982
Views
35
CrossRef citations to date
0
Altmetric
Review Article

Biosensors as rapid diagnostic tests for tropical diseases

, &
Pages 139-169 | Received 09 Mar 2010, Accepted 23 Jul 2010, Published online: 14 Dec 2010

References

  • World Health Organization. (2010). The world health report 2004 [Online] Available at: http://www.who.int/whr/2004/en/report04_en.pdf. Accessed on 6 March 2010.
  • Mabey D, Peeling RW, Ustianowski A, Perkins MD. Diagnostics for the developing world. Nat Rev Microbiol 2004;2:231–240.
  • Lupi O, Tyring SK. Tropical dermatology: viral tropical diseases. J Am Acad Dermatol 2003;49:979–1000.
  • Bell D, Wongsrichanalai C, Barnwell JW. Ensuring quality and access for malaria diagnosis: how can it be achieved? Nat Rev Microbiol 2006;4(Suppl):682–695.
  • Strömberg M, Göransson J, Gunnarsson K, Nilsson M, Svedlindh P, Strømme M. Sensitive molecular diagnostics using volume-amplified magnetic nanobeads. Nano Lett 2008;8:816–821.
  • Bier FF, Kleinjung F. Feature-size limitations of microarray technology - a critical review. Fresen J Anal Chem 2001;371:151–156
  • Kuno G, Cropp CB, Wong-Lee J, Gubler DJ. Evaluation of an IgM immunoblot kit for dengue diagnosis. Am J Trop Med Hyg 1998;59:757–762.
  • Miller BL, Henke RR. (2009). Using DNA in multiplexed detection schemes. IVDT 2009; Nov:35. [Online] Available at: http://www.devicelink.com/ivdt/archive/09/11/003.html. Accessed on 6 March 2010.
  • Patel PD. (Bio) sensors for measurement of analytes implicated in food safety: a review. Trends Anal Chem 2002;21:96–115.
  • Lee WG, Kim Y-G, Chung BG, Demirci U, Khademhosseini A. Nano/microfluidics for diagnosis of infectious diseases in developing countries. Adv Drug Deliv Rev 2010;62:449–457.
  • Dineva MA, Mahilum-Tapay L, Lee H. Sample preparation: a challenge in the development of point-of-care nucleic acid-based assays for resource-limited settings. Analyst 2007;132:1193–1199.
  • Wilde H, Suankratay C. There is need for antigen-based rapid diagnostic tests to identify common acute tropical illnesses. J Travel Med 2007;14:254–258.
  • Ferreira AAP, Colli W, da Costa PI, Yamanaka H. Immunosensor for the diagnosis of Chagas’ disease. Biosens Bioelectron 2005;21:175–181.
  • Mondesire RR. (2005). Global efforts to develop IVDs for tropical diseases. IVDT [Online] 2005;Jul: 24. Available at: http://www.devicelink.com/ivdt/archive/05/07/005.html. Accessed on 6 March 2010.
  • D’Acremont V, Lengeler C, Mshinda H, Mtasiwa D, Tanner M, Genton B. Time to move from presumptive malaria treatment to laboratory-confirmed diagnosis and treatment in African children with fever. PLoS Med 2009;6(art.e252):1–3.
  • Toovey S, Jamieson A. Rolling back malaria: how well is Europe doing? Travel Med Infect Dis 2003;1:167–175.
  • Daar AS, Thorsteindottir H, Martin DK, Smith AC, Nast S, Singer PA. Top ten biotechnologies for improving health in developing countries. Nat Genet 2002;32:229–232.
  • Newman DM, Heptinstall J, Matelon RJ, Savage L, Wears ML, Beddow J, Cox M, Schallig HDFH, Mens PF. A magneto-optic route toward the in vivo diagnosis of malaria: preliminary results and preclinical trial data. Biophys J 2008;95:994–1000.
  • Zelada-Guillén GA, Riu J, Düzgün A, Rius FX. Immediate detection of living bacteria at ultralow concentrations using a carbon nanotube based potentiometric aptasensor. Angew Chem Int Ed 2009;48:7334–7337.
  • Pividori MI, Merkoçi A, Alegret S. Electrochemical genosensor design: immobilisation of oligonucleotides onto transducer surfaces and detection methods. Biosens Bioelectron 2000;15:291– 03.
  • Ferreira AW. Testes sorológicos. In: Coura JR, ed. Dinâmica das doenças infecciosas e parasitárias (vol. I). [Dynamics of infectious and parasitic diseases]. Rio de Janeiro: Guanabara Koogan, 2005:196.
  • Baeumner AJ, Pretz J, Fang S. A universal nucleic acid sequence with nanomolar detection limits. Anal Chem 2004;76:888–894.
  • Diamond D. Overview. In: Diamond D, ed. Principles of chemical and biological sensors. Toronto: John Wiley, 1998:7–12.
