168
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Flexibility and specificity of the cohesin–dockerin interaction: implications for cellulosome assembly and functionality

, , , , , & show all
Pages 309-315 | Published online: 09 May 2012

References

  • Adams JJ, Currie MA, Ali S, Bayer EA, Jia Z, Smith SP. 2010. Insights into higher-order organization of the cellulosome revealed by a dissect-and-build approach: crystal structure of interacting Clostridium thermocellum multimodular components. J Mol Biol 396:833–839.
  • Adams JJ, Gregg K, Bayer EA, Boraston AB, Smith SP. 2008. Structural basis of Clostridium perfringens toxin complex formation. PNAS 105:12194–12199.
  • Adams JJ, Pal G, Jia Z, Smith SP. 2006. Mechanism of bacterial cell-surface attachment revealed by the structure of cellulosomal type II cohesin–dockerin complex. PNAS 103:305–310.
  • Alber O, Noach I, Rincon MT, Flint HJ, Shimon LJW, Lamed R, Frolow F, Bayer EA. 2009. Cohesin diversity revealed by the crystal structure of the anchoring cohesin from Ruminococcus flavefaciens. Proteins 77:699–709.
  • Bayer EA, Chanzy H, Lamed R, Shoham Y. 1998. Cellulose, cellulases and cellulosomes. Curr Opin Struct Biol 8:548–557.
  • Bayer EA, Kenig R, Lamed R. 1983. Adherence of Clostridium thermocellum to cellulose. J Bacteriol 156:818–827.
  • Bayer EA, Belaich J-P, Shoham Y, Lamed R. 2004. The cellulosomes: multienzyme machines for degradation of plant cell wall polysaccharides. Ann Rev Microbiol 58:521–554.
  • Carvalho AL, Dias FMV, Prates JAM, Nagy T, Gilbert HJ, Davies GJ, . 2003. Cellulosome assembly revealed by the crystal structure of the cohesin–dockerin complex. PNAS 100: 13809–13814.
  • Carvalho AL, Pires VMR, Gloster TM, Turkenburg JP, Prates JAM, Ferreira LMA, . 2005. Insights into the structural determinants of cohesin–dockerin specificity revealed by the crystal structure of the type II cohesin from Clostridium thermocellum SdbA. J Mol Biol 349:909–915.
  • Carvalho AL, Fias FMV, Nagy T, Prates JAM, Proctor MR, Smith N, . 2007. Evidence for a dual binding mode of dockerin modules to cohesins. PNAS 104:3089–3094.
  • Chitayat S, Adams JJ, Furness HST, Bayer EA, Smith SP. 2008. The solution structure of the C-terminal modular pair from Clostridium perfringens mu-toxin reveals a noncellulosomal dockerin module. J Mol Biol 381:1202–1212.
  • Chitayat S, Gregg K, Adams JJ, Ficko-Blean E, Bayer EA, Boraston AB, Smith SP. 2008. Three-dimensional structure of a putative non-cellulosomal cohesin module from a Clostridium perfringens family 84 glycoside hydrolase. J Mol Biol 375:20–28.
  • Ding SY, Bayer EA, Steiner D, Shoham Y, Lamed R. 1999. A novel cellulosomal scaffoldin from Acetivibrio cellulolyticus that contains a family 9 glycosyl hydrolase. J Bacteriol 181:6720–6729.
  • Ding SY, Bayer EA, Steiner D, Shoham Y, Lamed R. 2000. A scaffoldin of the Bacteroides cellulosolvens cellulosome that contains 11 type II cohesins. J Bacteriol 182:4915 4925.
  • Ding SY, Rincon MT, Lamed R, Martin JC, McCrae SI, Aurilia V, . 2001. Cellulosomal scaffoldin-like proteins from Ruminococcus flavefaciens. J Bacteriol 183:1945–1953.
  • Fontes CMGA, Gilbert HJ. 2010. Cellulosomes: highly efficient nanomachines designed to deconstruct plant cell wall complex carbohydrates. Annual review of biochemistry 79:655–681.
  • García-Alvarez B, Melero R, Dias FMV, Prates JAM, Fontes CMGA, Smith SP, . 2011. Molecular architecture and structural transitions of a Clostridium thermocellum mini-cellulosome. J Mol Biol 407:571–580.
  • Gerngross UT, Romaniec MP, Kobayashi T, Huskisson NS, Demain, AL. 1993. Sequencing of a Clostridium thermocellum gene (cipA) encoding the cellulosomal SL-protein reveals an unusual degree of internal homology. Mol Microbiol 8:325–334.
  • Haimovitz R, Barak Y, Morag E, Voronov-Goldman M, Shoham Y, Lamed R, Bayer EA. 2008. Cohesin–dockerin microarray: diverse specificities between two complementary families of interacting protein modules. Proteomics 8:968–979.
  • Hammel M, Fierobe H-P, Czjzek M, Kurkal V, Smith JC, Bayer EA, Finet S, Receveur-Bréchot V. 2005. Structural basis of cellulosome efficiency explored by small angle X-ray scattering. J Biol Chem 280:38562–38568.
  • Lamed R, Setter E, Bayer EA. 1983. Characterization of a cellulose-binding, cellulase-containing complex in Clostridium thermocellum. J Bacteriol 156:828–836.
  • Leibovitz E, Béguin P. 1996. A new type of cohesin domain that specifically binds the dockerin domain of the Clostridium thermocellum cellulosome-integrating protein CipA. J Bacteriol 178:3077–3084.
  • Lytle BL, Volkman BF, Westler WM, Heckman MP, Wu JH. 2001. Solution structure of a type I dockerin domain, a novel prokaryotic, extracellular calcium-binding domain. J Mol Biol 307: 745–753.
