54
Views
3
CrossRef citations to date
0
Altmetric
Original Article

Effect of ethylene glycol and glycerol fructosides on the activity and product specificity of bacterial and plant fructosyltransferases

, , , , &
Pages 328-339 | Received 23 Jan 2009, Published online: 07 Oct 2009

References

  • Altenbach D, Rudino-Pinera E, Olvera C, Boller T, Wiemken A, Ritsema T. An acceptor–substrate binding site determining glycosyl transfer emerges from mutant analysis of a plant vacuolar invertase and a fructosyltransferase. Plant Mol Biol 2008; 69: 47–56
  • Beine R, Moraru R, Nimtz M, Na'amnieh S, Pawlowski A, Bucholz K, Seibel J. Synthesis of novel fructooligosaccharides by substrate and enzyme engineering. J Biotechnol 2008; 138: 33–41
  • Bonnett GD, Sims IM, Simpson RJ, Cairns AJ. Structural diversity of fructan in relation to the taxonomy of the Poaceae. New Phytol 1997; 136: 11–17
  • Chambert R, Petit-Glatron MF. Polymerase and hydrolase activities of Bacillus subtilis levansucrase can be separately modulated by site-directed mutagenesis. Biochem J 1991; 279: 35–41
  • Chambert R, Treboul G, Dedonder R. Kinetic studies of levansucrase of Bacillus subtilis. Eur J Biochem 1974; 41: 285–300
  • Cockman M, Kubler DG, Oswald AS, Wilson L. The mutarotation of fructose and the invertase hydrolysis of sucrose. J Carbohydr Chem 1987; 6: 181–201
  • Cote GA, Ahlgren JA. Metabolism in microorganisms. part I: levan and levansucrase. Science and technology of fructans, M Suzuki, NJ Chatterton. CRC Press, Boca Raton, FL 1993; 141–168
  • Davies GJ, Wilson KS, Henrissat B. Nomenclature for sugar-binding subsites in glycosyl hydrolases. Biochem J 1997; 321: 557–559
  • Davis AL, Laue ED, Keeler J, Moskau D, Lohman J. Absorption-mode two-dimensional NMR spectra recorded using pulsed field gradients. J Magn Reson 1991; 94: 637–644
  • De Coninck B, Van den Ende W, Le Roy K. Fructan exohydrolases (FEHs) in plants: properties, occurrence and 3-D structure. Recent advances in fructooligosaccharides research, N Shiomi, N Benkeblia, S Onodera. Research Signpost, KeralaIndia 2007; 157–179
  • Dedonder R. Levansucrase from Bacillus subtilis. Methods Enzymol 1966; 8: 500–505
  • Edelman J, Jefford TG. The mechanism of fructosan metabolism in higher plants as exemplified in Helianthus tuberosus. New Phytol 1968; 67: 517–531
  • Frehner M, Keller F, Wiemken A. Localisation of fructan metabolism in the vacuoles isolated from protoplasts of Jerusalem artichoke tubers (Helianthus tuberosus L). J Plant Physiol 1984; 116: 197–208
  • Gonzalez-Munoz F, Perez-Oseguera A, Cassan IJ, Jimenez-Estrada M, Vazquez-Duhalt R, Lopez-Munguia A. Enzymatic synthesis of fructosyl glycerol. J Carbohydr Chem 1999; 18: 275–283
  • Hendry GAF, Wallace RK. The origin, distribution and evolutionary significance of fructans. Science and technology of fructans, M Suzuki, NJ Chatterton. CRC Press, Boca Raton, FL 1993; 119–139
  • Homann A, Biedendieck R, Gotze S, Jahn D, Seibel J. Insights into polymer versus oligosaccharide synthesis: mutagenesis and mechanistic studies of a novel levansucrase from Bacillus megaterium. Biochem J 2007; 407: 189–198
  • Jeener J, Meier BH, Bschmann P, Ernst RR. Investigation of exchange processes by 2-dimensional NMR spectroscopy. J Chem Phys 1979; 71: 4546–4553
  • Kay LE, Keifer P, Saarinen T. Pure absorption gradient enhanced heteronuclear single quantum correlation spectroscopy with improved sensitivity. J Am Chem Soc 1992; 114: 10663–10665
  • Lammens W, Le Roy K, Van Laere A, Rabijns A, Van den Ende W. Crystal structures of Arabidopsis thaliana cell-wall invertase mutants in complex with Suc. J Mol Biol 2008; 377: 378–385
  • Lammens W, Le Roy K, Schroeven L, Van Laere A, Rabijns A, Van den Ende W. Structural insights into GH32 and GH68 enzymes: functional implications. J Exp Bot 2009; 60: 727–740
  • Lasseur B, Lothier J, Djoumad A, De Coninck B, Smeekens S, Van Laere A, Morvan-Bertrand A, Van den Ende W, Prud'homme MP. Molecular and functional characterization of a cDNA encoding fructan:fructan 6G-fructosyltransferase (6G-FFT)/fructan:fructan 1-fructosyltransferase (1-FFT) from perennial ryegrass (Lolium perenne L.). J Exp Bot 2006; 57: 3961–3961
