27
Views
3
CrossRef citations to date
0
Altmetric
Original Article

Steric Requirements for the Active Site of a Lipase from Candida Rugosa Studied by the use of a Sulfinyl Group as a Chiral Probe

&
Pages 163-180 | Received 12 Dec 1997, Published online: 11 Jul 2009

References

  • Allenmark S., Hagberg C.-E. Anchimerically assisted sulfoxide reactions. V. Assisted racemization of optically active 2-methylsulfinylbenzoic acid. Acta Chem. Scand 1970; 24: 2225–2231
  • Allenmark S., Andersson S. Some mechanistic aspects on chiral discrimination of organic acids by immobilized bovine serum albumin (BSA). Chirality 1992a; 4: 24–29
  • Allenmark S., Ohlsson A. Studies of the heterogeneity of a Candida cylindracea (rugosa) lipase: Monitoring of esterolytic activity and enantioselectivity by chiral liquid chromatography. Biocatalysis 1992b; 6: 211–221
  • Allenmark S. G., Andersson A. C. Lipase-catalyzed kinetic resolution of a series of esters having a sulfoxide group as the stereogenic group. Tetrahedron: Asymmetry 1993; 4: 2371–2376
  • Allenmark S., Andersson S., Moller P., Sanchez D. A new class of network-polymeric chiral stationary phases. Chirality 1995a; 7: 248–256
  • Allenmark S., Andersson C., Widell P. Chromatographic resolution of some cyclic sulfoximides derived from prochiral and chiral sulfoxides. Chirality 1995b; 7: 541–546
  • Allenmark S., Claeson S. Resolution and chiroptical properties of a diaryl diacyloxy spirosulfurane with six-membered spiro rings. Enantiomer 1996; 1: 423–428
  • Bohman O., Allenmark S. The solvolytic behaviour of optically active S-(carboxy-phenyl)-S-methyl-N-(p-tosyl)-sulfimide. Chem. Scr 1973; 4: 202–206
  • Burgess K., Henderson I., Ho K.-K. Biocatalytic resolutions of sulfinylalkanoates: A facile route to optically active sulfoxides. J. Org. Chem 1992; 57: 1290–1295
  • Cardellicchio C., Naso F., Scilimati A. An efficient biocatalyzed kinetic resolution of methyl (Z)-3-arylsulphinylpropenoates. Tetrahedron Lett 1994; 35: 4635–4638
  • Carreño M. C. Applications of sulfoxides to asymmetric synthesis of biologically active compounds. Chem. Rev 1995; 95: 1717–1760
  • Chen C.-S., Fujimoto Y., Girdaukas G., Sih C. J. Quantitative analyses of biochemical kinetic resolutions of enantiomers. J. Am. Chem. Soc 1982; 104: 7294–7299
  • Desnuelle P. The lipases. The Enzymes3rd edn., P. D. Boyer. Academic Press, New York, London 1972; Vol. 7: 575–616
  • Faber K. Biotransformations in organic chemistry. Springer-Verlag, Berlin 1992; 72–76
  • Grochulski P., Li Y., Schrag J. D., Bouthillier F., Smith P., Harrison D., Rubin B., Cygler M. Insights into interfacial activation from an open structure of Candida rugosa lipase. J. Biol. Chem 1993; 268: 12843–12847
  • Grochulski P., Bouthillier F., Kazlauskas R. J., Serreqi A. N., Schrag J. D., Ziomek E., Cygler M. Analogs of reaction intermediates identify a unique substrate binding site in Candida rugosa lipase. Biochemistry 1994; 33: 3494–3500
  • Holland H. L. Chiral sulfoxidation by biotransformation of organic sulfides. Chem. Rev 1988; 88: 473–485
  • Kapovits I., Rábai J., Ruff F., Kucsman A. Diaryldiacyloxyspirosulfuranes-II. Synthesis from sulfoxides and hydrolysis. Tetrahedron 1979; 35: 1875–1881
  • Küsters E., Gerber G. Enantiomeric separation of racemic sulphoxides on chiral stationary phases by gas and liquid chromatography. Chromatographica 1997; 44: 91–96
  • Mikolajczyk M., Drabowicz J. Chiral organosulfur compounds. Top. Stereochem 1982; 13: 333–468
  • Mikolajczyk M., Kielbasinski P., Zurawinski R., Wieczorek M. W., Blaszczyk J. A novel enzymatic approach to the synthesis of chiral sulfoxides: Enzymatic hydrolysis of prochiral sulfinyldicarboxylates. Synlett 1994; 127–129
  • Ohta H., Kato Y., Tsuchihashi G.-I. Enzyme mediated synthesis of optically active α-arenesulfinylalkanoic esters. Chem. Lett 1986; 217–218
  • Pitchen P., Kagan H. B. An efficient asymmetric oxidation of sulfides to sulfoxides. Tetrahedron Lett 1984; 25: 1049–1052
  • Serreqi A. N., Kazlauskas R. J. Kinetic resolution of sulfoxides with pendant acetoxy groups using cholesterol esterase: Substrate mapping and an empirical rule for chiral phenols. Can. J. Chem 1995; 73: 1357–1367
  • Solladié G. Asymmetric synthesis using nucleophilic reagents containing a chiral sulfoxide group. Synthesis 1981; 185–196
  • Tamai S., Miyauchi S., Morizane C., Miyagi K., Shimizu H., Kume M., Sano S., Shiro M., Nagao Y. Enzymatic hydrolyses of the σ-symmetric dicarboxylic diesters bearing a sulfinyl group as the prochiral center. Chem. Lett 1994; 2381–2384
  • Wu S.-H., Guo Z.-W., Sih C. J. Enhancing the enantioselectivity of Candida lipase catalyzed ester hydrolysis via noncovalent enzyme modification. J. Am. Chem. Soc 1990; 112: 1990–1995

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.