M. Characterization of calpain l-binding proteins in human erythrocyte plasma membrane. Journal of Biochemistry 1990; 107: 776–780
  • Lee W. J., Adachi Y., Maki M., Hatanaka M., Murachi T. Factors influencing the binding of calpain I to human erythrocyte inside-out vesicles. Biochemistry International 1990; 22: 163–171
  • Ma H., Yang H. Q., Takano E., Hatanaka M., Maki M. Amino-terminal conserved region in proteinase inhibitor domain of calpastatin potentiates its calpain inhibitory activity by interacting with calmodulin-like domain of the proteinase. Journal of Biological Chemistry 1994; 269: 24430–24436
  • Ma H., Yang H. Q., Takano E., Lee W. J., Hatanaka M., Maki M. Requirement of different subdomains of calpastatin for calpain inhibition and for binding to calmodulin-like domains. Journal of Biochemistry 1993; 113: 591–599
  • Maki M., Takano E., Mori H., Sato A., Murachi T., Hatanaka M. All four internally repetitive domains of pig calpastatin possess inhibitory activities against calpains I and II. FEBS Letters 1987; 223: 174–180
  • Maki M., Takano E., Osawa T., Ooi T., Murachi T., Hatanaka M. Analysis of structure-function relationship of pig calpastatin by expression of mutated cDNAs in Escherichia coli. Journal of Biological Chemistry 1988; 263: 10254–10261
  • Mellgren R. L., Song K., Mericle M. T. m-Calpain requires DNA for activity on nuclear proteins at low calcium concentrations. Journal of Biological Chemistry 1993; 268: 653–657
  • Melloni E., Pontremoli S., Michetti M., Sacco O., Sparatore B., Salamino F., Horecker B. L. Binding of protein kinase C to neutrophil membranes in the presence of Ca2+ and its activation by a Ca2+-requiring proteinase. Proceedings of the National Academy of Sciences, USA 1985; 82: 6435–6439
  • Michetti M., Viotti P. L., Melloni E., Pontremoli S. Mechanism of action of the calpain activator protein in rat skeletal muscle. European Journal of Biochemistry 1991; 202: 1177–1180
  • Molinari M., Anagli J., Carafoli E. Ca2+ -activated neutral protease is active in the erythrocyte membrane in its nonautolyzed 80-kDa form. Journal of Biological Chemistry 1994; 269: 27992–27995
  • Molinari M., Anagli J., Carafoli E. PEST sequences do not influence substrate susceptibility to calpain proteolysis. Journal of Biological Chemistry 1995; 270: 2032–2035
  • Molinari M., Maki M., Carafoli E. Purification of μ-calpain by a novel affinity chromatography approach. New insights into the mechanism of the interaction of the protease with targets. Journal of Biological Chemistry 1995; 270: 14576–14581
  • Murachi T. Calpain and calpastatin. Trends in Biochemical Sciences 1983; 8: 167–169
  • Nishimura T., Goll D. E. Binding of calpain fragments to calpastatin. Journal of Biological Chemistry 1991; 266: 11842–11850
  • O'Neil K. T., DeGrado W. F. How calmodulin binds its targets: sequence independent recognition of amphiphilic alphahelices. Trends in Biochemical Sciences 1990; 15: 59–64
  • Orwig K. E., Bertrand J. E., Ou B. R., Forsberg N. E., Stormshak F. Involvement of protein kinase-C, calpains, and calpastatin in prostaglandin F2 alpha-induced oxytocin secretion from the bovine corpus luteum. Endocrinology 1994; 134: 78–83
  • Pinter M., Stierandova A., Friedrich P. Purification and characterization of a Ca2+ -activated thiol protease from Drosophila melanogaster. Biochemistry 1992; 31: 8201–8206
  • Pontremoli S., Melloni E., Salamino F., Sparatore B., Michetti M., Horecker B. L. Cysosolic Ca2+-dependent neutral proteinases from rabbit liver: activation of the proenzymes by Ca2+ and substrate. Proceedings of the National Academy of Sciences, USA 1984; 81: 53–56
  • Pontremoli S., Salamino F., Sparatore B., Michetti M., Sacco O., Melloni E. Following association to the membrane, human erythrocyte procalpain is converted and released as fully active calpain. Biochimica et Biophysica Acta 1985; 831: 335–339
  • Richard I., Broux O., Allamand V., Fougerousse F., Chiannilkulchai N., Bourg N., Brenguier L., Devaud C., Pasturaud P., Roudaut C., Hillaire D., Passos-Bueno M R., Zatz M., Tischfield J. A., Fardeau M., Jackson C. E., Cohen D., Beckmann J. S. Mutations in the proteolytic enzyme calpain 3 cause limb-girdle muscular dystrophy type 2A. Cell 1995; 81: 27–40
