359
Views
48
CrossRef citations to date
0
Altmetric
Research Article

Glycosidic bond specificity of glucansucrases: on the role of acceptor substrate binding residues

, , , &
Pages 366-376 | Published online: 30 Mar 2012

References

  • Aharoni A, Thieme K, Chiu CP, Buchini S, Lairson LL, Chen H, Strynadka NC, Wakarchuk WW, Withers SG. 2006. High-throughput screening methodology for the directed evolution of glycosyltransferases. Nat Methods 3:609–614.
  • Anwar MA, Kralj S, Pique AV, Leemhuis H, van der Maarel MJEC, Dijkhuizen L. 2010. Inulin and levan synthesis by probiotic Lactobacillus gasseri strains: characterization of three novel fructansucrase enzymes and their fructan products. Microbiology 156:1264–1274.
  • Barends TR, Bultema JB, Kaper T, van der Maarel MJ, Dijkhuizen L, Dijkstra BW. 2007. Three-way stabilization of the covalent intermediate in amylomaltase, an alpha-amylase-like transglycosylase. J Biol Chem 282:17242–17249.
  • Bertrand A, Morel S, Lefoulon F, Rolland Y, Monsan P, Remaud-Simeon M. 2006. Leuconostoc mesenteroides glucansucrase synthesis of flavonoid glucosides by acceptor reactions in aqueous-organic solvents. Carbohydr Res 341:855–863.
  • Binder TP, Cote GL, Robyt JF. 1983. Disproportionation reactions catalyzed by Leuconostoc and Streptococcus glucansucrases. Carbohydr Res 124:275–286.
  • Bounaix MS, Robert H, Gabriel V, Morel S, Remaud-Simeon M, Gabriel B, Fontagne-Faucher C. 2010. Characterization of dextran-producing Weissella strains isolated from sourdoughs and evidence of constitutive dextransucrase expression. FEMS Microbiol Lett 311:18–26.
  • Bozonnet S, Jensen MT, Nielsen MM, Aghajari N, Jensen MH, Kramhoft B, Willemoes M, Tranier S, Haser R, Svensson B. 2007. The ‘pair of sugar tongs’ site on the non-catalytic domain C of barley alpha-amylase participates in substrate binding and activity. FEBS J 274:5055–5067.
  • Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B. 2009. The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 37:D233–D238.
  • Cote GL. 2009a. Acceptor products of alternansucrase with gentiobiose. Production of novel oligosaccharides for food and feed and elimination of bitterness. Carbohydr Res 344:187–190.
  • Cote GL, Dunlap CA, Vermillion KE. 2009b. Glucosylation of raffinose via alternansucrase acceptor reactions. Carbohydr Res 344:1951–1959.
  • Cote GL, Sheng S. 2006. Penta-, hexa-, and heptasaccharide acceptor products of alternansucrase. Carbohydr Res 341: 2066–2072.
  • de Segura AG, Alcalde M, Bernabe M, Ballesteros A, Plou FJ. 2006. Synthesis of methyl alpha-D-glucooligosaccharides by entrapped dextransucrase from Leuconostoc mesenteroides B-1299. J Biotechnol 124:439–445.
  • DeLano WL. 2002. The PyMOL molecular graphics system. http://www.pymol.org/.
  • Desmet T, Soetaert W. 2011. Enzymatic glycosyl transfer: mechanisms and applications. Biocatal Biotransform 29:1–18.
  • Emond S, Potocki-Veronese G, Mondon P, Bouayadi K, Kharrat H, Monsan P, Remaud-Simeon M. 2007. Optimized and automated protocols for high-throughput screening of amylosucrase libraries. J Biomol Screen 12:715–723.
  • Fabre E, Bozonnet S, Arcache A, Willemot RM, Vignon M, Monsan P, Remaud-Simeon M. 2005. Role of the two catalytic domains of DSR-E dextransucrase and their involvement in the formation of highly alpha-1,2 branched dextran. J Bacteriol 187:296–303.
  • Flemming HC, Wingender J. 2010. The biofilm matrix. Nat Rev Microbiol 8:623–633.
  • Fraga VR, Moulis C, Escalier P, Remaud-Simeon M, Monsan P. 2011. Isolation of a gene from Leuconostoc citreum B/110-1-2 encoding a novel dextransucrase enzyme. Curr Microbiol 62:1260–1266.
  • Freitas F, Alves VD, Reis MA. 2011. Advances in bacterial exopolysaccharides: from production to biotechnological applications. Trends Biotechnol doi:10.1016/j.tibtech.2011.03.008.