  • Teles FRR, Fonseca LP. Trends in DNA biosensors. Talanta 2008;77:606–623.
  • Wang T-H, Peng Y, Zhang C, Wong PK, Ho C-M. Single-molecule tracing on a fluidic microchip for quantitative detection of low-abundance nucleic acids. J Am Chem Soc 2005;127:5354–5359.
  • Baird CL, Myszka DG. Current and emerging commercial optical biosensors. J Mol Recognit 2001;14:261–268.
  • Petti CA, Polage CR, Quinn TC, Ronald AR, Sande MA. Laboratory medicine in Africa: a barrier to effective health care. Clin Infect Dis 2006;42:377–382.
  • Murray CK, Bennett W. Rapid diagnosis of malaria. Interdiscip Perspect Infect Dis 2009; Article ID 415953 (7 pages).
  • Nayak M, Kotian A, Marathe S, Chakravortty D. Detection of microorganisms using biosensors – a smarter way towards detection techniques. Biosens Bioelectron 2009;25:661–667.
  • Murray CK, Gasser RA Jr, Magill AJ, Miller RS. Update on rapid diagnostic testing for malaria. Clin Microbiol Rev 2008;21:97–110.
  • Teles FRR, Prazeres DMF, Lima-Filho JL. Trends in dengue diagnosis. Rev Med Virol 2008;15:287–302.
  • Peters RHP, Agtamael MA van, Danner SA, Savelkoul PHM, Vandenbroucke-Grauls CMJE. New developments in the diagnosis of bloodstream infections. Lancet Infect Dis 2004;4:751–760.
  • Griffiths D, Hall G. Biosensors – what real progress is being made? Trends Biotechnol 1993;11:122–130.
  • McCormack T, Keating G, Killard A, Manning BM, O’Kennedy R. Biomaterials for biosensors. In: Diamond D, ed. Principles of chemical and biological sensors. Toronto, Canada: John Wiley 1998:186–187.
  • Mikkelsen SR. Electrochecmical biosensors for DNA sequence detection. Electroanalysis 1996;8:15–19.
  • Campbell NF, Evans JA, Fawcett NC. Detection of poly (U) hybridization using azido modified poly (A) coated piezoelectric crystals. Biochem Biophys Res Commun 1993;196:858–863.
  • Turner APF. Biosensors – sense and sensitivity. Science 2000;290:1315–1317.
  • Wang H-S, Ju H-X, Chen H-Y. Simultaneous determination of guanine and adenine in DNA using an electrochemically pretreated glassy carbon electrode. Anal Chim Acta 2002;461:243–250.
  • Mohan TM, Nath N, Anand S. Detection of filarial antibody using a fiber optics immunosensor (FOI). Indian J Clin Biochem 1997;12(Suppl):17–21.
  • Dittrich PS, Tachikawa K, Manz A. Micro total analysis systems. Latest advancements and trends. Anal Chem 2006;78:3887–3908.
  • Bang H, Yun H, Lee WG, Park J, Lee J, Chung S, Cho K, Chung C, Han D-C, Chang JK. Expansion channel for microchip flow cytometers. Lab Chip 2006;6:1381–1383.
  • Kerman K, Kobayashi M, Tamiya E. Recent trends in electrochemical DNA biosensor technology. Meas Sci Technol 2004;15:R1–R11.
  • Lee WG, Bang H, Yun H, Lee J, Park J, Kim JK, Chung S, Cho K, Chung C, Han D-C, Chang JK. On-chip erythrocyte deformability test under optical pressure. Lab Chip 2007;7:516–519.
  • Moon SJ, Keles HO, Ozcan A, Khademhosseini A, Haeggstrom E, Kuritzkes D, Demirci U. Integrating microfluidics and lensless imaging for point-of-care testing. Biosens Bioelectron 2009;24:3208–3214.
  • Goddard GR, Sanders CK, Martin JC, Kaduchak G, Graves SW. Analytical performance of an ultrasonic particle focusing flow cytometer. Anal Chem 2007;79:8740–8746.
  • Sato H, Sasamoto Y, Yagyu D, Sekiguchi T, Shoji S. 3D sheath flow using hydrodynamic position control of the sample flow. J Micromech Microeng 2007;17:2211–2216.
  • Berg A van den, Wessling M. Nanofluidics: silicon for the perfect membrane. Nature 2007;445:726.
  • Jain KK. Applications of nanobiotechnology in clinical diagnostics. Clin Chem 2007;53:2002–2009.
  • Yager P, Domingo Gj Gerdes, J. Point-of-care diagnostics for global health. Ann Rev Biomed Eng 2008;10:107–144.
  • Vaddiraju S, Tomazos I, Burgess DJ, Jain FC, Papadimitrakopoulos F. Emerging synergy between nanotechnology and implantable biosensors: a review. Biosens Bioelectron 2010;25:1553–1565.
