13
Views
4
CrossRef citations to date
0
Altmetric
Original Article

Enzyme Deactivation in Reactors

Pages 175-216 | Received 04 Jan 1989, Published online: 11 Jul 2009

References

  • Bachler M H., Strandberg G. W., Smiley K. L. Starch Conversion By Immobilized Glucoamylase. Biotechnol. Bioeng. 1970; 12: 85–92
  • Bernfeld P., Bieber R. E., Watson D. M. Kinetics Of Water-Insoluble Phosphoglycerate Mutase. Biochim. Biophys. Acta 1969; 191: 570–78
  • Butt J. B., Watcher C. K., Billimora R. M. On the Separability Of Catalytic Deactivation Kinetics. Chem. Eng. Sci. 1978; 33: 1321–29
  • Buchholz K., Godelman B. Macrokinetics and Operational Stability Of Immobilized Glucose Oxidase and Catalase. Biotechnol. Bioeng. 1978; 20: 1201–20
  • Chen K C., Chang C. M. Operational Stability Of Immobilized D-Glucose Isomerase In A Continuous Feed Stirred Tank Reactor. Enz. Microb. Technol. 1984; 6: 359–64
  • Chibata I., Tosa T., Sato T., Mori T. Immobilized Enzymes, Chapter 1, Introduction, I. Chibata. J. Wiley and Sons, New York
  • Chou A., Ray W. H., Aris R. Simple Control Policies For Reactors With Catalyst Decay. Trans. Inst. Chem. Engrs. 1967; 45: T153–59
  • Crowe C. M. Optimization Of Reactors With Catalyst Decay I. Single Tubular Reactor With Uniform Temperature. Can. J. Chem. Eng. 1970; 48: 576–84
  • Crowe C. M., Lee S. I. Optimization Of Reactors With Catalyst Decay III. Tubular Reactor With Several Beds Of Uniform Temperature. Can. J. Chem. Eng. 1971; 49: 385–90
  • Crowe C. M., Therien N. Optimization By Distributed Control Of Reactors With Decaying Catalyst Part 1. Non-Linear Catalyst Deactivation. Can. J. Chem. Eng. 1974; 52: 810–21
  • Datta R., Armiger W., Ollis D. F. Lysis Of Micrococcus Lysodeikticus by Lysozyme Covalently Immobilized On Cellulose And Polyacrylamide. Biotechnol. Bioeng. 1973; 15: 993–1006
  • Goldman R., Kedem O., Silman I. H., Caplan S. R., Katchalski E. Papain-Colloidion Membranes. I. Preparation And Properties. Biochemistry 1968; 7: 486–500
  • Goldstein L., Levin Y., Pecht M., Katchalski E. Water-Insoluble Enzymes. Synthesis Of A New Carrier And Its Utilization For Preparation Of Insoluble Derivatives of Papain, Trypsin, and Subtilopeptidase. Israel J. Chem. 1967; 5: 90–7
  • Goldstein L., Levin Y., Katchalski E. A Water-Insoluble Polyanionic Derivative Of Trypsin. II. Effect Of The Polyelectrolyte Carrier On The Kinetic Behavior Of The Bound Trypsin. Biochemistry 1964; 3: 1913–19
  • Gondo S., Sato T., Kusunoki K. Note On The Lineweaver-Burk Plots For The Insolubilized Enzyme Particle. Chem. Eng. Sci. 1973; 28: 1773
  • Haas W. R., Tavlarides L. L., Wnek W. J. Optimal Temperature Policy For Reversible Reactions With Deactivation: Applied To Enzyme Reactors. AlChE J. 1974; 20: 707–12
  • Haldane J. B. S. Enzymes. Longmans Green, London 1930; 64
  • Havewala N. B., Pitcher W. H., Jr. Immobilized Glucose Isomerase For The Production Of High Fructose Syrups. Enzyme Engineering, E. K. Pye, L. B. Wingard, Jr. Plenum Press, New York 1974; Vol. 2: 315–24
