276
Views
14
CrossRef citations to date
0
Altmetric
Original Article

Phosphoinositide metabolism and shape control in sheep red blood cells

, &
Pages 27-32 | Received 15 Sep 1997, Accepted 21 Nov 1997, Published online: 09 Jul 2009

References

  • Nakao M., Nakao T., Yamazoe S. Adenosine triphosphate and maintenance of shape of the human red cells. Nature 1960; 187: 945–946
  • Weed R. I., LaCelle P. L., Merrill E. W. Metabolic dependence of red cell deformability. Journal of Clinical Investigation 1969; 48: 795–809
  • Mohandas N., Shohet S. B. Control of red cell deformability and shape. Current Topics in Hematology 1978; 1: 71–125
  • Ferrell J. E., Huestis W. H. Phosphoinositide metabolism and the morphology of human erythrocytes. Journal of Cell Biology 1984; 98: 1992–1998
  • Backman L. Shape control in the red cell. Journal of Cell Science 1986; 80: 281–298
  • Quist E. E., Powell P. Polyphosphoinositides and the shape of mammalian erythrocytes. Lipids 1985; 20: 433–438
  • Bütikofer P., Lin Z. W., Kuypers F. A., Scott M. D., Xu C. M., Wagner G. M., Chiu D. T., Lubin B. Chlorpromazine inhibits vesiculation, alters phosphoinositide turnover and changes deformability of ATP-depleted RBCs. Blood 1989; 73: 1699–1704
  • De Potas G. M., De D., Angel A. M. P. Phosphoinositide phosphorylation and shape changes produced by phosmet-oxon in human erythrocytes. Comparative Biochemistry and Physiology [C] 1993; 106C: 561–566
  • Sheetz M. P., Singer S. J. Biological membranes as bilayer couples. A molecular mechanism of drug-erythrocyte interactions. Proceedings of the National Academy of Sciences, USA 1974; 71: 4457–4461
  • Sheetz M. P., Painter R. G., Singer S. J. Biological membranes as bilayer couples. 111. Compensatory shape changes induced in membranes. Journal of Cell Biology 1976; 70: 193–203
  • Gascard P., Tran D., Sauvage M., Sulpice J. C., Fukami K., Takenawa T., Claret M., Giraud F. Asymmetric distribution of phosphoinositides and phosphatidic acid in the human erythrocyte membrane. Biochimica et Biophysica Acta 1991; 1069: 27–36
  • Deuticke B. Transformation and restoration of biconcave shape of human erythrocytes induced by amphiphilic agents and changes of ionic environment. Biochimica et Biophysica Acta 1968; 163: 494–500
  • Seigneuret M., Devaux P. F. ATP-dependent asymmetric (distribution of spin-labeled phospholipids in the erythrocyte membrane: Relation to shape changes. Proceedings of the National Academy of Sciences, USA 1984; 81: 3751–3755
  • Mohandas N., Greenquist A. C., Shohet S. B. Bilayer balance and regulation of red cell shape changes. Journal of Supramolecular Structure 1978; 9: 453–458
  • Lange Y., Slayton J. M. Interaction of cholesterol and lysophosphatidylcholine in determining red cell shape. Journal of Lipid Research 1982; 23: 1121–1127
  • Pestonjamasp K. N., Mehta N. G. Effect of antibodies lo membrane skeletal proteins on the shape of erythrocytes, and their ability to respond to shape-modulating agents. Important role of 4.1 protein in the determination/maintenance of the discoid shape of erythrocytes. Experimental Cell Research 1995; 219: 74–81
  • Jinbu Y., Sato S., Nakao T., Nakao M. Ankyrin is necessary for both drug-induced and ATP-induced shape change of human erythrocyte ghosts. Biochemical and Biophysical Research Communications 1982; 104: 1087–1092
  • Jinbu Y., Sato S., Nakao T., Nakao M., Tsukita S., Tsukita S., Ishikawa H. The role of ankyrin in shape and deformability change of human erythrocyte ghosts. Biochimica et Biophysica Acta 1984; 773: 237–245