  • Mechaly A, Fierobe HP, Belaich A, Belaich JP, Lamed R, Shoham Y, Bayer EA. 2001. Cohesin–dockerin interaction in cellulosome assembly: a single hydroxyl group of a dockerin domain distinguishes between nonrecognition and high affinity recognition. J Biol Chem 276:9883–9888.
  • Mechaly A, Yaron S, Lamed R, Fierobe HP, Belaich A, Belaich JP, Shoham Y, Bayer EA. 2000. Cohesin–dockerin recognition in cellulosome assembly: experiment versus hypothesis. Proteins 39:170–177.
  • Molinier A-L, Nouailler M, Valette O, Tardif C, Receveur-Bréchot V, Fierobe H-P. 2011. Synergy, structure and conformational flexibility of hybrid cellulosomes displaying various inter-cohesins linkers. J Mol Biol 405:143–157.
  • Nagy T, Tunnicliffe RB, Higgins LD, Walters C, Gilbert HJ, Williamson MP. 2007. Characterization of a double dockerin from the cellulosome of the anaerobic fungus Piromyces equi. J Mol Biol 373:612–622.
  • Noach I, Frolow F, Jakoby H, Rosenheck S, Shimon LW, Lamed R, Bayer EA. 2005. Crystal structure of a type-II cohesin module from the Bacteroides cellulosolvens cellulosome reveals novel and distinctive secondary structural elements. J Mol Biol 348:1–12.
  • Noach I, Levy-Assaraf M, Lamed R, Shimon LJW, Frolow F, Bayer EA. 2010. Modular arrangement of a cellulosomal scaffoldin subunit revealed from the crystal structure of a cohesin dyad. J Mol Biol 399:294–305.
  • Pagès S, Gal L, Bélaïch A, Gaudin C, Tardif C, Bélaïch JP. 1997. Role of scaffolding protein CipC of Clostridium cellulolyticum in cellulose degradation. J Bacteriol 179:2810–2816.
  • Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE. 2004. UCSF chimera – a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612.
  • Pinheiro BA, Gilbert HJ, Sakka K, Sakka K, Fernandes VO, Prates JAM, . 2009. Functional insights into the role of novel type I cohesin and dockerin domains from Clostridium thermocellum. Biochem J 424:375–384.
  • Pinheiro BA, Proctor MR, Martinez-Fleites C, Prates JAM, Money VA, Davies GJ, Bayer EA, Fontes CMGA, Fierobe H, Gilbert HJ. 2008. The Clostridium cellulolyticum dockerin displays a dual binding mode for its cohesin partner. J Biol Chem 283:18422–18430.
  • Raghothama S, Eberhardt RY, Simpson P, Wigelsworth D, White P, Hazlewood GP, . 2001. Characterization of a cellulosome dockerin domain from the anaerobic fungus Piromyces equi. Nat Struct Biol 8:775–778.
  • Salamitou S, Lemaire M, Fujino T, Ohayon H, Gounon P, Béguin P, Aubert JP. 1994. Subcellular localization of Clostridium thermocellum ORF3p, a protein carrying a receptor for the docking sequence borne by the catalytic components of the cellulosome. J Bacteriol 176:2828–2834.
  • Salamitou S, Tokatlidis K, Béguin P, Aubert JP. 1992. Involvement of separate domains of the cellulosomal protein S1 of Clostridium thermocellum in binding to cellulose and in anchoring of catalytic subunits to the cellulosome. FEBS Lett 304:89–92.
  • Schaeffer F, Matuschek M, Guglielmi G, Miras I, Alzari Pedro M, Béguin P. 2002. Duplicated dockerin subdomains of Clostridium thermocellum endoglucanase CelD bind to a cohesin domain of the scaffolding protein CipA with distinct thermodynamic parameters and a negative cooperativity. Biochemistry 41:2106–2114.
  • Shimon LJ, Bayer EA, Morag E, Lamed R, Yaron S, Shoham Y, Frolow F. 1997. A cohesin domain from Clostridium thermocellum: the crystal structure provides new insights into cellulosome assembly. Structure (London, England) 5:381–390.
  • Shoseyov O, Takagi M, Goldstein MA, Doi RH. 1992. Primary sequence analysis of Clostridium cellulovorans cellulose binding protein A. PNAS 89:3483–3487.
  • Spinelli S, Fiérobe HP, Belaïch A, Belaïch JP, Henrissat B, Cambillau C. 2000. Crystal structure of a cohesin module from Clostridium cellulolyticum: implications for dockerin recognition. J Mol Biol 304:189–200.
  • Steenbakkers PJ, Li XL, Ximenes EA, Arts JG, Chen H, Ljungdahl LG, Op Den Camp HJ. 2001. Noncatalytic docking domains of cellulosomes of anaerobic fungi. J Bacteriol 183:5325–5333.
  • Tavares GA, Béguin P, Alzari PM. 1997. The crystal structure of a type I cohesin domain at 1.7 A resolution. J Mol Biol 273: 701–713.
  • Tokatlidis K, Salamitou S, Béguin P, Dhurjati P, Aubert JP. 1991. Interaction of the duplicated segment carried by Clostridium thermocellum cellulases with cellulosome components. FEBS lett 291:185–188.
  • Xu Q, Bayer EA, Goldman M, Kenig R, Shoham Y, Lamed R. 2004. Architecture of the Bacteroides cellulosolvens cellulosome: description of a cell surface-anchoring scaffoldin and a family 48 cellulase. J Bacteriol 186:968–977.
  • Xu Q, Gao W, Ding S-Y, Kenig R, Shoham Y, Bayer EA, Lamed R. 2003. The cellulosome system of Acetivibrio cellulolyticus includes a novel type of adaptor protein and a cell surface anchoring protein. J Bacteriol 185:4548–4557.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.