10
Views
14
CrossRef citations to date
0
Altmetric
Original Article

Interaction of annexins IV and VI with phosphatidylserine in the presence of Ca2+

monolayer and proteolytic study

, , &
Pages 241-250 | Received 05 May 1996, Published online: 09 Jul 2009

REFERENCES

  • Bandorowicz J., Pikuta S., Sobota A. Annexins IV (p32) and VI (p68) interact with erythrocyte membrane in a calcium-dependent manner. Biochimica et Biophysica Acta 1992; 1105: 201–206
  • Bandorowicz J., Pikuta S. Annexins—multifunctional, calcium-dependent, phospholipid-binding proteins. Acta Biochimica Polonica 1993; 40: 281–293
  • Bandorowicz-Pikuta J., Sobota A. Interaction of annexins IV and VI with erythrocyte membrane in the presence of Ca2+, A biochemical and electron microscopy study. Cellular and Molecular Biology Letters 1996; 1: 17–23
  • Bianchi R., Giambanco I., Ceccarelli P., Pula G., Donato R. Membrane-bound annexin Visoforms (CaBP33 and CaBP37) and annexin VI in bovine tissues behave like integral membrane proteins. FEBS Letters 1992; 296: 158–162
  • Boguslavsky V., Rebecchi M., Morris A. J., Jhon D. Y., Rhee S. G., McLaughlin S. Effect of monolayer surface pressure on the activities of phosphoinositide-specific phospholipase C-β1, -sG1, -and -sT1. Biochemistry 1994; 33: 3032–3037
  • Bradford M. M. Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 1976; 72: 248–254
  • Buser C. A., Kim J., McLaughlin S., Peitzsch R. M. Does the binding of clusters of basic residues to acidic lipids induce domain formation in membrane. Molecular Membrane Biology 1995; 12: 69–75
  • Creuwels L. A. J.M., Boer E. H., Demel R. A., van Golde L. M. G., Haagsman H. P. Neutralization of the positive changes of surfactant protein C. Effects on structure and function. Journal of Biological Chemistry 1995; 270: 16225–16229
  • Demange P., Voges D., Benz J., Liemann S., Gottig P., Berendes R., Burger A., Huber R. Annexin V: the key to understanding ion selectivity and voltage regulation?. Trends in Biochemical Sciences 1994; 19: 272–276
  • Demel R. A., Geurts Van Kessel W. S. M., Zwaal R. F. A., Roelofsen B., Van Deenen L. L. M. Relation between various phospholipase actions on human red cell membranes and the interfacial phospholipid pressure in monolayers. Acta Biochimica et Biophysica Acta 1975; 406: 97–107
  • Eklund K. K., Vuorinen J., Mikkola J., Virtanen J. A., Kinnunen K. J. Ca2' -induced lateral phase separation in phosphatidic acid/phosphatydylcholine monolayers as revealed by fluorescence microscopy. Biochemistry 1988; 27: 3433–3437
  • EvansJr T. C., Nelsestuen G. L. Calcium and membrane-binding properties of monomeric and multimeric annexin II. Biochemistry 1994; 33: 13231–13238
  • Fabiato A., Fabiato F. Calculator programs for computing the composition of the solutions containing multiple metals and ligands used for experiments in skinned muscle cells. Journal de Physiologie 1979; 75: 463–465
  • Gawrisch K., Barry J. A., Holte L. L., Sinnwell T., Bergelson L. D., Ferretti J. A. Role of interactions at the lipid-water interface for domain formation. Molecular Membrane Biology 1995; 12: 83–88
  • Glaser M. Characterization and formation of lipid domains in vesicles and erythrocyte membranes. Comments on Molecular and Cellular Biophysics 1992; 8: 37–52
  • Grimard R., Tancregrave;de P., Gicquaud C. Interaction of actin with positively charged phospholipids: a monolayer study. Biochemical and Biophysical Research Communications 1993; 190: 1017–1022
  • Huber R., Schneider M., Mayr I., Römisch J., Pâques E. P. The calcium binding sites in human annexin V by crystal structure analysis at 2.0 å resolution. Implication for membrane binding and calcium channel activity. FEBS Letters 1990; 275: 15–21
  • Junker M., Creutz C. E. Biochemistry 1994; 33: 8930–8940
  • Kaetzel M. A., Dedman J. R. Annexins: novel Ca2+ -dependent regulators of membrane function. News in Physiological Sciences 1995; 10: 171–176
  • Kimelberg H., Papahadjopoulos D. Phospholipid-protein interactions: membrane permeability correlated with monolayer ‘penetration'. Biochimica et Biophysica Acta 1971; 233: 805–809
  • Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970; 227: 680–685
  • Lentz B. R. Are acidic lipid domains induced by extrinsic protein binding to membranes?. Molecular Membrane Biology 1995; 12: 65–67
  • Liemann S., Lewit-Bentley A. Annexins: a novel family of calcium- and membrane-binding proteins in search of a function. Structure 1995; 3: 233–238