  • Khodadad J. K., Waugh R. E., Podolski J. L., Josephs R., Steck T. L. Remodeling the shape of the skeleton in the intact red cell. Biophysical Journal 1996; 70: 1036–1044
  • Fairbanks G., Patel V. P., Dino J. E. Biochemistry of ATP-dependent red cell membrane shape change. Scandinavian Journal of Clinical and Laboratory Investigation, Supplement 1981; 41: 1313–144
  • Allan D., Thomas P., Michell R. H. Rapid transbilayer diffusion of 1,2-diacylglycerol and its relevance to control of membrane curvature. Nature 1978; 276: 289–290
  • Anderson J. M., Tyler J. M. State of spectrin phosphorylation does not affect erythrocyte shape or spectrin binding to erythrocyte membrane. Journal of Biological Chemistry 1980; 255(1)259–1265
  • Young J. D. Nucleoside transport in sheep erythrocytes: Genetically controlled transport variation and its influence on erythrocyte ATP concentration. Journal of Physiology London 1978; 277: 325–339
  • Kurata M., Suzuki M., Haruta K., Takeda K. Relationship between erythrocyte deformability and glutathione under oxidative stress. Comparative Biochemistry and Physiology [A] 1994; 107A: 7–12
  • Peters L. L., Shivdasani R. A., Liu S. C., Hanspal M., John K. M., Gonzalez J. M., Brugnara C., Gwynn B., Mohandas N., Alper S. L., Orkin S. H., Lux S. E. Anion exchanger 1 (band 3) is required to prevent erythrocyte membrane surface loss but not to form the membrane skeleton. Cell 1996; 86: 917–927
  • Grunze M., Haest C. W. M., Deuticke B. Lateral segregation of membrane lipids and formation of stable rod-shaped membrane projections in erythrocytes treated with long-chain alcohols. Biochimica et Biophysica Acta 1982; 693: 237–245
  • Sune A., Bienvenue A. Relationship between the transverse distribution of phospholipids in plasma membrane and shape change of human platelets. Biochemishy 1988; 27: 6794–6800
  • Ferrell J. E., Jr, Mitchell K. T., Huestis W. H. Membrane bilayer balance and platelet shape: morphological and biochemical responses to amphipathic compounds. Biochimica et Biophysica Acta 1988; 939: 223–237
  • Fairbanks G., Avruch J., Dino J. E., Patel V. P. Phosphorylation and dephosphorylation of spectrin. Journal of Supramolecular Structure 1978; 9: 97–112
  • Beleznay Z., Zachowski A., Devaux P. F., Puente Navazo M., Ott P. ATP-dependent aminophospholipid translocation in erythrocyte vesicles: Stoichiometry of transport. Biochemistry 1993; 32: 3146–3152
  • Gascard P., Sauvage M., Sulpice J. C., Giraud F. Characterization of structural and functional phosphoinositide domains in human erythrocyte membranes. Biochemistry 1993; 32: 5941–5948
  • Bjork J., Backman L. Sodium selenite as modulator of red cell shape. Biochimica et Biophysica Acta 1994; 1191: 141–146
  • Sanders S. K., Alexander E. L., Braylan R. C. A high-yield technique for preparing cells fixed in suspension for scanning electron microscopy. Journal of Cell Biology 1975; 67: 476–480
  • Andersson T. F. Techniques for the preservation of three-dimensional structure in preparing specimens for the electron microscope. Transactions of the New York Academy of Science 1951; 13: 130–134
  • Lundin A., Rickardsson A., Thore A. Continuous monitoring of ATP-converting reactions by purified luciferase. Analytical Biochemistry 1976; 75: 611–620
  • Beutler E. Red Cell Metabolism3rd ed. Grune & Stratton, Inc., Orlando 1984; 131–134
  • Noren I. B. E., Bertoli D. A., Ho C., Casassa E. F. On the tetramer-dimer equilibrium of carbon monooxyhemoglobin in 2 M sodium chloride. Biochemistry 1974; 13: 1683–1686
  • Bartlett G. R. Phosphorus assay in column chromatography. Journal of Biological Chemistry 1959; 234: 466–468

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.