258
Views
8
CrossRef citations to date
0
Altmetric
Original Article

Assigning functions to residues in the acetylcholine receptor channel region (Review)

&
Pages 167-177 | Received 19 May 1997, Published online: 09 Jul 2009

References

  • Adams P. R. Voltage jump analysis of procaine-action at frog endplate. Journal of Physiology (London) 1977; 268: 291–318
  • Akabas M. H., Stauffer D. A., Xu M., Karlin A. Acetylcholine receptor channel structure probed in cysteine substitution mutants. Science 1992; 258: 307–310
  • Akabas M. H., Kaufmann C., Archdeacon P., Karlin A. Identification of acetylcholine receptor channel-lining residues in the entire M2 segment of the a subunit. Neuron 1994; 13: 919–927
  • Akabas M. H., Karlin A. Identification of acetylcholine receptor channel-lining residues in the M1 segment of the a subunit. Biochemistry 1995; 34: 12496–12500
  • Barrantes F. J. Recent developments in the structure and function of the acetylcholine receptor. International Review of Neurobiology 1983; 24: 259–340
  • Barrantes F. J. The acetylcholine receptor ligand-gated channel as a molecular target of disease and therapeutic agents. Neurochemical Research 1997a; 22: 391–400
  • Barrantes F. J. Molecular pathology of the nicotinic acetylcholine receptor. The nicotinic acetylcholine receptor: current views and future trends, F. J. Barrantes. Landes Bioscience, Austin, Texas 1997b
  • Bechinger B., Kim Y., Chirlian L. E., Gesell J., Neumann J. M., Mortal M., Tomich J., Zasloff M., Opella S. J. Orientations of amphipathic helical peptides in membrane bilayers determined by solid state NMR specrtroscopy. Journal of Biomolecular Nuclear Magnetic Resonance 1991; 1: 167–173
  • Bertrand D., Galzi J.-L, Devillers-Thiéry A., Bertrand S., Changeux J.-P. Stratification of the channel domain in neurotransmitter receptors. Current Opinion in Cell Biology 1993a; 5: 688–693
  • Bertrand D., Galzi J.-L., Devillers-Thiéry A., Bertrand S., Changeux J.-P. Mutations at two distinct sites within the channel domain M2 alter calcium permeability of neuronal α7 nicotinic receptor. Proceedings of the National Academy of Sciences of the USA 1993b; 90: 6971–6975
  • Blanton M. P., Cohen J. B. Identifying the lipid-protein interface of the Torpedo nicotinic acetylcholine receptor: secondary structure implications. Biochemistry 1994; 33: 2859–2872
  • Bouzat C., Bren N., Sine S. Structural basis of the different gating kinetics of fetal and adult acetylcholine receptors. Neuron 1994; 13: 1395–1402
  • Bouzat C., Barrantes F. J. Modulation of muscle nicotinic acetylcholine receptors by the glucocorticoid hydrocortisone. Possible allosteric mechanism of channel blockade. Journal of Biological Chemistry 1996; 271: 25835–25841
  • Butler D. H., Lasalde J. L., Butler J. K., Tamamizu S., Zimmerman G., McNamee M. G. Mouse-Torpedo chimeric α-subunit used to probe channel-gating determinants on the nicotinic acetylcholine receptor primary sequence. Cellular and Molecular Neurobiology 1997; 17: 13–33
  • Campos-Caro A., Sala S., Ballesta J. J., Vicente-Agulló F., Criado M., Sala F. A single residue in the M2-M3 loop is a major determinant of coupling between binding and gating in neuronal nicotinic receptors. Proceedings of the National Academy of Sciences of the USA 1996; 93: 6118–6123
  • Changeux J. P., Revah F. The acetylcholine receptor molecule: allosteric sites and the ion channel. Trends in Neurosciences 1987; 10: 245–250
  • Charnet P., Labarca C., Leonard R. J., Vagellar N. J., Czyzyk L., Gouin A., Davidson N., Lester. An open-channel blocker interacts with adjacent turns of α-helices in the nicotinic acetylcholine receptor. Nature 1990; 35: 235–238
  • Claudio T., Ballivet M., Patrick J., Heinemann S. Nucleotide and deduced amino acid sequences of Torpedo californica acetylcholine receptor γ subunit. Proceedings of the National Academy of Sciences of the USA 1983; 80: 1111–1115
  • Cohen B. N., Labarca C., Czyzyk L., Davidson N., Lester H. A. Tris/Na permeability ratios of nicotinic acetylcholine receptors are reduced by mutations near the intracellular end of M2 region. Journal of General Physiology 1992; 99: 545–572