  • Lu Y., Bazzi M. D., Nelsestuen G. L. Kinetics of annexin VI, calcium, and phospholipid association and dissociation. Biochemistry 1995; 34: 10777–10785
  • Maloney K. M., Grandbois M., Grainger D. W., Salesse C h., Lewis K. A., Roberts M. F. Phospholipase A2 domain formation in hydrolyzed asymmetric phospholipid monolayers at the air/water interface. Biochimica et Biophysica Acta 1995; 1235: 395–405
  • McLntosh T. J., Magid A. D., Simon S. A. Range of the solvation pressure between lipid membranes: dependence on the packing density of solvent molecules. Biochemistry 1989; 28: 7904–7912
  • Newman R., Tucker A., Ferguson C., Tsernoglou D., Leonard K., Crumpton M. J. Crystallization of p68 on lipid monolayers and as three-dimensional and single crystals. Journal of Molecular Biology 1989; 206: 213–219
  • Newton A. C., Keranen L. M. Phosphatidyl-L-serine is necessary for protein kinase C's high-affinity interaction with diacylglycerol-containing membranes. Biochemistry 1994; 33: 6651–6658
  • Ohki S., Marcus E., Sukumaran D. K., Arnold K. Interaction of melittin with lipid membranes. Biochimica et Biophysica Acta 1994; 1194: 223–232
  • Perrin D. D., Sayce J. G. Computer calculation of equilibrium concentrations in mixtures of metal ions and complexing species. Talanta 1967; 14: 833–842
  • Pollard H. B., Guy H. R., Arispe N., Fuente M., Lee G., Rojas E. M., Pollard J. R., Srivastava M., Zhang-Keck Z. Y., Merezhinskaya N., Caohuy H., Burns A. L., Rojas E. Calcium channel and membrane fusion activity of synexin and other members of the annexin gene family. Biophysical Journal 1992; 62: 15–18
  • Rana F. R., Mautone A. J., Dluhy R. A. Surface chemistry of binary mixtures of phospholipids in monolayers. Infrared studies of surface composition at varying surface pressures in a pulmonary surfactant model system. Biochemistry 1993; 32: 3169–3177
  • Raynal P., Pollard H. B. Annexins: the problem of assessing the biological role for a gene family of multifunctional calcium-and phospholipid-binding proteins. Biochimica et Biophysica Acta 1994; 1197: 63–93
  • Rebecchi M., Boguslavsky V., Boguslavsky L., McLaughlin S. Phosphoinositide-specific phospholipase C-sT1: effect of monolayer surface pressure and electrostatic surface potentials on activity. Biochemistry 1992; 31: 12748–12753
  • Rojas E., Pollard H. B., Haigler H. T., Parra C., Burns A. L. Calcium-activated endonexin II forms calcium channels across acidic phospholipid bilayer membranes. Journal of Biological Chemistry 1990; 265: 21207–21215
  • Rojas E., Arispe N., Haigler H. T., Burns A. L., Pollard H. B. Identification of annexins as calcium channels in biological membranes. Bone Minerals 1992; 17: 214–218
  • Rouser G., Siatokos A. N., Fleischer S. Quantitative analysis of phospholipids by thin-layer chromatography and phosphorus analysis spot. Lipids 1966; 1: 85–86
  • Seelig J., Lehrmann R., Terzi E. Domain formation induced by lipid-ion and lipid-peptide interactions. Molecular Membrane Biology 1995; 12: 51–57
  • Shiffer K. A., Goerke J., Düzgünes N., Fedor J., Shohet S. B. Interaction of erythrocyte protein 4.1 with phospholipids. A monolayer and liposome study. Biochimica et Biophysica Acta 1988; 937: 269–280
  • Silvius J. R. Calcium induced lipid phase separations and interactions of phosphatidylcholine/anionic phospholipid vesicles. Fluorescence studies using carbazole-labeled and brominated phospholipids. Biochemistry 1990; 29: 2930–2938
  • Sobota A., Bandorowicz J., Jezierski A., Sikorski A. F. The effect of annexin IV and VI on the fluidity of phosphatidylserine/phosphatidylcholine bilayers, studied with the use of 5-deoxylstearate spin label. FEBS Letters 1993; 315: 178–182
  • Sawirjo M. A., Seaton B. A. Annexin structure and membrane interactions: a molecular perspective. Annual Review of Biophysics and Biomolecular Structure 1994; 23: 193–213
  • Swairjo M., Concha N. O., Kaetzel M. A., Dedman J. R., Seaton B. A. Ca2+ -bridging mechanism and phospholipid head group recognition in the membrane-binding protein annexin V. Nature-Structural Biology 1995; 11: 968–974
  • Wang L, lida H., Shibata Y. Characterisation and localisation of a 67kDa calcium binding protein (p67) isolated from bovine hearts. Cardiovascular Research 1993; 27: 1855–1862
  • Zaks W. J., Creutz C. E. Ca2+ -dependent annexin self association on membrane surfaces. Biochemistry 1991; 30: 9607–9615

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.