  • Funane K, Ishii T, Ono H, Kobayashi M. 2005. Changes in linkage pattern of glucan products induced by substitution of Lys residues in the dextransucrase. FEBS Lett 579:4739–4745.
  • Hanson S, Best M, Bryan MC, Wong CH. 2004. Chemoenzymatic synthesis of oligosaccharides and glycoproteins. Trends Biochem Sci 29:656–663.
  • Hellmuth H, Hillringhaus L, Hobbel S, Kralj S, Dijkhuizen L, Seibel J. 2007. Highly efficient chemoenzymatic synthesis of novel branched thiooligosaccharides by substrate direction with glucansucrases. Chembiochem 8:273–276.
  • Homann A, Seibel J. 2009a. Chemo-enzymatic synthesis and functional analysis of natural and modified glycostructures. Nat Prod Rep 26:1555–1571.
  • Homann A, Seibel J. 2009b. Towards tailor-made oligosaccharides-chemo-enzymatic approaches by enzyme and substrate engineering. Appl Microbiol Biotechnol 83:209–216.
  • Irague R, Massou S, Moulis C, Saurel O, Milon A, Monsan P, Remaud-Simeon M, Portais JC, Potocki-Veronese G. 2011. NMR-based structural glycomics for high-throughput screening of carbohydrate-active enzyme specificity. Anal Chem 83:1202–1206.
  • Ito K, Ito S, Shimamura T, Weyand S, Kawarasaki Y, Misaka T, Abe K, Kobayashi T, Cameron AD, Iwata S. 2011. Crystal structure of glucansucrase from the dental caries pathogen Streptococcus mutans. J Mol Biol 408:177–186.
  • Janecek S, Svensson B, Russell RR. 2000. Location of repeat elements in glucansucrases of Leuconostoc and Streptococcus species. FEMS Microbiol Lett 192:53–57.
  • Jensen MH, Mirza O, Albenne C, Remaud-Simeon M, Monsan P, Gajhede M, Skov LK. 2004. Crystal structure of the covalent intermediate of amylosucrase from Neisseria polysaccharea. Biochemistry 43:3104–3110.
  • Kaditzky SB, Behr J, Stocker A, Kaden P, Ganzle MG, Vogel RF. 2008. Influence of pH on the formation of glucan by Lactobacillus reuteri TMW 1.106 exerting a protective function against extreme pH values. Food Biotechnol 22:398–418.
  • Kang HK, Kimura A, Kim D. 2011. Bioengineering of Leuconostoc mesenteroides glucansucrases that gives selected bond formation for glucan synthesis and/or acceptor-product synthesis. J Agric Food Chem 59:4148–4155.
  • Kang HK, Oh JS, Kim D. 2009. Molecular characterization and expression analysis of the glucansucrase DSRWC from Weissella cibaria synthesizing a alpha(1-- >6) glucan. FEMS Microbiol Lett 292:33–41.
  • Kaper T, Leemhuis H, Uitdehaag JC, van der Veen BA, Dijkstra BW, van der Maarel MJEC, Dijkhuizen L. 2007. Identification of acceptor substrate binding subsites +2 and +3 in the amylomaltase from Thermus thermophilus HB8. Biochemistry 46:5261–5269.
  • Kelly RM, Dijkhuizen L, Leemhuis H. 2009a. Starch and α-glucan acting enzymes, modulating their properties by directed evolution. J Biotechnol 140:184–193.
  • Kelly RM, Dijkhuizen L, Leemhuis H. 2009b. The evolution of cyclodextrin glucanotransferase product specificity. Appl Microbiol Biotechnol 84:119–133.
  • Kelly RM, Leemhuis H, Rozeboom HJ, Oosterwijk N, Dijkstra BW, Dijkhuizen L. 2008. Elimination of competing hydrolysis and coupling side reactions of a cyclodextrin glucanotransferase by directed evolution. Biochem J 413:517–525.
  • Kim YM, Kim BH, Ahn JS, Kim GE, Jin SD, Nguyen TH, Kim D. 2009. Enzymatic synthesis of alkyl glucosides using Leuconostoc mesenteroides dextransucrase. Biotechnol Lett 31: 1433–1438.
  • Kingston KB, Allen DM, Jacques NA. 2002. Role of the C-terminal YG repeats of the primer-dependent streptococcal glucosyltransferase, GtfJ, in binding to dextran and mutan. Microbiology 148:549–558.
  • Kirby AJ, Hollfelder F. 2008. Biochemistry: Enzymes under the nanoscope. Nature 456:45–47.