  • Henley J. P., Sadana A. On The Influence Of Severe Internal Diffusional Limitations On Optimum Temperature Operations Criterion And Policies In Deactivating Fixed-Bed And Batch Reactors. Chem. Eng. Commun. 1986; 49: 291–8
  • Korus R. A., O'Driscoll K. F. The Influence Of Diffusion On The Apparent Rate Of Denaturation Of Gel Entrapped Enzymes. Biotechnol. Bioeng. 1975; 17: 441–44
  • Krishnaswamy S., Kittrell J. R. Effect Of External Diffusion On Deactivation Rates. AlChE J. 1981; 27: 125–31
  • Laidler K. J., Bunting P. S. The Chemical Kinetics Of Enzyme Action2nd ed. Clarendon Press, Oxford 1973; 117
  • Lamba H. S., Dudukovic M. P. Chemical Reaction Engineering-II, H. M. Hulburt. ACS. 1974; Vol. 133: 106
  • Lee S. I., Crowe C. M. On Temperature Policies For Batch Reactors With Decaying Catalyst. Chem. Eng. Sci. 1970a; 25: 743–4
  • Lee S. I., Crowe C. M. The Optimization Of Reactors With Decaying Catalyst: The Effect Of Macromixing. Can. J. Chem. Eng. 1970b; 48: 192–5
  • Lee D. D., Lee Y. Y., Reilly P. J., Collins E. V., Jr., Tsao G. T. Pilot Plant Production Of Glucose With Glucoamylase Immobilized To Porous Silica. Biotechnol. Bioeng. 1976a; 18: 253–67
  • Lee Y. Y., Fratzke A. A., Wun K., Tsao G. T. Glucose Isomerase Immobilized On Porous Glass. Biotechnol. Bioeng. 1976b; 18: 389–413
  • Lee Y. Y., Wun K., Tsao G. T. Kinetics And Mass Transfer Characteristics Of Glucose Isomerase On Porous Glass. Paper 11a., AIChE Meeting. Pittsburgh 1974
  • Levenspiel O. Chemical Reactor Omnibook. Oregon State University Press, Corvallis 1979
  • Levenspiel O., Sadana A. The Optimum Temperature Policy For A Deactivating Catalytic Packed Bed Reactive. Chem. Eng. Sci. 1978; 33: 1393–4
  • Levin Y., Pecht M., Goldstein L., Katchalski E. A Water Insoluble Polyanionic Derivative Of Trypsin. I. Preparation And Properties. Biochemistry 1964; 3: 1905–13
  • Marconi W., Gulinelli S., Morisi F. Insolubilized Enzymes, M. Salmona, C. Saronio, et al. Raven, New York 1974
  • Murray M. A., John V. T. Generalized Optimal Flow Rate Policy For Continuous Stirred Tank Reactors With Deactivating Catalysts. Reprint, AIChE Meeting. Boston August, 1986; 25–28
  • Ogunye A. F., Ray W. H. Non-Simple Control Policies For Reactors With Catalyst Decay. Trans. Inst. Chem. Engrs. 1968; T225–31
  • Ollis D. F. Diffusional Influences In Denaturable Insolubilized Enzyme Catalysts. Biotechnol. Bioeng. 1972; 15: 871–84
  • Ollis D. F., Datta R. Optimization Of Activities Of Immobilized Lysozyme, α-chymotrypsin, and Lipase. 25th Southeastern Regional Meeting. ACS, Charleston, SC November, 1973; 7–9
  • O'Neill S. P. Inactivation Of Immobilized Catalase By Hydrogen Peroxide In Continuous Reactors. Biotechnol. Bioeng. 1972a; 14: 201–05
  • O'Neill S. P. Thermal Inactivation Of Immobilized Enzymes In Ideal Continuous Reactors. Biotechnol. Bioeng. 1972b; 14: 473–91
