80
Views
2
CrossRef citations to date
0
Altmetric
Original Article

Stability and catalytic properties of chemically modified pig trypsin

&
Pages 309-317 | Received 08 May 2009, Published online: 07 Oct 2009

References

  • Barbas CF, Matos JR, West JB, Wong C-H. A search for peptide ligase: cosolvent-mediated conversion of proteases to esterases for irreversible synthesis of peptides. J Am Chem Soc 1988; 110: 5162–5166
  • Barfoed, HC. 1987. Insulin production technology. Chem Eng Progr (Oct):49–54.
  • Blanco RM, Alvaro G, Guisán JM. Enzyme reaction engineering: design of peptide synthesis by stabilised trypsin. Enzyme Microb Technol 1991; 13: 573–583
  • Briand L, Chobert J-M, Gantier R, Declerck N, Tran V, Léonil J, Mollé D, Haertlé T. Impact of the lysine-188 and aspartic acid-189 inversion on activity of trypsin. FEBS Lett 1999; 442: 43–47
  • Čeřovsky V. Free trypsin-catalyzed peptide synthesis in acetonitrile with low water content. Biotechnol Lett 1990; 12: 899–904
  • Coleman PL, Green GDJ. A coupled photometric assay for plasminogen activator. Methods Enzymol 1981; 80: 408–414
  • Craik CS, Largman C, Fletcher T, Roczniak S, Barr PJ, Fletterick R, Rutter WJ. Redesigning trypsin: alteration of substrate specificity. Science 1985; 228: 291–297
  • Elsner C, Grahn S, Bauer S, Ullmann D, Kurth T, Jakubke H-D. Effects of chemical modification of lysine residues in trypsin. J Mol Catal B: Enzym 2000; 8: 193–200
  • Erlanger BF, Kokowsky N, Cohen W. The preparation and properties of two new chromogenic substrates of trypsin. Arch Biochem Biophys 1961; 95: 271–278
  • Evnin LB, Vásquez JR, Craik CS. Substrate specificity of trypsin investigated by using a genetic selection. Proc Natl Acad Sci U S A 1990; 87: 6659–6663
  • Fernández M, Fragoso A, Cao R, Banos M, Ansorge-Schumacher M, Hartmeier W, Villalonga R. Functional properties and application in peptide synthesis of trypsin modified with cyclodextrin-containing dicarboxylic acids. J Mol Catal B: Enzym 2004; 31: 47–52
  • Finehout EJ, Cantor JR, Lee KH. Kinetic characterization of sequencing grade modified trypsin. Proteomics 2005; 5: 2319–2321
  • Gill I, López-Fandiño R, Jorba X, Vulfson EN. Biologically active peptides and enzymatic approaches to their production. Enzyme Microb Technol 1996; 18: 162–183
  • Gleich M, Talsky G, Spannagl R. Stabilisation of trypsin by modification with bifunctional reagents. DECHEMA Biotechnol Conf 1992; 5: 121–124
  • Goradia D, Cooney J, Hodnett BK, Magner E. The adsorption characteristics, activity and stability of trypsin onto mesoporous silicates. J Mol Catal B: Enzym 2005; 32: 231–239
  • Guinn RM, Blanch HW, Clark DS. Effect of a water-miscible organic solvent on the kinetic and structural properties of trypsin. Enzyme Microb Technol 1991; 13: 320–326
  • Gupta MN, Batra R, Tyagi R, Sharma A. Polarity index: the guiding solvent parameter for enzyme stability in aqueous–organic cosolvent mixtures. Biotechnol Progr 1997; 13: 284–288
  • Halfon S, Craik CS. Regulation of proteolytic activity by engineered tridentate metal binding loops. J Am Chem Soc 1996; 118: 1227–1228
  • Hamerska-Dudra A, Bryjak J, Trochimczuk AW. Immobilization of glucoamylase and trypsin on crosslinked thermosensitive carriers. Enzyme Microb Technol 2007; 41: 197–204