  • Komatsu H, Abe Y, Eguchi K, Matsuno H, Matsuoka Y, Sadakane T, Inoue T, Fukui K, Kodama T. 2011. Kinetics of dextran-independent alpha-(1-- >3)-glucan synthesis by Streptococcus sobrinus glucosyltransferase I. FEBS J 278:531–540.
  • Kralj S, Eeuwema W, Eckhardt TH, Dijkhuizen L. 2006. Role of asparagine 1134 in glucosidic bond and transglycosylation specificity of reuteransucrase from Lactobacillus reuteri 121. FEBS J 273:3735–3742.
  • Kralj S, Grijpstra P, van Leeuwen SS, Leemhuis H, Dobruchowska JM, van der Kaaij R, Malik A, Oetari A, Kamerling JP, Dijkhuizen L. 2011. 4,6-a-Glucanotransferase, a novel enzyme that structurally and functionally provides an evolutionary link between glycoside hydrolase enzyme families 13 and 70. Appl Environ Microbiol 77:8154–8163.
  • Kralj S, van Geel-Schutten GH, van der Maarel MJEC, Dijkhuizen L. 2004. Biochemical and molecular characterization of Lactobacillus reuteri 121 reuteransucrase. Microbiology 150:2099–2112.
  • Kumar V. 2010. Analysis of the key active subsites of glycoside hydrolase 13 family members. Carbohydr Res 345:893–898.
  • Kuriki T, Imanaka T. 1999. The concept of the alpha-amylase family: structural similarity and common catalytic mechanism. J Biosci Bioeng 87:557–565.
  • Lawson CL, van Montfort R, Strokopytov B, Rozeboom HJ, Kalk KH, de Vries GE, Penninga D, Dijkhuizen L, Dijkstra BW. 1994. Nucleotide sequence and X-ray structure of cyclodextrin glycosyltransferase from Bacillus circulans 251 in a maltose-dependent crystal form. J Mol Biol 236: 590–600.
  • Leathers TD, Bischoff KM. 2011. Biofilm formation by strains of Leuconostoc citreum and L. mesenteroides. Biotechnol Lett 33:517–523.
  • Leemhuis H, Kelly RM, Dijkhuizen L. 2009. Directed evolution of enzymes: library screening strategies. IUBMB Life 61: 222–228.
  • Leemhuis H, Kelly RM, Dijkhuizen L. 2010. Engineering of cyclodextrin glucanotransferases and the impact for biotechnological applications. Appl Microbiol Biotechnol 85:823–835.
  • Leemhuis H, Rozeboom HJ, Dijkstra BW, Dijkhuizen L. 2003a. The fully conserved Asp residue in conserved sequence region I of the alpha-amylase family is crucial for the catalytic site architecture and activity. FEBS Lett 541:47–51.
  • Leemhuis H, Rozeboom HJ, Wilbrink M, Euverink GJ, Dijkstra BW, Dijkhuizen L. 2003b. Conversion of cyclodextrin glycosyltransferase into a starch hydrolase by directed evolution: the role of alanine 230 in acceptor subsite +1. Biochemistry 42:7518–7526.
  • Leemhuis H, Wehmeier UF, Dijkhuizen L. 2004. Single amino acid mutations interchange the reaction specificities of cyclodextrin glycosyltransferase and the acarbose-modifying enzyme acarviosyl transferase. Biochemistry 43:13204–13213.
  • Lis M, Shiroza T, Kuramitsu HK. 1995. Role of C-terminal direct repeating units of the Streptococcus mutans glucosyltransferase-S in glucan binding. Appl Environ Microbiol 61:2040–2042.
  • MacGregor EA, Janecek S, Svensson B. 2001. Relationship of sequence and structure to specificity in the alpha-amylase family of enzymes. Biochim Biophys Acta 1546:1–20.
  • Malik A, Radji M, Kralj S, Dijkhuizen L. 2009. Screening of lactic acid bacteria from Indonesia reveals glucansucrase and fructansucrase genes in two different Weissella confusa strains from soya. FEMS Microbiol Lett 300:131–138.
  • Monchois V, Remaud-Simeon M, Russell RR, Monsan P, Willemot RM. 1997. Characterization of Leuconostoc mesenteroides NRRL B-512F dextransucrase (DSRS) and identification of amino-acid residues playing a key role in enzyme activity. Appl Microbiol Biotechnol 48:465–472.
  • Monchois V, Reverte A, Remaud-Simeon M, Monsan P, Willemot RM. 1998. Effect of Leuconostoc mesenteroides NRRL B-512F dextransucrase carboxy-terminal deletions on dextran and oligosaccharide synthesis. Appl Environ Microbiol 64: 1644–1649.