  • Ooshima H., Hirano Y. Effects Of Mass-Transfer Resistance On Apparent Stability And Performance Of Fixed-Bed Immobilized Enzyme Reactors: Theory And Experiments With Immobilized Invertase. Biotechnol. Bioeng. 1983; 25: 143–55
  • Park J. Y., Levenspiel O. Optimum Operating Cycle For Systems With Deactivating Catalysts. 2. Applications To Reactors. Ind. Eng. Chem. Process. Design Develop. 1976; 15: 538–544
  • Patwardhan V. S., Sadana A. The Optimum Temperature Policy For A Deactivating Immobilized Enzyme Fixed-Bed Reactor. Chem. Eng. Commun. 1982; 15: 169–77
  • Pitcher W. H., Jr. Engineering Of Immobilized Enzyme Systems. Catal. Rev. Sci. Eng. 1975; 12: 37–102
  • Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mishchenko E. F. The Mathematical Theory Of Optimal Processes, K. C. Trircgoff. Interscience Publishers, Inc, New York 1962
  • Ramachandaran K. B., Perlmutter D. D. Effects Of Immobilization On The Kinetics Of Enzyme-Catalyzed Reactions. I. Glucose Oxidase In A Recirculation Reactor System. Biotechnol. Bioeng. 1976a; 18: 669–84
  • Ramachandaran K. B., Perlmutter D. D. Effects Of Immobilization On The Kinetics Of Enzyme-Catalyzed Reactions. II. Urease In A Packed-Column Differential Reactor System. Biotechnol. Bioeng. 1976b; 18: 685–99
  • Reuss M., Buchholz K. Analysis Of The Coupled Transport, Reaction, And Deactivation Phenomena In The Immobilized Glucose Oxidase And Cataiase System. Biotechnol. Bioeng. 1979; 21: 2061–87
  • Royer G. P. The Kinetics Of Immobilized Enzymes. Immobilized Enzymes, Antigens, Antibodies, and Peptides, H. H. Weetall. Marcel Dekker, New York 1975; 49, Chapter 2
  • Royer G. P., Green G. M. Immobilized Pronase. Biochim. Biophys. Res. Commun. 1971; 44: 426–32
  • Royer G. P., Andrews J. P. Immobilized Derivatives Of Leucine Aminopeptidase and Aminopeptidase M. J. Biol. Chem. 1973; 248: 1807–12
  • Sadana A. Effect Of Immobilized Enzyme Deactivation In Fixed- And Fluid-Bed Reactors. Biotechnol. Bioeng. 1978; 20: 781–97
  • Sadana A. A Generalized Optimum Temperature Operations Criterion For Deactivating Immobilized Enzyme Batch Reactors. AIChE J. 1979; 25: 535–9
  • Sadana A. On Optimum Temperature Operations In Deactivating Fixed-Bed Reactors. Chem. Eng. Commun. 1980; 4: 51–5
  • Sadana A. A Theoretical Analysis Of The Deactivation Of an Immobilized Enzyme In Multi-Enzyme Reactions In Fixed-Bed and Fluid-Bed Reactors. J. Chem. Tech. Biotechnol. 1981; 31: 553–64
  • Sadana A. The Optimum Temperature Policy For A deactivating Catalytic Packed-Bed Reactor. An Improved Method Of Operations. Chem. Eng. Sci. 1982; 37: 492–4
  • San K. Y., Stephanopoulos G. Optimal Control Policy For Substrate Inhibited Kinetics With Enzyme Deactivation In An Isothermal CSTR. AlChE J. 1983; 299: 417–24
  • Scrutton M. C., Utter M. F. Pyruvate Carboxylase. J. Biol. Chem. 1965; 240: 3714–23
  • Segel I. H. Enzyme Kinetics—Behavior And Analysis Of Rapid Equilibrium And Steady-State Enzyme Systems. Wiley, New York 1975