  • Hedstrom L, Szilagyi L, Rutter WJ. Converting trypsin to chymotrypsin: the role of surface loops. Science 1992; 255: 1249–1253
  • Helmerhost E, Stokes GB. Microcentrifuge desalting: a rapid quantitative method for desalting small amounts of protein. Anal Biochem 1980; 104: 130–135
  • Higaki JN, Evnin LB, Craik CS. Introduction of a cysteine protease active site into trypsin. Biochemistry 1989; 28: 9256–9263
  • Hirota M, Ohmuraya M, Baba H. The role of trypsin, trypsin inhibitor and trypsin receptor in the onset and aggravation of pancreatitis. J Gastroenterol 2006; 41: 832–836
  • Huang Y-B, Cai Y, Yang S, Wang H, Hou R-Z, Xu L, Zhang X-Z. Chemo-enzymatic synthesis of precursor tetrapeptide Bz-RGDS-NH2 of cellular adhesion motif in low-water organic media. Enzyme Microb Technol 2006; 39: 1159–1165
  • Ji TH. Bifunctional reagents. Methods Enzymol 1983; 91: 580–609
  • Kasche V. Proteases in peptide synthesis. Proteolytic enzymes: A practical approach, RJ Beynon, JS Bond. Oxford University Press, Oxford 1989; 125–143
  • Khmelnitsky YL, Mozhaev VV, Belova AB, Sergeeva MV, Martinek K. Denaturation capacity: a new quantitative criterion for selection of organic solvents as reaction media in biocatalysis. Eur J Biochem 1991; 198: 31–41
  • Kurth T, Grahn S, Thormann M, Ullmann D, Hoffman HJ, Jakubke HD, Hedstrom L. Engineering the S1′ subsite of trypsin: design of a protease which cleaves between dibasic residues. Biochemistry 1998; 37: 11434–11440
  • Liu JY, Lin S, Qi DW, Deng CH, Yang PY, Zhang XM. On-chip enzymatic microreactor using trypsin-immobilized superparamagnetic nanoparticles for highly efficient proteolysis. J Chromatogr A 2007; 1176: 169–177
  • Mozhaev VV, Šikšnis VA, Melik-Nubarov NS, Galkantaite NZ, Denis GJ, Butkus EP, Zaslavsky BY, Mestechkina NM, Martinek K. Protein stabilization via hydrophilization–covalent modification of trypsin and α-chymotrypsin. Eur J Biochem 1988; 173: 147–154
  • Murphy A, Ó'Fágáin C. Chemically stabilised trypsin used in dipeptide synthesis. Biotechnol Bioeng 1998; 58: 365–373
  • Nakamura K, Matsushima A. Comparative studies on the states of amino acid residues in porcine and bovine trypsins. J Biochem (Tokyo) 1969; 65: 785–792
  • Nouaimi M, Möschel K, Bisswanger H. Immobilization of trypsin on polyester fleece via different spacers. Enzyme Microb Technol 2001; 29: 567–574
  • Novo-Nordisk A/S. 1997. A process for producing trypsin (trypsinogen). World Patent no. WO 97/00316.
  • Nurok D, Kleyle RM, Muhoberac BB, Frost MC, Hajdu P, Robertson DH, Kamat SV, Russell AJ. Study of enzyme-catalysed reactions in organic solvents using multiple linear regression. J Mol Catal B: Enzym 1999; 7: 273–282
  • O'Brien A-M, O'Fágáin C, Nielsen PF, Welinder KG. Location of crosslinks in chemically stabilized horseradish peroxidase. Biotechnol Bioeng 2001; 76: 277–284
  • Outzen H, Berglund GI, Smalås AO, Willassen NP. Temperature and pH sensitivity of trypsins from Atlantic salmon (Salmo salar) in comparison with bovine and porcine trypsin. Comp Biochem Physiol 1996; 115B: 33–45
  • Perona JJ, Tsu CA, McGrath ME, Craik CS, Fletterick RJ. Relocating a negative charge in the binding pocket of trypsin. J Mol Biol 1993; 230: 934–949
  • Pham VT, Altosaar I, Duhig MN, Kaplan H. Glass-immobilised glycated trypsin: a novel modified trypsin that is remarkably thermostable. J Mol Catal B: Enzym 2009; 58: 48–53
