98
Views
1
CrossRef citations to date
0
Altmetric
Original Article

Heparin binding protein-44 (HBP-44)/receptor-associated protein (RAP) mediates cell-substratum adhesion of mouse NIH/3T3 cells through its binding to low density lipoprotein (LDL) receptor-related protein (LRP)

, , , &
Pages 81-86 | Received 17 Dec 1996, Published online: 09 Jul 2009

References

  • Krieger M., Herz J. Structures and functions of multiligand lipoprotein receptors: macrophage scavenger receptors and LDL receptor-related protein (LRP). Annual Review of Biochemistry 1994; 63: 601–637
  • Herz J., Kowal R. C., Goldstein J. L., Brown M. S. Proteolytic processing of the 600 kd low density lipoprotein receptor-related protein (LRP) occures in a trans-Golgi compartment. EMBO Journal 1990; 9: 1769–1776
  • Furukawa T., Ozawa M., Huang R.-P., Muramatsu T. A heparin binding protein whose expression increases during differentiation of embryonal carcinoma cells to parietal endoderm cells: cDNA cloning and sequence analysis. Journal of Biochemistry 1990; 108: 297–302
  • Pietromonaco S., Kerjaschki D., Binder S., Ullrich R., Farquhar M. G. Molecular cloning of a cDNA encoding a major pathogenic domain of the Heymann nephritis antigen gp330. Proceedings of the National Academy of Sciences, USA 1990; 87: 1811–1815
  • Strickland D. K., Ashcom J. D., Williams S., Battey F., Behre E., McTigue K., Battey J. F., Argraves W. S. Primary structure of α2-macroglobulin receptor-associated protein. Human homologue of a Heymann nephritis antigen. Journal of Biological Chemistry 1991; 266: 13364–13369
  • Strickland D. K., Ashcom J. D., Williams S., Burgess W. H., Migliorini M., Argraves W. S. Sequence identity between the alpha 2-macroglobulin receptor and low density lipoprotein receptor-related protein suggests that this molecule is a multifunctional receptor. Journal of Biological Chemistry 1990; 265: 17401–17404
  • Kristensen T., Moestrup S. K., Gliemann J., Bendtsen L, Sand O., Sottrup-Jensen L. Evidence that the newly cloned low density lipoprotein receptor-related protein (LRP) is the alpha 2-macroglobulin receptor. FEBS Letters 1990; 276: 151–155
  • Orlando R. A., Kerjaschki D., Kurihara H., Biemesderfer D., Farquhar M. G. gp330 associates with a 44-kDa protein in the rat kidney to form the Heymann nephritis antigenic complex. Proceedings of the National Academy of Sciences, USA 1992; 89: 6698–6702
  • Willnow T. E., Goldstein J. L., Orth K., Brown M. S., Herz J. Low density lipoprotein receptor-related protein and gp330 bind similar ligands, including plasminogen activator-inhibitor complexes and lactoferrin, and inhibitor of chylomicron remnant clearance. Journal of Biological Chemistry 1992; 267: 26172–26180
  • Kounnas M. Z., Argraves W. S., Strickland D. K. The 39-kDa receptor-associated protein interacts with two members of the low density lipoprotein receptor family, α2-macroglobulin receptor and glycoprotein 330. Journal of Biological Chemistry 1992; 267: 21162–21166
  • Nakamoto M., Ozawa M., Jacinto S. D., Furukawa T., Natori Y., Shirahama H., Yonezawa S., Nakayama T., Muramatsu T. Mouse heparin binding protein-44 (HBP-44) associates with brushin, an high molecular weight glycoprotein antigen common to the kidney and teratocarcinomas. Journal of Biochemistry 1993; 114: 344–349
  • Saito A., Pietromonaco S., Loo A. K-C., Farquhar M. G. Complete cloning and sequencing of rat gp300/‘megalin’, a distinctive member of the low density lipoprotein receptor gene family. Proceedings of the National Academy of Sciences, USA 1994; 91: 9725–9729
  • Moestrup S. K., Gliemann J. Analysis of ligand recognition by the purified α2-macroglobulin receptor (low density lipoprotein receptor-related protein). Evidence that high affinity of α2-macroglobulin-proteinase complex is achieved by binding to adjacent receptors. Journal of Biological Chemistry 1991; 266: 14011–14017
  • Herz J., Goldstein J. L., Strickland D. K., Ho Y. K., Brown M. S. 39-kDa protein modulates binding of ligands to low density lipoprotein receptor-related protein/α2-macroglobulin receptor. Journal of Biological Chemistry 1991; 266: 21232–21238
