187
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Probing enzyme–substrate interactions at the catalytic subsite of Leuconostoc mesenteroides sucrose phosphorylase with site-directed mutagenesis: the roles of Asp49 and Arg395

, &
Pages 326-337 | Published online: 31 May 2012

References

  • Abad MC, Binderup K, Rios-Steiner J, Arni RK, Preiss J, Geiger JH. 2002. The X-ray crystallographic structure of Escherichia coli branching enzyme. J Biol Chem 277:42164–42170.
  • Brayer GD, Luo Y, Withers SG. 1995. The structure of human pancreatic α-amylase at 1.8 Å resolution and comparisons with related enzymes. Protein Sci 4:1730–1742.
  • Brzozowski AM, Davies GJ. 1997. Structure of the Aspergillus oryzae α-amylase complexed with the inhibitor acarbose at 2.0 Å resolution. Biochemistry 36:10837–10845.
  • Buchholz K, Seibel J. 2008. Industrial carbohydrate biotransformations. Carbohydr Res 343:1966–1979.
  • Davies GJ, Wilson KS. 1999. Trapped in the act of catalysis. Nat Struct Biol 6:406–408.
  • Fersht AR, Shi JP, Knill-Jones J, Lowe DM, Wilkinson AJ, Blow DM, . 1985. Hydrogen bonding and biological specificity analysed by protein engineering. Nature 314:235–238.
  • Frandsen TP, Palcic MM, Svensson B. 2002. Substrate recognition by three family 13 yeast α-glucosidases. Eur J Biochem 269:728–734.
  • Goedl C, Nidetzky B. 2009. Sucrose phosphorylase harbouring a redesigned, glycosyltransferase-like active site exhibits retaining glucosyl transfer in the absence of a covalent intermediate. Chem Bio Chem 10:2333–2337.
  • Goedl C, Sawangwan T, Mueller M, Schwarz A, Nidetzky B. 2008. A high-yielding biocatalytic process for the production of 2-O-(α-D-glucopyranosyl)-sn-glycerol, a natural osmolyte and useful moisturizing ingredient. Angew Chem Int Ed 47:10086–10089.
  • Goedl C, Sawangwan T, Wildberger P, Nidetzky B. 2010. Sucrose phosphorylase: a powerful transglucosylation catalyst for synthesis of α-D-glucosides as industrial fine chemicals. Biocatal Biotransform 28:10–21.
  • Goedl C, Schwarz A, Minani A, Nidetzky B. 2007. Recombinant sucrose phosphorylase from Leuconostoc mesenteroides: characterization, kinetic studies of transglucosylation, and application of immobilised enzyme for production of α-D-glucose 1-phosphate. J Biotechnol 129:77–86.
  • Hayden BM, Dean JL, Martin SR, Engel PC. 1999. Chemical rescue of the catalytically disabled clostridial glutamate dehydrogenase mutant D165S by fluoride ion. Biochem J 340:555–560.
  • Janecek S, Svensson B, Henrissat B. 1997. Domain evolution in the α-amylase family. J Mol Evol 45:322–331.
  • Kim MI, Kim HS, Jung J, Rhee S. 2008. Crystal structures and mutagenesis of sucrose hydrolase from Xanthomonas axonopodis pv. glycines: insight into the exclusively hydrolytic amylosucrase fold. J Mol Biol 380:636–647.
  • Kratzer R, Nidetzky B. 2005. Electrostatic stabilization in a pre-organized polar active site: the catalytic role of Lys-80 in Candida tenuis xylose reductase (AKR2B5) probed by site-directed mutagenesis and functional complementation studies. Biochem J 389:507–515.
  • Lee JH, Yoon SH, Nam SH, Moon YH, Moon YY, Kim D. 2006. Molecular cloning of a gene encoding the sucrose phosphorylase from Leuconostoc mesenteroides B-1149 and the expression in Escherichia coli. Enzyme Microb Technol 39:612–620.
  • MacGregor EA, Janecek S, Svensson B. 2001. Relationship of sequence and structure to specificity in the α-amylase family of enzymes. Biochim Biophys Acta 1546:1–20.
  • Mildvan AS. 2004. Inverse thinking about double mutants of enzymes. Biochemistry 43:14517–14520.
  • Mirza O, Skov LK, Remaud-Simeon M, Potocki de Montalk G, Albenne C, Monsan P, Gajhede M. 2001. Crystal structures of amylosucrase from Neisseria polysaccharea in complex with D-glucose and the active site mutant Glu328Gln in complex with the natural substrate sucrose. Biochemistry 40:9032–9039.
  • Mirza O, Skov LK, Sprogøe D, van den Broek LA, Beldman G, Kastrup JS, Gajhede M. 2006. Structural rearrangements of sucrose phosphorylase from Bifidobacterium adolescentis during sucrose conversion. J Biol Chem 281:35576–35584.
  • Mueller M, Nidetzky B. 2007a. The role of Asp-295 in the catalytic mechanism of Leuconostoc mesenteroides sucrose phosphorylase probed with site-directed mutagenesis. FEBS Lett 581:1403–1408.
  • Mueller M, Nidetzky B. 2007b. Dissecting differential binding of fructose and phosphate as leaving group/nucleophile of glucosyl transfer catalyzed by sucrose phosphorylase. FEBS Lett 581:3814–3818.
  • Nielsen JE, Borchert TV. 2000. Protein engineering of bacterial α-amylases. Biochim Biophys Acta 1543:253–274.
  • Peracchi A. 2001. Enzyme catalysis: removing chemically ‘essential’ residues by site-directed mutagenesis. Trends in Biochem Sci 26:497–503.