  • Devillers-Thiry A., Galzi J. L., Bertrand S., Changeux J.-P., Bertrand D. Stratified organization of the nicotinic acetylcholine receptor channel. NeuroReport 1992; 11: 1001–1004
  • Deviilers-Thiery A., Galzi J. L., Eisele J. L., Bertrand S., Bertrand D., Changeux J.-P. Functional architecture of the nicotinic acetylcholine receptor: a prototype of ligand-gated ion channels. Journal of Membrane Biology 1993; 136: 97–112
  • Engel A., Ohno K., Bouzat C., Sine S. M., Griggs R. C. End-plate acetylcholine receptor deficiency due to nonsense mutations in the c subunit. Annals of Neurology 1996; 40: 810–817
  • Ferrer-Montiel A. V., Mortal M. A negative charge in the M2 transmembrane segment of the neuronal n. 1 acetylcholine receptor increases permeability to divalent cations. FEBS Letters 1993; 324: 185–190
  • Filatov G., White M. M. The role of conserved leucines in the M2 domain of the acetylcholine receptor in channel gating. Molecular Pharmacology 1995; 48: 379–384
  • Finer-Moore J., Stroud R. M. Amphipathic analysis and possible formation of the ion channel in an acetylcholine receptor. Proceedings of the National Academy of Sciences of the USA 1984; 81: 155–159
  • Galzi J.-L., Devillers-Thiéry A., Hussy N., Bertrand S., Changeux J.-P., Bertrand D. Mutations in the ion channel domain of a neuronal nicotinic receptor convert ion selectivity from cationic to anionic. Nature 1992; 359: 500–505
  • Giraudat J., Dennis M., Heidmann T., Chang J.-Y., Changeux J.-P. Structure of the high-affinity binding site for noncompetitive blockers of the acetylcholine receptor: serine-262 of the subunit is labelled by [3H]chlorpromazine. Proceedings of the National Academy of Sciences of the USA 1986; 83: 2719–2723
  • Giraudat J., Dennis M., Heidmann T., Haumot P.-Y, Lederer F., Changeux J.-P. Structure of the high affinity binding site for non-competitive blockers of the acetylcholine receptor. [3H] chlorpromazine labels homologous residues in the β and chains. Biochemistry 1987; 26: 2410–2418
  • Giraudat J., Galzi J. L., Revah F., Changeux J.-P., Haumont P. Y., Lederer F. The noncompetitive blocker [3H]chlorpro-mazine labels segment M2 but not segment M1 of the nicotinic acetylcholine receptor α-subunit. FEBS Letters 1989; 253: 190–198
  • Grove A., Iwamoto T., Montal M. S., Tomich J. M., Montal M. Synthetic peptides and proteins as models for pore-forming structure of channel proteins. Methods in Enzymology 1992; 207: 510–525
  • Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Archives 1981; 391: 85–100
  • Herlitze S., Villarroel A., Witzemann V., Koenen M., Sakmann B. Structural determinants of channel conductance in fetal and adult rat muscle acetylcholine receptors. Journal of Physiology 1996; 492: 775–787
  • Hollman M., Maron C., Heinemann S. N-glycosylation site tagging suggests a three transmembrane domain topology for the glutamate receptor GluRL. Neuron 1994; 13: 1331–1343
  • Hucho F. L., Oberthur W., Lettspeich F. The ion channel of the nicotinic acetylcholine receptor is formed by the homologous helices MM of the receptor subunit. FEBS Letters 1986; 205: 137–142
  • Hucho F., Tsetlin V. I. Structural biology of key nervous system proteins. Journal of Neurochemistry 1996; 66: 1781–1792
  • Hucho F., Tsetlin V. I., Machold J. The emerging three-dimensional structure of a receptor. European Journal of Biochemistry 1996; 239: 539–557
  • Imoto K., Methfessel C., Sakmann B., Mishina M., Mori Y., Konno T., Fukuda K., Kurasaki M., Bujo H., Fujita Y., Numa S. Location of a subunit region determining ion transport through the acetylcholine receptor channel. Nature 1986; 324: 670–674
  • Imoto K., Busch C., Von Kitzing E., Imoto K., Wang F., Nakai J., Mishina M., Numa S., Sakmann B. Rings of negatively charged amino acids determine the acetylcholine receptor channel conductance. Nature 1988; 335: 645–648
  • Imoto K., Konno T., Nakai J., Wang F., Mishina M., Numa S. A ring of uncharged polar amino acids as a component of channel constriction in the nicotinic acetylcholine receptor. FEBS Letters 1991; 289: 193–200
  • Imoto K. Ion channels: Molecular basis of ion selectivity. FEBS Letters 1993; 325: 100–103
  • Jackson M. B. Single channel currents in the nicotinic receptor: a direct demonstration of allosteric transitions. Trends in Biochemical Sciences 1994; 19: 396–399