  • Yonzon CR, Stuart DA, Zhang X, McFarland AD, Haynes CL, van Duyne RP. Towards advanced chemical and biological nanosensors – an overview. Talanta 2005;67:438–448.
  • Chung S, Yun H, Kamm RD. Nanointerstice-driven microflow. Small 2009;5:609–613.
  • Martinez AW, Phillips ST, Wiley BJ, Gupta M, Whitesides GM. FLASH: a rapid method for prototyping paper-based microfluidic devices. Lab Chip 2008;8:2146–2150.
  • Niemeyer CM. Semi-synthetic nucleic acid–protein conjugates: applications in life sciences and nanobiotechnology. Rev Mol Biotechnol 2001;82:47–66.
  • Gruner G. Carbon nanonets – spark new electronics. Sci Am 2007;17:48–55.
  • Minunni M, Tombelli S, Gullotto A, Luzi E, Mascini M. Development of biosensor with aptamers as bio-recognition element: the case of HIV-1 Tat protein. Biosens Bioelectron 2004;20:1149–1156.
  • De-los-Santos-Álvarez N, Lobo-Castañón MJ, Miranda-Ordieres AJ, Tuñón-Blanco P. Aptamers as recognition elements for label-free analytical devices. Trends Anal Chem 2008;27:437–446.
  • Shamah SM, Healy JM, Cload ST. Complex target SELEX. Acc Chem Res 2008;41:130–138.
  • Hohng S, Ha T. Single-molecule quantum-dot fluorescence resonance energy transfer. Chem Phys Chem 2005;6:956–960.
  • Alivisatos AP. Less is more in medicine. Sci Am 2003;17:73–79.
  • Whitesides GM, Love JC. The art of building small. Sci Am 2007;17:13–21.
  • Tam JM, Song L, Walt DR. DNA detection on ultrahigh-density optical fiber-based nanoarrays. Biosens Bioelectron 2009;24:2488–2493.
  • Bhardwaj U, Papadimitrakopoulos Burgess, DJ. A review of the development of a vehicle for localized and controlled drug delivery for implantable biosensors. J Diabetes Sci Technol 2008;2:1016–1029.
  • Wu Y, Rojas AP, Griffith GW, Skrzypchak AM, Lafayette N, Bartlett RH, Meyerhoff ME. Improving blood compatibility of intravascular oxygen sensors via catalytic decomposition of S-nitrosothiols to generate nitric oxide in situ. Sensors Actuat B 2007;121:36–46.
  • Onuki Y, Bhardwaj U, Papadimitrakopoulos Burgess, DJ. A review of the biocompatibility of implantable devices: current challenges to overcome foreign body response. J Diabetes Sci Technol 2008;2:1003–1015.
  • Kvist PH, Iburg T, Aalbaek B, Gerstenberg M, Schoier C, Kaastrup P, Buch-Rasmussen T, Hasselager E, Jensen HE. Biocompatibility of an enzyme-based, electrochemical glucose sensor for short-term implantation in the subcutis. Diabetes Technol Ther 2006;8:546–559.
  • Adiga SP, Curtiss LA, Elam JW, Pellin MJ, Shih C-C, Shih C-M, Lin S-J, Su Y-Y, Gittard SD, Zhang J, Narayan RJ. Nanoporous materials for biomedical devices. J Miner Met Mater Soc 2008;60:26–32.
  • Asuri P, Karajanagi SS, Kane RS, Dordick JS. Polymer-nanotube-enzyme composites as active antifouling films. Small 2007;3:50–53.
  • Luckarift HR, Dickerson MB, Sandhage KH, Spain JC. Rapid, room-temperature synthesis of antibacterial bionanocomposites of lyzozyme with amorphous silica or titania. Small 2006;2:640–643.
  • Industrial Science and Technology Working Group (ISTWG). Roadmapping converging technologies to combat emerging infectious diseases. Bangkok, Thailand: Asia-Pacific Economic Cooperation (APEC) 2008.
  • Sampath R, Hofstadler SA, Blyn L, Eshoo M, Hall T, Massire C, Levene HM, Hannis JC, Harrell PM, Neuman B, Buchmeier MJ, Jiang Y, Ranken R, Drader JJ, Samant V, Griffey RH, McNeil JA, Crooke ST, Ecker DJ. Rapid identification of emerging pathogens: coronavirus. Emerg Infect Dis 2005;11:373–379.