  • Saido T. C., Nagao S., Shiramine M., Tsukaguchi M., Yoshizawa T., Sorimachi H., Ito H., Tsuchiya T., Kawashima S., Suzuki K. Distinct kinetics of subunit autolysis in mammalian m-calpain activation. FEBS Letters 1994; 346: 263–267
  • Saido T. C., Shibata M., Takenawa T., Murofushi H., Suzuki K. Positive regulation of μ-calpain action by polyphospho-inositides. Journal of Biological Chemistry 1992; 267: 24585–24590
  • Saido T. C., Sorimachi H., Suzuki K. Calpain: new perspectives in molecular diversity and physiological-pathological involvement. FASEB Journal 1994; 8: 814–822
  • Saido T. C., Suzuki H., Yamazaki H., Tanoue K., Suzuki K. In situ capture of μ-calpain activation in platelets. Journal of Biological Chemistry 1993; 268: 7422–7426
  • Salamino F., De Tullio R., Mengotti P., Viotti P. L., Melloni E., Pontremoli S. Site-directed activation of calpain is promoted by a membrane-associated natural activator protein. Biochemical Journal 1993; 290: 191–197
  • Sato K., Saito Y., Kawashima S. Identification and characterization of membrane-bound calpains in clathrin-coated vesicles from bovine brain. European Journal of Biochemistry 1995; 230: 25–31
  • Savart M., Verret C., Dutaud D., Touyarot K., Elamrani N., Ducastaing A. Isolation and identification of a μ-calpain-protein kinase C alpha complex in skeletal muscles. FEBS Letters 1995; 359: 60–64
  • Sorimachi H., Ishiura S., Suzuki K. A novel tissue-specific calpain species expressed predominantly in the stomach comprises two alternative splicing products with and without a Ca2+-binding domain. Journal of Biological Chemistry 1993; 268: 19476–19482
  • Sorimachi H., Kinbara K., Kimura S., Takahashi M., Ishiura S., Sasagawa N., Sorimachi N., Shimada H., Tagawa K., Maruyama K., Suzuki K. Muscle-specific calpain, p94, responsible for limb girdle muscular dystrophy type 2A, associates with connectin through IS2, a p94-specific sequence. Journal of Biological Chemistry 1995; 27: 31158–31162
  • Sorimachi H., Saido T. C., Suzuki K. New era of calpain research. Discovery of tissue-specific calpains. FEBS Letters 1994; 343: 1–5
  • Suzuki K., Imajoh S., Emori Y., Kawasaki H., Minami Y., Ohno S. Calcium-activated neutral protease and its endogenous inhibitor. Activation at the cell membrane and biological function. FEBS Letters 1987; 220: 271–277
  • Suzuki K., Kawashima S., Imahori K. Structure and function of Ca2+ -activated protease. Calcium Regulation in Biological Systems, S. Ebashi, M. Endo, K. Imahori, S. Kakiuchi, Y. Nishizuka. Academic Press, New York 1984; 213–226
  • Suzuki K., Sorimachi H., Yoshizawa T., Kinbara K., Ishiura S. Calpain: novel family members, activation, and physiologic function. Biological Chemistry Hoppe-Seyler 1995; 376: 523–529
  • Takai Y., Kishimot A., Inoue M., Nishizuka Y. Studies on a cyclic necleotide-independent protein kinase and its proenzyme in mammalian tissues. I. Journal of Biological Chemistry 1977; 252: 7603–7609
  • Takano E., Ma H., Yang H. Q., Maki M., Hatanaka M. Preference of calcium-dependent interactions between calmodulinlike domains of calpain and calpastatin subdomains. FEBS Letters 1995; 362: 93–97
  • Wang K. K., Villalobo A., Roufogalis B. D. Calmodulin-binding proteins as calpain substrates. Biochemical Journal 1989; 262: 693–706
  • Wang W., Creutz C. E. Role of the amino-terminal domain in regulating interactions of annexin I with membranes: effects of amino-terminal truncation and mutagenesis of the phosphorylation sites. Biochemistry 1994; 33: 275–282
  • Yang H. Q., Ma H., Takano E., Hatanaka M., Maki M. Analysis of calcium-dependent interaction between amino-terminal conserved region of calpastatin functional domain and calmodulinlike domain of μ-calpain large subunit. Journal of Biological Chemistry 1994; 269: 18977–18984
  • Yoshizawa T., Sorimachi H., Tomioka S., Ishiura S., Suzuki K. A catalytic subunit of calpain possesses full proteolytic activity. FEBS Letters 1995; 358: 101–103
  • Yoshizawa T., Sorimachi H., Tomioka S., Ishiura S., Suzuki K. Calpain dissociates into subunits in the presence of calcium ions. Biochemical and Biophysical Research Communications 1995; 208: 376–383

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.