  • Monchois V, Arguello-Morales M, Russell RR. 1999a. Isolation of an active catalytic core of Streptococcus downei MFe28 GTF-I glucosyltransferase. J Bacteriol 181:2290–2292.
  • Monchois V, Vignon M, Escalier PC, Svensson B, Russell RR. 2000. Involvement of Gln937 of Streptococcus downei GTF-I glucansucrase in transition-state stabilization. Eur J Biochem 267:4127–4136.
  • Monchois V, Vignon M, Russell RR. 1999b. Isolation of key amino acid residues at the N-terminal end of the core region Streptococcus downei glucansucrase, GTF-I. Appl Microbiol Biotechnol 52:660–665.
  • Monsan P, Remaud-Simeon M, Andre I. 2010. Transglucosidases as efficient tools for oligosaccharide and glucoconjugate synthesis. Curr Opin Microbiol 13:293–300.
  • Moulis C, Joucla G, Harrison D, Fabre E, Potocki-Veronese G, Monsan P, Remaud-Simeon M. 2006. Understanding the polymerization mechanism of glycoside-hydrolase family 70 glucansucrases. J Biol Chem 281:31254–31267.
  • Mukasa H, Tsumori H, Shimamura A. 2001. Dextran acceptor reaction of Streptococcus sobrinus glucosyltransferase GTF-I as revealed by using uniformly 13C-labeled sucrose. Carbohydr Res 333:19–26.
  • Nobbs AH, Lamont RJ, Jenkinson HF. 2009. Streptococcus adherence and colonization. Microbiol Mol Biol Rev 73:407–450.
  • Otten LG, Hollmann F, Arends IW. 2010. Enzyme engineering for enantioselectivity: from trial-and-error to rational design? Trends Biotechnol 28:46–54.
  • Palomo M, Pijning T, Booiman T, Dobruchowska JM, van der Vlist J, Kralj S, Planas A, Loos K, Kamerling JP, Dijkstra BW, van der Maarel MJEC, Dijkhuizen L, Leemhuis H. 2011. Thermus thermophilus glycoside hydrolase family 57 branching enzyme: crystal structure, mechanism of action, and products formed. J Biol Chem 286:3520–3530.
  • Reetz MT, Kahakeaw D, Lohmer R. 2008. Addressing the numbers problem in directed evolution. Chembiochem 9: 1797–1804.
  • Remaud-Simeon M, Brison Y, Pijning T, Tranier S, Mourey L, Morel S, Potocki-Veronese G, Monsan P, Dijkstra BW. 2011 Novel insights in the structure-function relationships of the alpha-1,2 branching enzyme derived from a bi-functional GH70 glucansucrase. 9th Carbohydrate Bioengineering Meeting. Lecture 11.
  • Richard G, Morel S, Willemot RM, Monsan P, Remaud-Simeon M. 2003. Glucosylation of alpha-butyl- and alpha-octyl-D-glucopyranosides by dextransucrase and alternansucrase from Leuconostoc mesenteroides. Carbohydr Res 338:855–864.
  • Sarcabal P, Remaud-Simeon M, Willemot R, Potocki de Montalk G, Svensson B, Monsan P. 2000. Identification of key amino acid residues in Neisseria polysaccharea amylosucrase. FEBS Lett 474:33–37.
  • Schwab C, Walter J, Tannock GW, Vogel RF, Ganzle MG. 2007. Sucrose utilization and impact of sucrose on glycosyltransferase expression in Lactobacillus reuteri. Syst Appl Microbiol 30:433–443.
  • Seibel J, Hellmuth H, Hofer B, Kicinska AM, Schmalbruch B. 2006a. Identification of new acceptor specificities of glycosyltransferase R with the aid of substrate microarrays. Chembiochem 7:310–320.
  • Seibel J, Jordening HJ, Buchholz K. 2006b. Glycosylation with activated sugars using glycosyltransferases and transglycosidases. Biocatal Biotransform 24:311–320.
  • Seo ES, Kank J, Lee JH, Kim GE, Kim GJ, Kim D. 2009. Synthesis and characterization of hydroquinone glucoside using Leuconostoc mesenteroides dextransucrase. Enzyme Microb Technol 45:355–360.
  • Seo ES, Lee JH, Park JY, Kim D, Han HJ, Robyt JF. 2005. Enzymatic synthesis and anti-coagulant effect of salicin analogs by using the Leuconostoc mesenteroides glucansucrase acceptor reaction. J Biotechnol 117:31–38.
  • Shah DS, Joucla G, Remaud-Simeon M, Russell RR. 2004. Conserved repeat motifs and glucan binding by glucansucrases of oral streptococci and Leuconostoc mesenteroides. J Bacteriol 186:8301–8308.