  • Sampath R, Russell KL, Massire C, Eshoo MW, Harpin V, Blyn LB, Melton R, Ivy C, Pennella T, Li F, Levene H, Hall TA, Libby B, Fan N, Walcott DJ, Ranken R, Pear M, Schink A, Gutierrez J, Drader J, Moore D, Metzgar D, Addington L, Rothman R, Gaydos CA, Yang S, George KS, Fuschino ME, Dean AB, Stallknecht DE, Goekjian G, Yingst S, Monteville M, Saad MD, Whitehouse CA, Baldwin C, Rudnick KH, Hofstadler SA, Lemon SM, Ecker DJ. Global surveillance of emerging Influenza virus genotypes by mass spectrometry. PLoS ONE 2007;2:e489 (9 pages).
  • Moody A. Rapid diagnostic tests for malaria parasites. Clin Microbiol Rev 2002;15:66–78.
  • Aguirre AMR, Zavalaga LFL, Belaunde MT. Relación costo-efectividad del uso de pruebas rápidas para el diagnóstico de la malária en la Amazonia peruana [Cost-effectiveness relation for the use of rapid tests for diagnosis of malaria in the Amazon region of Peru]. Rev Panam Salud Publica 2009;25:377–388.
  • World Health Organization. Guidelines for the treatment of malaria, 2nd ed. Geneva: World Health Organization, 2010.
  • Forney JR, Wongsrichanalai C, Magill AJ, Craig LG, Sirishaisinthop J, Bautista CT, Miller RS, Ockenhouse CF, Kester KE, Aronson NE, Andersen EM, Quino-Ascurra HA, Vidal C, Moran KA, Murray CK, DeWitt CC, Heppner DG, Kain KC, Ballou WR, Gasser RA Jr. Devices for rapid diagnosis of malaria: evaluation of prototype assays that detect Plasmodium falciparum histidine-rich protein 2 and a Plasmodium vivax-specific antigen. J Clin Microbiol 2003;41:2358–2366.
  • World Health Organization. (2003). Malaria rapid diagnosis – making it work. WHO Meeting Report (20–23 Jan) [Online] Available at: http://www.who.int/malaria/publications/atoz/rdt2.pdf. Accessed on 6 March 2010.
  • World Health Organization. Malaria rapid diagnostic test performance. Summary results of WHO product testing of malaria RDTs: rounds 1 and 2 (2008–2009). Geneva: World Health Organization, 2010.
  • Banoo S, Bell D, Bossuyt P, Herring A, Mabey D, Poole F, Smith PG, Sriram N, Wongsrichanalai C, Linke R, O’Brien R, Perkins M, Cunningham J, Matsoso P, Nathanson CM, Olliaro P, Peeling RW, Ramsay A. Evaluation of diagnostic tests for infectious diseases: general principles. Nat Rev Microbiol 2006;4(Suppl):S20–S32.
  • Gasser Jr RA, Magill AJ, Ruebush II TK, Miller RS, Sirichaisinthop J, Forney JR, Bautista CT, Arevalo I, Rhorer J, Wittes J, Wongsrichanalai C. Malaria diagnosis: performance of NOW® ICT malaria in a large scale field trial. Proceedings of the 54th Annual Meeting of the American Society of Tropical Medicine and Hygiene, December 2005; Washington, USA.
  • Antia M, Herricks T, Rathod PK. Microfluidic modeling of cell-cell interactions in malaria pathogenesis. PLoS Pathog 2007;3:e99(939–948).
  • Baker J, McCarthy J, Gatton M, Kyle DE, Belizario V, Luchavez J, Bell D, Cheng Q. Genetic diversity of Plasmodium falciparum histidine-rich protein 2 (PfHRP2) and its effect on the performance of PfHRP2-based rapid diagnostic tests. J Infect Dis 2005;192:870–877.
  • Lee N, Baker J, Andrews KT, Gatton ML, Bell D, Cheng Q, McCarthy J. Effect of sequence variation in Plasmodim falciparum histidine-rich protein 2 on binding of specific monoclonal antibodies: implications for rapid diagnostic tests for malaria. J Clin Microbiol 2006;44:2773–2778.
  • Gamboa D, Mei-Fong H, Bendezu J, Torres K, Chiodini PL, Barnwell JW, Incardona S, Perkins M, Bell D, McCarthy J, Cheng Q. A large proportion of P. falciparum isolates in the Amazon region of Peru lack pfhrp2 and pfhrp3: implications for malaria rapid diagnostic tests. PLoS ONE 2010;5: e8091(1–7).
  • Groen J, Koraka P, Velzing J, Copra C, Osterhaus AD. Evaluation of six immunoassays for detection of dengue virus-specific immunoglobulin M and G antibodies. Clin Diagn Lab Immunol 2000;7:867–871.
  • Vasquez S, Hafner G, Ruiz D, Calzada N, Guzman MG. Evaluation of immunoglobulin M and G capture enzyme-linked immunosorbent assay Panbio kits for diagnostic dengue infections. J Clin Virol 2007;39:194–198.
  • Su C-C, Wu T-Z, Chen L-K, Yang H-H, Tai D-F. Development of immunochips for the detection of dengue viral antigens. Anal Chim Acta 2003;479:117–123.