  • Sharp A. K., Kay G., Lilly M. D. The Kinetics Of β-Galactosidase Attached To Porous Cellulose Sheets. Biotechnol. Bioeng. 1969; 11: 363–80
  • Silman I. H., Karlin A. Effect Of Local pH Changes Caused By Substrate Hydrolysis On The Activity Of Membrane-Bound Acetylcholinesterase. Proc. Natl. Acad. Sci. U.S. 1967; 58: 1664–72
  • Staub M. C., Denes G. A Kinetic Study On The Inactivation Of 3-Deoxy-D-Arabino-Heptulosonate 7-Phosphate Synthase By Bromopyruvate. Biochim. Biophys. Acta 1967; 139: 519–21
  • Stone I. 1955, U.S. Patent, 2,717,852
  • Sudina G. F., Kobelkov G. M., Varfolomeev S. D. The Macrokinetics Of An Enzymatic System Containing An Enzyme That Inactivates In The Course Of Reaction. Biotechnol. Bioeng. 1983; 25: 2519–30
  • Suzuki H., Ozawa Y., Maeda H. Water-Insoluble Enzyme. Hydrolysis Of Sucrose By Insoluble Yeast Invertase. Agric. Biol. Chem. 1966; 30: 807–13
  • Szepe S. The Deactivation Of Catalysts And Some Related Optimization Problems. Ph.D. Thesis, Illinois Institute of Technology, Chicago 1966
  • Szepe S., Levenspiel O. Optimal Temperature Policies For Reactors Subject To Catalyst Deactivation-I Batch Reactor. Chem. Eng. Sci. 1968; 23: 881–94
  • Szepe S., Levenspiel O. Catalyst Deactivation. Fourth European Symposium On Chemical Reaction Engineering. Pergamon Press, Oxford 1971; 265
  • Thiele F. W. Relation Between Catalytic Activity And Size Of Particle. Ind. Eng. Chem. 1939; 31: 916–20
  • Tosa T., Mori T., Chibata I. Continuous Enzyme Reactions. VI. Enzyme Properties Of The DEAE-Sephadex-Aminoacylase Complex. Enzymologia 1971; 40: 49–56
  • Verhoff F. H., Goldstein W. E. Diffusion Resistance And Enzyme Activity Decay In A Pellet. Biotechnol. Bioeng. 1982; 24: 703–23
  • Villadsen J., Stewart W. E. Solution Of Boundary Value Problems By Orthogonal Collocation. Chem. Eng. Sci. 1967; 22: 1483–1501
  • Weekman V. W., Jr. A Model Of Catalytic Cracking Conversion In Fixed, Moving and Fluid-Bed Reactors. Ind. Eng. Chem. Process Design Dev. 1968; 7: 90–5
  • Weetall H. H. Storage Stability Of Water-Insoluble Enzymes Covalently Coupled To Organic And Inorganic Carriers. Biochim. Biophys. Acta 1970; 212: 1–7
  • Wheeler A. Reaction Rates and Selectivity In Catalyst Pores. Adv. Catalysis 1950; 3: 250–327
  • Wilson R. J. H., Kay G., Lilly M. D. The Preparation And Kinetics Of Lactate Dehydrogenase Attached To Water-Insoluble Particles And Sheets. Biochem. J. 1968; 108: 845–53
  • Zaborsky O. R. Alteration Of Enzymic Properties Prior To Immobilization. Food Prod. Dev. 1973; 7: 94–102
  • Zabriskie D., Ollis D. F., Burger M. M. Activity and Specificity Of Covalently Immobilized Wheat Germ Agglutinin Toward Cell Surfaces. Biotechnol. Bioeng. 1973; 15: 981–92
  • Zeldovitch I. B. Theory Of Reactions On Powders And Porous Substances. Zh. Fiz. Khim. 1939; 13: 163–8

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.