  • Karlin A., Akabas M. H. Toward a structural basis for the function of nicotinic acetylcholine receptors and their cousins. Neuron 1995; 15: 1231–1244
  • Kearney P. C., Zhang H., Zhong W., Dougherty D. A., Lester H. A. Determinants of nicotinic receptor gating in natural and unnatural side chain structures at the M2 9 position. Neuron 1996; 17: 1221–1229
  • Konno T., Busch C., Von Kitzing E., Imoto K., Wang F., Nakai J., Mishina M., Numa S., Sakmann B. Rings of anionic amino acids as structural determinants of ion selectivity in the acetylcholine receptor. Proceedings of the Royal Society (Biology) 1991; 244: 69–79
  • Labarca C., Nowak M. W., Zhang H., Tang L., Deshpande P., Lester H. A. Channel gating governed symmetrically by conserved leucine residues in the M2 domain of nicotinic receptors. Nature 1995; 376: 514–516
  • Lee Y.-H., Li L., Lasalde J., Rojas L., McNamee M., Ortiz-Miranda S. I., Pappone P. Mutations in the M4 domain of Torpedo californica acetylcholine receptor dramatically alter ion channel function. Biophysical Journal 1994; 66: 646–653
  • Leonard R. J., Labarca C. G., Charnet P., Davidson N., Lester H. A. Evidence that the M2 membrane spanning region lines the ion channel pore of the nicotinic receptor. Science 1988; 242: 1578–1581
  • Leonard R. J., Charnet P., Labarca C. G., Vogelaar N. J., Czyzyk L., Gouin A., Davidson N., Lester H. A. Reverse pharmacology of the nicotinic acetylcholine receptor. Mapping the local anesthetic binding site. Annals of the New York Academy of Sciences 1991; 625: 588–599
  • Lester H. A. The permeation pathway of neurotransmitter-gated ion channels. Annual Review of Biophysics and Biomolecular Structure 1992; 21: 267–292
  • Lukas R., Bencherif M. Heterogeneity and regulation of nicotinic acetylcholine receptors. International Review of Neurobiology 1992; 34: 25–130
  • Montal M. Molecular anatomy and molecular design of channel proteins. FASEB Journal 1990; 4: 2623–2635
  • Montal M. Design of molecular function: channels of communication. Annual Review in Biophysics and Biomolecular structure 1995; 24: 31–57
  • Murray N., Zheng Y.-C., Mandel G., Brehm P., Bolinger R., Reuer Q., Kullberg R. A single subunit site on the c subunit is responsible for the change in ACh receptor channel conductance during skeletal muscle development. Neuron 1995; 14: 865–870
  • Neher E., Sakmann B. Single channel currents recorded from membrane of denervated frog muscle fibers. Nature (London) 1976; 260: 799–802
  • Neher E., Steinbach J. H. Local Anaesthetics transiently block currents through single acetylcholine-receptor channels. Journal of Physiology 1978; 277: 153–176
  • Noda M., Takahashi H., Tanabe T., Toyosato M., Furutani Y., Hirose T., Asai M., Inayama S., Miyata T., Numa S. Primary structure of the a subunit precursor of Torpedo californica acetylcholine receptor deduced from cDNA sequence. Nature (London) 1982; 299: 793–797
  • Noda M., Takahashi H., Tanabe T., Toyosato M., Kikyotani S., Hirose T., Asai M., Takashima H., Inayama S., Miyata T., Numa S. Primary structures of the a- and (5-subunit precursors of Torpedo californica acetylcholine receptor deduced from cDNA sequences. Nature (London) 1983; 301: 251–255
  • Oberthur W., Muhn P., Baumann H., Lottspeich F., Wittmann-Liebold B., Hucho F. The reaction site of a noncompetitive antagonist in the subunit of the nicotinic acetylcholine receptor. EMBO Journal 1986; 5: 1815–1819
  • Oblatt-Montal M., Buhler L. K., Iwamoto T., Tomich J. M., Montal M. Synthetic peptides and four helix bundle proteins as model systems for the pore-forming structure of channel proteins. I. Transmembrane segment of the nicotinic cholinergic receptor is a key pore-lining structure. Journal of Biological Chemistry 1993; 268: 14601–14607
  • Ohno K., Hutchinson D. O., Milone M., Brengman J. M., Bouzat C., Sine S. M., Engel A. G. Congenital myasthenic syndrome caused by prolonged acetylcholine receptor channel openings due to a mutation in the M2 domain of the e subunit. Proceedings of the National Academy of Sciences of the USA 1995; 92: 758–762
  • Ortells M. O., Lunt G. G. Evolutionary history of the ligand-gated ion-channel superfamily of receptors. Trends in Neurosciences 1995; 18: 121–127