  • Teles FRR, Prazeres DMF, Lima-Filho JL. Electrochemical detection of a dengue-related oligonucleotide sequence using ferrocenium as a hybridization indicator. Sensors 2007;7:2510–2518.
  • Tam-Chang S-W, Carson TD, Huang L, Publicover NG, Hunter Jr KW. Stem–loop probe with universal reporter for sensing unlabeled nucleic acids. Anal Biochem 2007;366:126–130.
  • Baeumner AJ, Schlesinger NA, Slutzki NS, Romano J, Lee EM, Montagna RA. Biosensor for dengue virus detection: sensitive, rapid, and serotype specific. Anal Chem 2002;74:1442–1448.
  • Dodeigne C, Thunus L, Lejeune R. Chemiluminescence as a diagnostic tool. A review. Talanta 2000;51:415–4439.
  • Atias D, Liebes Y, Chalifa-Caspi V, Bremand L, Lobel L, Marks RS, Dussart P. Chemiluminescent optical fiber immunosensor for the detection of IgM antibody to dengue virus in humans. Sensors Actuat B 2009;140:206–215.
  • Kwakye S, Baeumner A. A microfluidic biosensor based on nucleic acid sequence recognition. Anal Bioanal Chem 2003;376:1062–1068.
  • Zaytseva NV, Montagna RA, Lee EM, Baeumner AJ. Multi-analyte single-membrane biosensor for the serotype-specific detection of dengue virus. Anal Bioanal Chem 2004;380:46–53.
  • Oliveira MDL, Correia MTS, Diniz FB. Concanavalin A and polyvinyl butyral use as a potential dengue electrochemical biosensor. Biosens Bioelectron 2009;25:728–732.
  • Guan J-G, Miao Y-Q, Zhang Q-J. Impedimetric biosensors. J Biosci Bioeng 2004;97:219–226.
  • Daniels JS, Pourmand N. Label-free impedance biosensors: opportunities and challenges. Electroanalysis 2007;19:1239–1257.
  • Kumbhat S, Sharma K, Gehlot R, Solanki A, Joshi V. Surface plasmon resonance based immunosensor for serological diagnosis of dengue virus infection. J Pharm Biomed Anal 2010;52:255–259.
  • Ridderhof JC, Deun A van, Kam KM, Narayanan PR, Aziz MA. Roles of laboratories and laboratory systems in effective tuberculosis programmes. Bull World Health Organ 2007;85:354–359.
  • Wang J, Rivas G, Cai X, Dontha N, Shiraishi H, Luo D, Valera FS. Sequence-specific electrochemical biosensing of M. tuberculosis DNA. Anal Chim Acta 1997;337:41–48.
  • Liu GD, Wu ZY, Wang SP, Shen GL, Yu RQ. Renewable amperometric immunosensor for Schistosoma japonicum antibody assay. Anal Chem 2001;73:3219–3226.
  • Prabhakar N, Arora K, Arya SK, Solanki PR, Iwamoto M, Singh H, Malhotra BD. Nucleic acid sensor for M. tuberculosis detection based on surface plasmon resonance. Analyst 2008;133:1587–1592.
  • He F, Zhang L. Rapid diagnosis of M. tuberculosis using a piezoelectric immunosensor. Anal Sci 2002;18:397–401.
  • He F, Zhao J, Zhang L, Su X. A rapid method for determining Mycobacterium tuberculosis based on a bulk acoustic wave impedance biosensor. Talanta 2003;59:935–941.
  • Ren J, He F, Yi S, Cui X. A new MSPQC for rapid growth and detection of Mycobacterium tuberculosis. Biosens Bioelectron 2008;24:403–409.
  • Ke C, Berney H, Mathewson A, Sheehan MM. Rapid amplification for the detection of Mycobacterium tuberculosis using a non-contact heating method in a silicon microreactor based thermal cycler. Sens Actuat B 2004;102:308–314.
  • Denton KA, Kramer MF, Lim DV. Rapid detection of Mycobacterium tuberculosis in lung tissue using a fiber optic biosensor. J Rapid Methods Autom Microbiol 2009;17:17–31.
  • Trouiller P, Olliaro P, Torreele E, Orbinski J, Laing R, Ford N. Drug development for neglected diseases: a deficient market and a public-health policy failure. Lancet 2002;359:2188–2194.
  • Boelaert M, Rijal S, Regmi S, Singh R, Karki B, Jacquet D, Chappuis F, Campino L, Desjeux P, Le Ray D, Koirala S, Van der Stuyft P. A comparative study of the effectiveness of diagnostic tests for visceral leishmaniasis. Am J Trop Med Hyg 2004;70:72–77.