  • Shimamura A, Nakano YJ, Mukasa H, Kuramitsu HK. 1994. Identification of amino acid residues in Streptococcus mutans glucosyltransferases influencing the structure of the glucan product. J Bacteriol 176:4845–4850.
  • Swistowska AM, Gronert S, Wittrock S, Collisi W, Hecht HJ, Hofer B. 2007. Identification of structural determinants for substrate binding and turnover by glucosyltransferase R supports the permutation hypothesis. FEBS Lett 581:4036–4042.
  • Tsumori H, Minami T, Kuramitsu HK. 1997. Identification of essential amino acids in the Streptococcus mutans glucosyltransferases. J Bacteriol 179:3391–3396.
  • Turner NJ. 2009. Directed evolution drives the next generation of biocatalysts. Nat Chem Biol 5:567–573.
  • Uitdehaag JCM, Mosi R, Kalk KH, van der Veen BA, Dijkhuizen L, Withers SG, Dijkstra BW. 1999. X-ray structures along the reaction pathway of cyclodextrin glycosyltransferase elucidate catalysis in the α-amylase family. Nat Struct Biol 6:432–436.
  • van der Maarel MJEC, van der Veen BA, Uitdehaag JCM, Leemhuis H, Dijkhuizen L. 2002. Properties and applications of starch-converting enzymes of the alpha-amylase family. J Biotechnol 94:137–155.
  • van Hijum SAFT, Kralj S, Ozimek LK, Dijkhuizen L, van Geel-Schutten IG. 2006. Structure-function relationships of glucansucrase and fructansucrase enzymes from lactic acid bacteria. Microbiol Mol Biol Rev 70:157–176.
  • van Leeuwen SS, Kralj S, Eeuwema W, Gerwig GJ, Dijkhuizen L, Kamerling JP. 2009. Structural characterization of bioengineered alpha-D-glucans produced by mutant glucansucrase GTF180 enzymes of Lactobacillus reuteri strain 180. Biomacromolecules 10:580–588.
  • van Leeuwen SS, Kralj S, Gerwig GJ, Dijkhuizen L, Kamerling JP. 2008a. Structural analysis of bioengineered alpha-D-glucan produced by a triple mutant of the Glucansucrase GTF180 enzyme from Lactobacillus reuteri strain 180: generation of (alpha1-- >4) linkages in a native (1-- >3)(1-- >6)-alpha-D-glucan. Biomacromolecules 9:2251–2258.
  • van Leeuwen SS, Kralj S, van Geel-Schutten IH, Gerwig GJ, Dijkhuizen L, Kamerling JP. 2008b. Structural analysis of the alpha-D-glucan (EPS180) produced by the Lactobacillus reuteri strain 180 glucansucrase GTF180 enzyme. Carbohydr Res 343:1237–1250.
  • van Leeuwen SS, Kralj S, van Geel-Schutten IH, Gerwig GJ, Dijkhuizen L, Kamerling JP. 2008c. Structural analysis of the alpha-D-glucan (EPS35-5) produced by the Lactobacillus reuteri strain 35-5 glucansucrase GTFA enzyme. Carbohydr Res 343:1251–1265.
  • Vujicic-Zagar A, Pijning T, Kralj S, Lopez CA, Eeuwema W, Dijkhuizen L, Dijkstra BW. 2010. Crystal structure of a 117 kDa glucansucrase fragment provides insight into evolution and product specificity of GH70 enzymes. Proc Natl Acad Sci USA 107:20406–20411.
  • Waldherr FW, Doll VM, Meissner D, Vogel RF. 2010. Identification and characterization of a glucan-producing enzyme from Lactobacillus hilgardii TMW 1.828 involved in granule formation of water kefir. Food Microbiol 27: 672–678.
  • Walter J, Schwab C, Loach DM, Ganzle MG, Tannock GW. 2008. Glucosyltransferase A (GtfA) and inulosucrase (Inu) of Lactobacillus reuteri TMW1.106 contribute to cell aggregation, in vitro biofilm formation, and colonization of the mouse gastrointestinal tract. Microbiology 154:72–80.
  • Wang Y, Ganzle MG, Schwab C. 2010. Exopolysaccharide synthesized by Lactobacillus reuteri decreases the ability of enterotoxigenic Escherichia coli to bind to porcine erythrocytes. Appl Environ Microbiol 76:4863–4866.
  • Wittrock S, Swistowska AM, Collisi W, Hofmann B, Hecht HJ, Hofer B. 2008. Re- or displacement of invariant residues in the C-terminal half of the catalytic domain strongly affects catalysis by glucosyltransferase R. FEBS Lett 582:491–496.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.