  • Lasseur B, Schroeven S, Lammens W, Le Roy K, Spangenberg G, Manduzio H, Vergauwen R, Lothier J, Prud'homme MP, Van den Ende W. Transforming a fructan:fructan 6G-fructosyltransferase from perennial ryegrass (Lolium perenne) into a Suc:Suc 1-fructosyltransferase. Plant Physiol 2009; 149: 327–339
  • Legler G, Korth A, Berger A, Ekhart C, Gradnig G, Stutz AE. 2,5 Dideoxy-2,5-imino-d-mannitol and -d-glucitol. Two-step bio-organic syntheses from 5-azido-5-deoxy-d-glucofuranose and -d-idofuranose: evaluation as glucosidase inhibitors and application in affinity purification and characterisation of invertase from yeast. Carbohydr Res 1993; 250: 67–77
  • Leigh GJ, Favre HA, Metanomski WV. Principles of chemical nomenclature. A guide to IUPAC recommendations. Blackwell Science, London 1998
  • Leigh JA, Coplin DL. Exopolysaccharides in plant–bacterial interactions. Annu Rev Microbiol 1992; 46: 307–346
  • Le Roy K, Lammens W, Verhaest M, De Coninck B, Rabijns A, Van Laere A, Van den Ende W. Unraveling the difference between invertases and fructan exohydrolases: a single amino acid (Asp239) substitution transforms Arabidopsis cell-wall invertase 1 into a fructan 1-exohydrolase. Plant Physiol 2007; 145: 616–625
  • Martinez-Fleites C, Ortiz-Lombardia M, Pons T, Tarbouriech N, Taylor EJ, Arrieta JG, Hernandez L, Davies GJ. Crystal structure of levansucrase from the Gram-negative bacterium Gluconacetobacter diazotrophicus. Biochem J 2005; 390: 19–27
  • Meng GY, Fütterer K. Structural framework of fructosyl transfer in Bacillus subtilis levansucrase. Nat Struct Biol 2003; 10: 935–941
  • Meng G, Fütterer K. Donor substrate recognition in the raffinose-bound E342A mutant of fructosyltransferase Bacillus subtilis levansucrase. BMC Struct Biol 2008; 8: 16
  • Nagem RAP, Rojas AL, Golubev AM, Korneeva OS, Eneyskaya EV, Kulminskaya AA, Neustroev KN, Polikarpov I. Crystal structure of exo-inulinase from Aspergillus awamori: the enzyme fold and structural determinants of substrate recognition. J Mol Biol 2004; 344: 471–480
  • Ozimek LK, Euverink GJW, van der Maarel MEC, Dijkhuizen L. Mutational analysis of the role of calcium ions in the Lactobacillus reuteri strain 121 fructosyltransferase (levansucrase and inulosucrase) enzymes. FEBS Lett 2005; 579: 1124–1128
  • Ozimek LK, Kralj S, van der Maarel MEC, Dijkhuizen L. The levansucrase and inulosucrase enzymes of Lactobacillus reuteri 121 catalyse processive and non-processive transglycosylation reactions. Microbiology 2006; 152: 1187–1196
  • Palmer AG III, Cavanagh J, Wright PE, Rance J. Sensitivity improvement in proton-detected two-dimensional heteronuclear correlation NMR spectroscopy. J Magn Reson 1991; 93: 151–170
  • Pons T, Naumoff DG, Martinez-Fleites C, Hernandez L. Three acidic residues are at the active site of a β-propeller architecture in glycoside hydrolase families 32, 43, 62, and 68. Proteins 2004; 54: 424–432
  • Reddy A, Maley F. Identification of an active-site residue in yeast invertase by affinity labeling and site-directed mutagenesis. J Biol Chem 1990; 265: 10817–10820
  • Reddy A, Maley F. Studies on identifying the catalytic role of Glu-204 in the active site of yeast invertase. J Biol Chem 1996; 271: 13953–13958
  • Ritsema T, Hernandez L, Verhaar A, Altenbach D, Boller T, Wiemken A, Smeekens S. Developing fructan-synthesizing capability in a plant invertase via mutations in the sucrose-binding box. Plant J 2006; 48: 228–237
  • Ruiz-Cabello J, Vuister GW, Moonen CTW, Van Gelderen P, Cohen JS, van Zijl PCM. Gradient-enhanced heteronuclear correlation spectroscopy. Theory and experimental aspects. J Magn Reson 1992; 100: 282–302
  • Schleucher J, Schwendinger M, Sattler M, Schmidt P, Schedletzky O, Glaser SJ., Sorensen OW, Griesinger C. A general enhancement scheme in heteronuclear multidimensional NMR emplying pulsed-field gradients. J Biomol NMR 1994; 4: 301–306