  • Peracchi A. 2008. How (and why) to revive a dead enzyme: the power of chemical rescue. Curr Chem Biol 2:32–49.
  • Russell RR, Mukasa H, Shimamura A, Ferretti JJ. 1988. Streptococcus mutans gtfA gene specifies sucrose phosphorylase. Infect Immun 56:2763–2765.
  • Rydberg EH, Li C, Maurus R, Overall CM, Brayer GD, Withers SG. 2002. Mechanistic analyses of catalysis in human pancreatic α-amylase: detailed kinetic and structural studies of mutants of three conserved carboxylic acids. Biochemistry 41:4492–4502.
  • Sauer J, Sigurskjold BW, Christensen U, Frandsen TP, Mirgorodskaya E, Harrison M, Roepstorff P, Svensson B. 2000. Glucoamylase: structure/function relationships, and protein engineering. Biochim Biophys Acta 1543:275–293.
  • Schwarz A, Brecker L, Nidetzky B. 2007. Acid-base catalysis in Leuconostoc mesenteroides sucrose phosphorylase probed by site-directed mutagenesis and detailed kinetic comparison of wild-type and Glu237-->Gln mutant enzymes. Biochem J 403:441–449.
  • Schwarz A, Nidetzky B. 2006. Asp-196-->Ala mutant of Leuconostoc mesenteroides sucrose phosphorylase exhibits altered stereochemical course and kinetic mechanism of glucosyl transfer to and from phosphate. FEBS Lett 580:3905–3910.
  • Shirai T, Hung VS, Morinaka K, Kobayashi T, Ito S. 2008. Crystal structure of GH13 α-glucosidase GSJ from one of the deepest sea bacteria. Proteins Struct Funct Bioinf 73:126–133.
  • Sierks MR, Svensson B. 1992. Kinetic identification of a hydrogen bonding pair in the glucoamylase-maltose transition state complex. Protein Eng 5:185–188.
  • Sierks MR, Svensson B. 2000. Energetic and mechanistic studies of glucoamylase using molecular recognition of maltose OH groups coupled with site-directed mutagenesis. Biochemistry 39:8585–8592.
  • Sprogøe D, van den Broek LA, Mirza O, Kastrup JS, Voragen AG, Gajhede M, Skov LK. 2004. Crystal structure of sucrose phosphorylase from Bifidobacterium adolescentis. Biochemistry 43:1156–1162.
  • Stam MR, Danchin EG, Rancurel C, Coutinho PM, Henrissat B. 2006. Dividing the large glycoside hydrolase family 13 into subfamilies: towards improved functional annotations of α-amylase-related proteins. Protein Eng Des Sel 19:555–562.
  • Street IP, Armstrong CR, Withers SG. 1986. Hydrogen bonding and specificity. Fluorodeoxy sugars as probes of hydrogen bonding in the glycogen phosphorylase-glucose complex. Biochemistry 25:6021–6027.
  • Uitdehaag JC, Kalk KH, van Der Veen BA, Dijkhuizen L, Dijkstra BW. 1999. The cyclization mechanism of cyclodextrin glycosyltransferase (CGTase) as revealed by a γ-cyclodextrin-CGTase complex at 1.8-Å resolution. J Biol Chem 274:34868–34876.
  • van den Broek LA, van Boxtel EL, Kievit RP, Verhoef R, Beldman G, Voragen AG. 2004. Physico-chemical and transglucosylation properties of recombinant sucrose phosphorylase from Bifidobacterium adolescentis DSM20083. Appl Microbiol Biotechnol 65:219–227.
  • van der Maarel MJ, van der Veen B, Uitdehaag JC, Leemhuis H, Dijkhuizen L. 2002. Properties and applications of starch-converting enzymes of the α-amylase family. J Biotechnol 94:137–155.
  • van der Veen BA, Potocki-Veronese G, Albenne C, Joucla G, Monsan P, Remaud-Simeon M. 2004. Combinatorial engineering to enhance amylosucrase performance: construction, selection, and screening of variant libraries for increased activity. FEBS Lett 560:91–97.
  • van der Veen BA, Skov LK, Potocki-Veronese G, Gajhede M, Monsan P, Remaud-Simeon M. 2006. Increased amylosucrase activity and specificity, and identification of regions important for activity, specificity and stability through molecular evolution. FEBS J 273:673–681.
  • Voet JG, Abeles RH. 1970. The mechanism of action of sucrose phosphorylase. Isolation and properties of a β-linked covalent glucose-enzyme complex. J Biol Chem 245:1020–1031.
  • Wang W, Malcolm BA. 1999. Two-stage PCR protocol allowing introduction of multiple mutations, deletions and insertions using QuikChange Site-Directed Mutagenesis. Biotechniques 26:680–682.
  • Weimberg R, Doudoroff M. 1954. Studies with three bacterial sucrose phosphorylases. J Bacteriol 68:381–388.
  • Wells TNC, Fersht AR. 1985. Hydrogen bonding in enzymatic catalysis analysed by protein engineering. Nature 316:656–657.
  • Wildberger P, Luley-Goedl C, Nidetzky B. 2011. Aromatic interactions at the catalytic subsite of sucrose phosphorylase: their roles in enzymatic glucosyl transfer probed with Phe52-->Ala and Phe52-->Asn mutants. FEBS Lett 585:499–504.
  • Zhang D, Li N, Lok SM, Zhang LH, Swaminathan K. 2003. Isomaltulose synthase (PalI) of Klebsiella sp. LX3. Crystal structure and implication of mechanism. J Biol Chem 278:35428–35434.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.