  • Ortells M. O., Lunt G. G. A β-sheet/α-helix model for the transmembrane region of the nicotinic acetylcholine receptor. Protein Engineering 1996; 9: 51–59
  • Ortells M. O., Barrantes G. E., Wood C., Lunt G. G., Barrantes F. J. Molecular modelling of the nicotinic acetylcholine receptor transmembrane region in the open state. Protein Engineering 1997; 10: 511–517
  • Revah F., Galzi J. L., Giraudat J., Haumont P. Y., Lederer F., Changeux J.-P. The noncompetitive blocker [3H]chlorpro-mazine labels three amino acids of the acetylcholine receptor γ subunit: implications for the a helical organization of the Mil segments and the structure of the ion channel. Proceedings of the National Academy of Sciences of the USA 1990; 87: 4675–4679
  • Roche K., Raymond L. A., Blackstone C. D., Huganir R. L. Transmembrane topology of the glutamate receptor subunit GluR6. Journal of Biological Chemistry 1994; 269: 11679–11682
  • Roche K., Obrien R. J. O., Mammen A. L., Bernhardt J., Huganir R. L. Characterization of multiple phosphorylation sites on the AMPA receptor GluR1 subunit. Neuron 1996; 16: 1179–1188
  • Role L. W., Berg D. K. Nicotinic receptors in the development and modulation of CNS synapses. Neuron 1996; 16: 1077–1085
  • Sankararamakrishnan R., Adcock C., Sansom M. S. P. The pore domain of the nicotinic acetylcholine receptor: Molecular modelling, pore dimensions, and electrostatics. Biophysical Journal 1996; 71: 1659–1671
  • Sansom M. S.P., Sankararamakrishnan R, Kerr I. D. Modelling membrane proteins using structural restraints. Nature Structural Biology 1995; 2: 624–631
  • Sine S. M. Molecular dissection of subunit interfaces in the acetylcholine receptor: identification of residues that determine curare selectivity. Proceedings of the National Academy of Sciences of the USA 1993; 90: 9436–9440
  • Sine S. M., Ohno O. K., Bouzat C., Auerbach A., Milone M., Pruitt J. N., Engel A. G. Mutation of the acetylcholine receptor α-subunit causes a slow-channel myasthenic syndrome by enhancing agonist binding affinity. Neuron 1995; 15: 229–239
  • Taverna F. A., Wang L., MacDonald J. F., Hampson D. R. A transmembrane model for an ionotropic glutamate receptor predicted on the basis of the location of asparagine-linked oligosaccharides. Journal of Biological Chemistry 1994; 269: 14159–14164
  • Unwin N. The nicotinic acetylcholine receptor at 9 A resolution. Journal of Membrane Biology 1993a; 229: 1101–1124
  • Unwin N. Neurotransmitter action: opening of ligand-gated ion channels. Cell 72/Neuron 1993b; 10(Suppl.)31–41
  • Unwin N. Acetylcholine receptor channel imaged in the open state. Nature 1995; 373: 37–43
  • Villarroel A., Herlitze S., Koenen M., Sakmann B. Location of a threonine residue in the α-subunit M2 transmembrane segment that determines the ion flow through the acetylcholine receptor channel. Proceedings of the Royal Society (Biology) 1991; 243: 69–74
  • Villarroel A., Sakmann B. Threonine in the selective filter of the acetylcholine receptor channel. Biophysical Journal 1992; 62: 196–205
  • Villarroel A. Ion conduction through the acetylcholine receptor channel. The Nicotinic Acetylcholine Receptor: Current trends and strategies. Neuroscience Intelligence Unit, F. J. Barrantes. Landes Publishing Co. 1997, in press
  • White B. H., Howard S., Cohen S. G., Cohen J. B. The hydrophobic photoreagent 3-(trifluoromethyl)-3-(m[125I]iodophenyl)-diazerine is a novel noncompetitive antagonist of the nicotinic acetylcholine receptor. Journal of Biological Chemistry 1991; 266: 21595–21607
  • White B. H., Cohen J. B. Agonist-induced changes in the structure of the acetylcholine receptor M2 regions revealed by photoincorporation of an uncharged nicotinic noncompetitive antagonist. Journal of Biological Chemistry 1992; 267: 15770–15783
  • Wo Z. G., Oswald R. E. Transmembrane topology of two kainate receptor subunits revealed by N-glycosylation. Proceedings of the National Academy of Sciences of the USA 1994; 91: 7154–7158
  • Wood M. W., VanDongen H. M., VanDongen A. M. Structural conservation of ion conductance in K channels and glutamate receptors. Proceedings of the National Academy of Sciences of the USA 1995; 92: 4882–4886

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.