  • Schroeven L, Lammens W, Van Laere A, Van den Ende W. Transforming wheat vacuolar invertase into a high affinity sucrose:sucrose 1-fructosyltransferase. New Phytol 2008; 180: 822–831
  • Seibel J, Moraru R, Gotze S, Buchholz K, Na'amnieh S, Pawlowski A, Hecht HJ. Synthesis of Suc analogues and the mechanism of action of Bacillus subtilis fructosyltransferase (levansucrase). Carbohydr Res 2006; 341: 2335–2349
  • Shaka AJ, Barker PB, Freeman R. Computer-optimized decoupling scheme for wideband applications and low-level operation. J Magn Reson 1985; 64: 547–552
  • Shiomi N, Izawa M. Purification and characterization of sucrose:sucrose 1-fructosyltransferase from the roots of asparagus (Asparagus officinalis L). Agric Biol Chem 1980; 44: 603–614
  • Tamura K, Kawakami A, Sanada Y, Tase K, Komatsu T, Yoshida M. Cloning and functional analysis of a fructosyltransferase cDNA for synthesis of highly polymerized levans in timothy (Phleum pratense L.). J Exp Bot 2009; 60: 893–905
  • Valluru R, Van den Ende W. Plant fructans in stress environments: emerging concepts and future prospects. J Exp Bot 2008; 59: 2905–2916
  • Van den Ende W, Van Laere A. Purification and properties of a neutral invertase from the roots of Cichorium intybus L. Physiol Plant 1995; 93: 241–248
  • Van den Ende W, Van Laere A. De novo synthesis of fructans from sucrose in vitro by a combination of two purified enzymes (sucrose:sucrose 1-fructosyl transferase and fructan:fructan 1-fructosyl transferase) from chicory roots (Cichorium intybus L). Planta 1996; 200: 335–342
  • Van den Ende W, Van Laere A. Fructans in dicotyledonous plants: occurrence and metabolism. Recent advances in fructooligosaccharides research, N Shiomi, N Benkeblia, S Onodera. Research Signpost, KeralaIndia 2007; 1–14
  • Van den Ende W, De Roover J, Van Laere A. In vitro synthesis of fructofuranosyl-only oligosaccharides from inulin and fructose by purified chicory root fructan:fructan fructosyl transferase. Physiol Plant 1996a; 97: 346–352
  • Van den Ende W, Van Wonterghem D, Dewil E, Verhaert P, De Loof A, Van Laere A. Purification and characterization of 1-SST, the key enzyme initiating fructan biosynthesis in young chicory roots (Cichorium intybus). Physiol Plant 1996b; 98: 455–466
  • Van den Ende W, Van Wonterghem D, Verhaert P, Dewil E, Van Laere A. Purification and characterization of fructan:fructan fructosyl transferase from chicory (Cichorium intybus L) roots. Planta 1996c; 199: 493–502
  • Vanhaecke M, Van den Ende W, Lescrinier E, Dyubankova N. Isolation and characterization of a pentasaccharide from Stellaria media. J Nat Prod 2008; 71: 1833–1836
  • Van Hijum S, Kralj S, Ozimek LK, Dijkhuizen L, van Geel-Schutten IGH. Structure–function relationships of glucansucrase and fructansucrase enzymes from lactic acid bacteria. Microbiol Mol Biol Rev 2006; 70: 157–176
  • Van Laere A, Van den Ende W. Inulin metabolism in dicots: chicory as a model system. Plant Cell Environ 2002; 25: 803–813
  • Vergauwen R, Van Laere A, Van den Ende W. Properties of fructan:fructan 1-fructosyltransferases from Cichorium intybus L. and Echinops ritro L., two asteracean plants storing greatly different types of inulin. Plant Physiol 2003; 133: 391–401
  • Verhaest M, Lammens W, Le Roy K, De Ranter CJ, Van Laere A, Rabijns A, Van den Ende W. Insights into the fine architecture of the active site of chicory fructan 1-exohydrolase: 1-kestose as substrate vs sucrose as inhibitor. New Phytol 2007; 174: 90–100
  • Vijn I, Smeekens S. Fructan: more than a reserve carbohydrate?. Plant Physiol 1999; 120: 351–359
  • Wagner R, Berger S. Gradient-selected NOESY. A fourfold reduction of the measurement time for the NOESY experiment. J Magn Reson 1996; 123: 119–121
  • Yoshida M, Kawakami A, Van den Ende W. Graminan metabolism in cereals: wheat as a model system. Recent advances in fructooligosaccharides research, N Shiomi, N Benkeblia, S Onodera. Research Signpost, KeralaIndia 2007; 201–212

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.