  • Deborggraeve S, Boelaert M, Rijal S, Doncker S, Dujardin J-C, Herdewijn P, Büscher P. Diagnostic accuracy of a new Leishmania PCR for clinical visceral leishmaniasis in Nepal and its role in diagnosis of disease. Trop Med Int Health 2008;13:1378–1383.
  • Zijlstra EE, Ali MS, Hassan AM, Toum IA, Satti M, Ghalib HW, Kager PA. Kala-azar: a comparative study of parasitological methods and the direct agglutination test in diagnosis. Trans R Soc Trop Med Hyg 1992;86:505–507.
  • Staquet M, Rozencweig M, Lee YJ, Muggia FM. Methodology for the assessment of new dichotomous diagnostic tests. J Chronic Dis 1981;34:599–610.
  • Harith A el, Kolk AH, Kager PA, Leeuwenburg J, Muigai R, Kiugu S, Bovier PA, Desjeux P, Le Ray D, Koirala S, Loutan L. A simple and economical direct agglutination test for serodiagnosis and sero-epidemiological studies of visceral leishmaniasis. Trans R Soc Trop Med Hyg 1986;80:583–587.
  • Zijlstra EE, Ali MS, Hassan AM el, Toum IA el, Satti M, Ghalib HW, Kager PA. Direct agglutination test for diagnosis and sero-epidemiological survey of kala-azar in the Sudan. Trans R Soc Trop Med Hyg 1991;85:474–476.
  • Chowdhury MA, Rafiqueuddin AK, Hussain A. Aldehyde test (formol-gel test) in the diagnosis of kala-azar (visceral leishmaniasis). Trop Doct 1992;22:185–186.
  • Sundar S, Reed SG, Singh VP, Kumar PC, Murray HW. Rapid accurate field diagnosis of Indian visceral leishmaniasis. Lancet 1998;351:563–565.
  • Chappuis F, Rijal S, Singh R, Acharya P, Karki BM, Das ML, Bovier PA, Desjeux P, Le Ray D, Koirala S, Loutan L. Prospective evaluation and comparison of the direct agglutination test and an rK39-antigen-based dipstick test for the diagnosis of suspected kala-azar in Nepal. Trop Med Int Health 2003;8:277–285.
  • Diniz FB, Ueta RR, Pedrosa AM da C, Areias M da C, Pereira VRA, Silva ED, Silva JG Jr, Ferreira AGP, Gome YM. Impedimetric evaluation for diagnosis of Chagas’ disease: antigen-antibody interactions on metallic electrodes. Biosens Bioelectron 2003;19:79–84.
  • Umezawa ES, Nascimento MS, Stolf AMS. Enzyme-linked immunosorbent assay with Trypanosoma cruzi excreted-secreted antigens (TESA-ELISA) for serodiagnosis of acute and chronic Chagas’ disease. Diagn Microbiol Infect Dis 2001;39:169–176.
  • Engels D, Chitsulo L, Montresor A, Savioli L. The global epidemiological situation of schistosomiasis and new approaches to control and research. Acta Trop 2002;82:139–146.
  • Corstjens PLAM, Lieshout L, van Zuiderwijk M, Kornelis D, Tanke HJ, Deelder AM, van Dam GJ. Up-converting phosphor technology-based lateral flow assay for detection of Schistosoma circulating anodic antigen in serum. J Clin Microbiol 2008;46:171–176.
  • Lieshout L van, Polderman AM, Deelder AM. Immunodiagnosis of schistosomiasis by determination of the circulating antigens CAA and CCA, in particular in individuals with recent or light infections. Acta Trop 2000;77:69–80.
  • Deelder AM, De JN, Boerman OC, Fillie YE, Hilberath GW, Rotmans JP, Gerritse MJ, Schut DWO. Sensitive determination of circulating anodic antigen in Schistosoma mansoni infected individuals by an enzyme-linked immunosorbent assay using monoclonal antibodies. Am J Trop Med Hyg 1989;40:268–272.
  • Lieshout L van, Polderman AM, Visser LG, Verwey JJ, Deelder AM. Detection of the circulating antigens CAA and CCA in a group of Dutch travelers with acute schistosomiasis. Trop Med Int Health 1997;2:551–557.
  • Zijlmans HJ, Bonnet J, Burton J, Kardos K, Vail T, Niedbala RS, Tanke HJ. Detection of cell and tissue surface antigens using u-converting phosphors: a new reporter technology. Anal Biochem 1999;267:30–36.
  • Bojorge-Ramírez NI, Salgado AM, Valdman B. Amperometric immunosensor for detecting Schistosoma mansoni antibody. Assay Drug Dev Technol 2007;5:673–682.
  • Goulart IMB, Goulart LR. Leprosy: diagnostic and control challenges for a worldwide disease. Arch Dermatol Res 2008;300:269–290.
  • Scollard MD, Adams LB, Gillis TP, Krahembuhl JL, Truman RW, Williams DL. The continuing challenges of leprosy. Clin Microbiol Rev 2006;19:166–168.