  • Williams S. E., Ashcom J. D., Argraves W. S., Strickland D. K. A novel mechanism for controlling the activity of α2-macroglobulin receptor/low density lipoprotein receptor-related protein. Multiple regulatory sites for 39-kDa receptor-associated protein. Journal of Biological Chemistry 1992; 267: 9035–9040
  • Bu G., Maksymovitch E. A., Geuze H., Schwartz A. L. Subcellular localization and endocytic function of low density lipoprotein receptor-related protein in human glioblastoma cells. Journals of Biological Chemistry 1994; 269: 29874–29882
  • Bu G., Geuze H. J., Straus G. J., Schwartz A. L. 39 kDa receptor-associated protein is an ER resident protein and molecular chaperone for LDL receptor-related protein. EMBO Journal 1995; 14: 2269–2280
  • Willnow T. E., Armstrong S. A., Hammer R. E., Herz J. Functional expression of low density lipoprotein receptor-related protein is controlled by receptor-associated protein in vivo. Proceedings of the National Academy of Sciences, USA 1995; 92: 4537–4541
  • Willnow T. E., Sheng Z., Ishibashi S., Herz J. Inhibition of hepatic chylomicron remnant uptake by gene transfer of a receptor antagonist. Science 1994; 246: 1471–1474
  • Holtzman D. M., Pitas R. E., Kilbridge J., Nathan B., Mahley R. W., Bu G., Schwartz A. L. Low density lipoprotein receptor-related protein mediates apolipoprotein E-dependent neurite outgrowth in a central nervous system-derived neuronal cell line. Proceedings of the National Academy of Sciences, USA 1995; 92: 9480–9484
  • Bellosta S., Nathan B. P., Orth M., Dong L.-M., Mahley R. W., Pitas R. E. Stable expression and secretion of apolipoproteins E3 and E4 in mouse neuroblastoma cells produces differential effects on nurite outgrowth. Journal of Biological Chemistry 1995; 270: 27063–27071
  • Nathan B. P., Bellosta S., Sanan D. A., Weisgraber K. H., Mahley R. W., Pitas R. E. Differential effects of apolipoproteins E3 and E4 on neuronal growth in vitro. Science 1994; 264: 850–852
  • Rosenberg A. H., Lade B. N., Chui D. S., Lin S.-W., Dunn J. J., Studier F. W. Vectors for selective expression of cloned DNAs by T7 RNA polymerase. Gene 1987; 56: 125–135
  • Hynes R. O. Integrins: versatility, modulation, and signalling in cell adhesion. Cell 1992; 69: 11–25
  • Oka J. A., Weigel P. H. Binding and spreading of hepatocytes on synthetic galactose culture surfaces occur as distinct and separable threshold responses. Journal of Cell Biology 1986; 103: 1055–1060
  • Weigel P. H., Oka J. A. Coated pits and asialoglycoprotein receptors redistribute to the substratum during hepatocyte adhesion to galactoside surfaces. Biochemical and Biophysical Research Communications 1991; 180: 1304–1311
  • Huang D. Y., Weisgraber K. H., Strittmatter W. J., Matthew W. D. Interaction of apolipoprotein E with laminin increases neuronal adhesion and alters neurite morphology. Experimental Neurology 1995; 136: 251–257
  • Kato S., Ben T. L., De Luca L. M. Phorbol esters enhance attachment of NIH/3T3 cells to laminin and type IV collagen substrates. Experimental Cell Research 1988; 179: 31–41
  • Ozawa M., Nuruki K., Toyoyama H., Ohi Y. Cloning of an alternative form of plakoglobin (μ-catenin) lacking the fourth armadillo repeat. Journal of Biochemistry 1995; 118: 836–840
  • Studier F. W., Rosenberg A. H., Dunn J. J., Dubendorff J. W. Use of T7 RNA polymerase to direct expression of cloned genes. Methods of Enzymology 1990; 185: 60–89
  • Ozawa M., Terada H., Pedraza C. The fourth armadillo repeat of plakoglobin (γ-catenin) is required for its high affinity binding to the cytoplasmic domains of E-cadherin and desmosomal cadherin Dsg2, and the tumor suppressor APC protein. Journal of Biochemistry 1995; 118: 1077–1082
  • Ozawa M., Baribault H., Kemler R. The cytoplasmic domain of the cell adhesion molecule uvomorulin associates with three independent proteins structurally related in different species. EMBO Journal 1989; 8: 1711–1717
  • Lowry O. H., Rosenbrough N. J., Farr A. L., Randall R. J. Protein measurement with the folin phenol reagent. Journal of Biological Chemistry 1951; 193: 265–275

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.