25
Views
3
CrossRef citations to date
0
Altmetric
Original Article

Oxyanion-Mediated Protein Stabilization: Differential Roles of Phosphate for Preventing Inactivation of Bacterial α-Glucan Phosphorylases

, , , &
Pages 379-398 | Received 16 May 2000, Published online: 11 Jul 2009

References

  • Baldwin R. L. “How Hofmeister ion interactions affect protein stability”. Biophysical Journal 1996; 71: 2056–2063
  • Bartl F, Palm D., Schinzel R., Zundel G. “Proton relay system in the active site of maltodextrin phosphorylase via hydrogen bonds with large proton polarizability: an FT-IR difference spectroscopy study”. European Biophysical Journal 1999; 28: 200–207
  • Cashikar A. G., Rao N. M. “Unfolding pathway in red kidney bean acid phosphatase is dependent on ligand binding”. Journal of Biological Chemistry 1996; 271: 4741–4746
  • Chakrabarti P. “Anion binding sites in protein structures”. Journal of Molecular Biology 1993; 234: 463–482
  • Copley R. R., Barton G. J. “A structural analysis of phosphate and sulphate binding sites in proteins”. Journal of Molecular Biology 1994; 242: 321–329
  • Eis C, Grießler R., Maier M., Weinhäusel A., Böck B., Haltrich D., Kulbe K. D., Schinzel R., Nidetzky B. “Efficient downstream processing of maltodextrin phosphorylase from Escherichia coli and stabilization of the enzyme by immobilization onto hydroxyapatite”. Journal of Biotechnology 1997; 58: 156–166
  • Fersht A. R., Serrano L. “Principles of protein stability derived from protein engineering experiments”. Current Opinion in Structural Biology 1993; 3: 75–83
  • Grießer R., D'Auria S., Schinzel R., Tanfani F., Nidetzky B. “Mechanism of thermal denaturation of maltodextrin phosphorylase from Escherichia coli”. Biochemical Journal 2000a; 346: 255–263
  • Grießler R., D'Auria S., Tanfani F., Nidetzky B. “Thermal denaturation mechanism of starch phosphorylase from Corynebacterium callunae: oxyanion binding provides the glue that efficiently stabilizes the dimer structure of the protein”. Protein Science 2000b; 9: 1149–1161
  • Iriarte A., Kraft K., Martinez-Carrion M. “The separate effects of coenzyme components may not be additive”. Journal of Biological Chemistry 1985; 260: 7457–7463
  • Johnson L. N. “Glycogen phosphorylase: control by phosphorylation and allosteric effectors”. FASEB Journal 1992; 6: 2274–2282
  • Kelly S. M., Price N. C. “The application of circular dichroism to studies of protein folding and unfolding”. Biochimica et Biophysica Acta 1997; 1338: 161–185
  • Lima L. M.T.R., de Prat-Gay G. “Conformational changes and stabilization induced by ligand binding in the DNA-binding domain of the E2 protein from human papillomavirus”. Journal of Biological Chemistry 1997; 272: 19295–19303
  • Lin K., Rath V. L., Dai S. C., Fletterick RJ., Hwang P. K. “A protein phosphorylation switch at the conserved allosteric site in glycogen phosphorylase”. Science 1996; 273: 1539–1541
  • Martinez-Liarte J. H., Iriarte A., Martinez-Carrion M. “Inorganic phosphate binding and electrostatic effects in the active centre of aspartate aminotransferase apoenzyme”. Biochemistry 1992; 31: 2712–2719
  • Matthew J. B., Gurd F. R.N. “Stabilization and destabilization of protein structure by charge interaction”. Methods in Enzymology 1986; 130: 437–453
  • Meiering E. M., Bycroft M., Fersht A. R. “Characterization of phosphate binding in the active site of barnase by site-directed mutagenesis”. Biochemistry 1991; 30: 11348–11356
  • Niemann C, Saenger W., Pfannemüller B., Eigner W. D., Huber A. “Phosphorolytic synthesis of low-molecular weight amyloses with modified terminal groups”. ACS Symposium Series 1991; 458: 189–204
  • O'Reilly M., Watson K. A., Schinzel R., Palm D., Johnson L. N. “Oligosaccharide substrate binding to E. coli maltodextrin phosphorylase”. Nature Structural Biology 1998; 4: 405–412
  • Pace C. N. “Conformational stability of globular proteins”. Trends in Biochemical Sciences 1990; 15: 14–17
  • Pace C. N., Gnmsley G. R. “Ribonuclease Tl is stabilized by cation and anion binding”. Biochemistry 1988; 27: 3242–3246
  • Russell A. J., Fersht A. R. “Rational modification of enzyme catalysis by engineering surface charges”. Nature 1987; 328: 496–500
  • Shaltiel S., Hedrick J. L., Pocker A., Fischer E. H. “Reconstitution of apophosphorylase with pyridoxal 5′-phosphate analogs”. Biochemistry 1969; 8: 5189–5196
  • Shimomura S., Fukui T. “Circular dichroism studies on glycogen phosphorylase from rabbit muscle. Interactions with the allosteric activator adenine 5′-monophosphate”. Biochemistry 1976; 15: 4438–4446
  • Shimomura S., Emman K., Fukui T. “The role of pyridoxal 5′-phosphate in plant phosphorylase”. Journal of Biochemistry 1980; 87: 1043–1052
  • Strickland E. H. “Aromatic contributions to circular dichroism spectra of proteins”. CRC Critical Reviews in Biochemistry 1974; 2: 113–175
  • Tagaya M., Shimomura S., Nakano K., Fukui T. “A monomeric intermediate in the reconstitution of potato apophosphorylase with pyridoxal 5′-phosphate”. Journal of Biochemistry 1982; 91: 589–597
  • Timasheff S. N., Arakawa T. “Stabilization of protein structure by solvents”. Protein structure—a practical approach, T. E. Creighton. IRL Press, Oxford 1990; 331–345
  • Watson K. A., Schinzel R., Paim D., Johnson L. N. “The crystal structure of Escherichia coli maltodextrin phosphorylase provides an explanation for the activity without control in this basic archetype of a phosphorylase”. EMBO Journal 1997; 16: 1–14
  • Watson K. A., McCleverty C, Geremia S., Cottaz S., Driguez H., Johnson L. N. “Phosphorylase recognition and phosphorolysis of its oligosaccharide substrate: answers to a long outstanding question”. EMBO Journal 1999; 18: 4619–4632
  • Weinhäusel A., Nidetzky B., Rohrbach M., Blauensteiner B., Kulbe K. D. “A new maltodextrin phosphorylase from Corynebacterium callunae for the production of glucose-1-phosphate”. Applied Microbiology and Biotechnology 1994; 41: 510–516
  • Weinhäusel A., Grießler R., Krebs A., Zipper P., Haltrich D., Kulbe K. D., Nidetzky B. “α-l,4-D-glucan phosphorylase of gram-positive Corynebacterium callunae: isolation, biochemical properties and molecular shape of the enzyme from solution X-ray scattering”. Biochemical Journal 1997; 326: 773–783

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.