  • Bührer-Sékula S, Smits HL, Gussenhoven GC, Leeuwen J van, Amador S, Fujiwara T, Klatser PR, Oskam L. Simple and fast lateral flow test for classification of leprosy patients and identification of contacts with high risk of developing leprosy. J Clin Microbiol 2003;41:1991–1995.
  • Goulart IMB, Souza DOB, Marques CR, Pimenta VL, Gonçalves MA, Goulart LR. Risk and protective factors for leprosy development in an epidemiological surveillance of household contacts. Clin Vaccine Immunol 2008;15:101–105.
  • Groathouse NA, Amin A, Marques MAM, Spencer JS, Gelber R, Knudsen DL, Belisle JT, Brennan PJ, Slayden RA. Use of protein microarrays to define the humoral immune response in leprosy patients and identification of disease-state specific antigen profiles. Infect Immun 2006;74:6458–6466.
  • Capparelli FE, Oliveira JDD, Marangoni K, Goulart IMB, Goulart LR. Desenvolvimento de mimetopos protéicos de PGL-1 imunorreativos contra soro de pacientes com hanseníase [Development of protein mimetopes from PGL-1 immunoreactive against serum of patients with hanseniasis]. Hansenol Int 2005;30:120.
  • Spencer JS, Dockrell HM, Kim HJ, Marques MAM, Williams DL, Martins MVSB, Martins MLF, Lima MCBS, Sarno EN, Pereira GMB, Matos H, Fonseca LS, Sampaio EP, Ottenhoff THM, Geluk A, Cho S-N, Stoker NG, Cole ST, Brennan PJ, Pessolani MCV. Identification of specific proteins and peptides in Mycobacterium leprae suitable for the selective diagnosis of leprosy. J Immunol 2005;175:7930–7938.
  • Afonso AS, Goulart LR, Moura M, Goulart IMB, Madurro JM, Brito-Madurro AG. (2007). Detection of Mycobacterium leprae DNA onto graphite for leprosy diagnostics. San Francisco: Fourth International Congress of Nanotechnology, November 2007:1–2.
  • Deborggraeve S, Büscher P. Molecular diagnostics for sleeping sickness: what is the benefit for the patient? Lancet Infect Dis 2010;10:433–439.
  • Robays J, Bilengue MMC, Stuyft P Van der, Boelaert M. The effectiveness of active population screening and treatment from sleeping sickness control in the Democratic Republic of Congo. Trop Med Int Health 2004;9:542–550.
  • Büscher P, Ngoyi DM, Kaboré J, Lejon V, Robays J, Jamonneau V. Improved models of mini anion exchange centrifugation technique (mAECT) and modified single centrifugation (MSC) for sleeping sickness diagnosis and staging. PLoS Negl Trop Dis 2009;3:e471(1–3).
  • Becker S, Franco JR, Simarro PP, Stich A, Abel PM, Steverding D. Real-time PCR for detection of Trypanosoma brucei in human blood samples. Diagn Microbiol Infect Dis 2004;50:193–199.
  • Radwanska M, Chamekh M, Vanhamme L, Claes F, Magez S, Magnus E, Baetselier P, Büscher P, Pays E. The serum resistance-associated gene as a diagnostic tool for the detection of Trypanosoma brucei rhodesiense. Am J Trop Med Hyg 2002;67:684–690.
  • Chappuis F, Loutan L, Simarro P, Lejon V, Büscher P. Options for the field diagnosis of human African trypanosomiasis. Clin Microbiol Rev 2005;18:133–146.
  • Simo G, Njiokou F, Tume C, Lueong S, De Meeûs T, Cuny G, Asonganyi T. Population genetic structure of Central African Trypanosoma brucei gambiense isolates using microsatellite DNA markers. Infect Genet Evol 2010;10:68–76.
  • Hecht MM, Nitz N, Araujo PF, Sousa AO, Rosa AC, Gomes DA, Leonardecz E, Teixeira ARL. Inheritance of DNA transferred from American trypanosomes to human hosts. PLoS One 2010;12:e9181.
  • Jamonneau V, Solano P, Garcia A, Lejon V, Djé N, Miezan TW, N’Guessan P, Cuny G, Büscher P. Stage determination and therapeutic decision in human African trypanosomiasis: value of polymerase chain reaction and immunoglobulin M quantification on the cerebrospinal fluid of sleeping sickness patients in Côte d’Ivoire. Trop Med Int Health 2003;8:589–594.
  • Deborggraeve S, Claes F, Laurent T, Mertens P, Leclipteux T, Jujardin JC, Herdewijn P, Büscher P. Molecular dipstick test for diagnosis of sleeping sickness. J Clin Microbiol 2006;44:2884–2889.