  • Plettner E, Khumtaveeporn K, Shang X, Bryan Jones J. A combinatorial approach to chemical modification of subtilisin Bacillus lentus. Bioorg Med Chem Lett 1998; 8: 2291–2296
  • Pouliot Y, Gauthier SF, Bard C. Skim milk solids as substrate for the preparation of casein enzymatic hydrolysates. J Food Sci 1995; 60: 111–116
  • Proudfoot AEI, Davies JG, Turcatti G, Wingfield PT. Human interleukin 5 expressed in E. coli. FEBS Lett 1991; 283: 61–64
  • Rokka T, Syvaoja EL, Tuominen J, Korhonen H. Release of bioactive peptides by enzymatic proteolysis of Lactobacillus GG fermented UHT milk. Milchwissenschaft: Milk Sci Int 1997; 52: 675–678
  • Simon LM, Kotorman M, Garab G, Laczko I. Structure and activity of α-chymotrypsin and trypsin in aqueous organic media. Biochem Biophys Res Commun 2001; 280: 1367–1371
  • Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC. Measurement of protein using bicinchoninic acid. Anal Biochem 1985; 150: 76–85
  • Treetharnmathurot B, Ovartlarnporn C, Wungsintaweekul J, Duncan R, Wiwattanapatapee R. Effect of PEG molecular weight and linking chemistry on the biological activity and thermal stability of PEGylated trypsin. Int J Pharm 2008; 357: 252–259
  • Tyagi R, Gupta MN. Stability of enzymes in water/organic cosolvent mixtures. Biotechnol Tech 1998; 12: 569–570
  • Van Unen D-J, Sakodinskaya IK, Engbersen JFJ, Reinhoudt DV. Sol–gel immobilization of serine proteases for application in organic solvents. Biotechnol Bioeng 2001; 75: 155–158
  • Villalonga R, Villalonga ML, Gomez L. Preparation and functional properties of trypsin modified by carboxymethylcellulose. J Mol Catal B: Enzym 2000; 10: 483–490
  • Villalonga ML, Fernandez M, Fragoso A, Cao R, Villalonga R. Functional stabilization of trypsin by conjugation with β-cyclodextrin-modified carboxymethylcellulose. Prep Biochem Biotechnol 2003; 33: 53–56
  • Vorob'ev MM, Dalgalarrondo M, Chobert J-M, Haertlé T. Kinetics of β-casein hydrolysis by wild-type and engineered trypsin. Biopolymers 2000; 54: 355–364
  • Wallace, CJA. 2000. Protein engineering by semisynthesis. Boca Raton, (FL): CRC Press. pp. 29, 83–89.
  • Walsh KA. Trypsinogen and trypsins of various species. Methods Enzymol 1970; 19: 41–63
  • Walsh KA, Wilcox PE. Serine proteases. Methods Enzymol 1970; 19: 31–41
  • Wang Y, Liang Z-H, Zhang Y-S, Yao S-Y, Xu Y-G, Tang Y-H, Zhu S-Q, Cui D-F, Feng Y-M. Human insulin from a precursor overexpressed in the methylotrophic yeast Pichia pastoris and a simple procedure for purifying the expression product. Biotechnol Bioeng 2001; 73: 74–79
  • Woodward SL, Mayor JM, Bailey MR, Barker DK, Love RT, Lane JR, Delaney DE, McComas-Wagner JM, Mallubhotla HD, Hood EE, Dangott LJ, Tichy SE, Howard JA. Maize (Zea mays)-derived bovine trypsin: characterization of the first large-scale, commercial protein product from transgenic plants. Biotechnol Appl Biochem 2003; 38: 123–130
  • Yagisawa S. Studies on protein semisynthesis I. J Biochem (Tokyo) 1981; 89: 491–501
  • Zhang L-Q, Zhang Y-D, Xu L, Li X-L, Yang X-C, Xu G-L, Wu X-X, Gao H-Y, Du W-B, Zhang X-T, Zhang X-Z. Lipase-catalyzed synthesis of RGD diamide in aqueous water-miscible organic solvents. Enzyme Microb Technol 2001; 29: 129–135

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.