  • Maslov DA, Lukes J, Jirku M, Simpson L. Phylogeny of trypanosomes as inferred from the small and large subunit rRNAs: implications for the evolution of parasitism in the trypanosomatid protozoa. Mol Biochem Parasitol 1996;75:197–205.
  • Kuboki N, Inoue N, Sakurai T, Cello F, Grab DJ, Suzuki H, Sugimoto C, Igarashi I. Loop-mediated isothermal amplification for detection of African trypanosomes. J Clin Microbiol 2003;41:5517–5524.
  • Njiru ZK, Mikosza ASJ, Matovu E, Enyaru JCK, Ouma JO, Kibona SN, Thompson RC, Ndung’u JM. African trypanosomiasis: sensitive and rapid detection of the sub-genus Trypanozoon by loop-mediated isothermal amplification (LAMP) of parasite DNA. Int J Parasitol 2008;38:589–599.
  • Mugasa CM, Schoone GJ, Ekangu RA, Lubega GW, Kager PA, Schallig HD. Detection of Trypanosoma brucei parasites in blood samples using real-time nucleic acid sequence-based amplification. Diagn Microbiol Infect Dis 2009;61:440–445.
  • Mugasa CM, Laurent T, Schoone GJ, Kager PA, Lubega GW, Schallig HD. Nucleic acid sequence-based amplification with oligochromatography for detection of Trypanosoma brucei in clinical samples. J Clin Microbiol 2009;47:630–635.
  • Radwanska M, Magez S, Perry-O’Keefe H, Stender H, Coull J, Sternberg JM, Büscher P, Hyldig-Nielsen JJ. Direct detection and identification of African trypanosomes by fluorescence in situ hybridization with peptide nucleic acid probes. J Clin Microbiol 2002;40:4295–4297.
  • Jones D, Nyalwidhe J, Tetley L, Barret MP. McArthur revisited: fluorescence microscopes for field diagnostics. Trends Parasitol 2007;23:468–469.
  • Lorger M, Engstler M, Homann M, Göringer U. Targeting the variable surface of African trypanosomes with variant surface glycoprotein-specific, serum-stable RNA aptamers. Eukar Cell 2003;2:84–94.
  • Palumbo E. Filariasis: diagnosis, treatment and prevention. Acta Biomed 2008;79:106–109.
  • Freedman DO, Filho PJ de A, Besh S, Silva MCM, Braga C, Maciel A. Lymphoscintigraphic analysis of lymphatic abnormalities in symptomatic and asymptomatic human filariasis. J Infect Dis 1994;170:927–933.
  • Dixit V, Gupta AK, Bisen PS, Prasad GBKS, Harinath BC. Serum immune complexes as diagnostic and therapeutic markers in lymphatic filariasis. J Clin Lab Anal 2007;21:114–118.
  • Nguyen NL, Plichart C, Esterre P. Assessment of immunochromatographic test for rapid lymphatic filariasis diagnosis. Parasitology 1999;6:355–358.
  • Weil G, Lammie PJ, Weiss N. The ICT filariasis test: a rapid format antigen test for diagnosis of bancrofitian filariasis. Parasitol Today 1997;13:401–404.
  • Tamrakar AK, Goel AK, Kamboj DV, Singh L. Surveillance methodology for V. cholerae in environmental samples. Int J Environ Health Res 2006;16:305–312.
  • Goel AK, Tamrakar AK, Kamboj DV, Singh L. Direct immunofluorescence assay for rapid environmental detection of Vibrio cholerae O1. Folia Microbiol 2005a;50:443–446.
  • Goel AK, Tamrakar AK, Nema V, Kamboj DV, Singh L. Detection of viable toxigenic Vibrio cholerae from environmental water sources by direct cell duplex PCR assay. World J Microbiol Biotech 2005;21:973–976.
  • Sharma MK, Goel AK, Singh L, Rao VK. Immunological biosensor for detection of Vibrio cholerae O1 in environmental water samples. World J Microbiol Biotechnol 2006;22:1155–1159.
  • Jyoung JY, Hong S, Lee W, Choi JW. Immunosensor for the detection of Vibrio cholerae O1 using surface plasmon resonance. Biosens Bioelectron 2006;21:2315–2319.
  • Carter RM, Mekalanos JJ, Jacobs MB, Lubrano GJ, Guilbault GG. Quartz crystal microbalance detection of Vibrio cholerae O139 serotype. J Immunol Methods 1995;187:121–125.
  • Marks RS, Bassis E, Bychenko A, Levine MM. Chemiluminescent optical fiber immunosensor for detecting cholera antitoxin. Opt Eng 1997;36:3258–3264.
  • Konry T, Novoa A, Cosnier S, Marks RS. Development of an “electroptode” immunosensor: indium tin oxide-coated optical fiber tips conjugated with an electropolymerized thin film with conjugated cholera toxin B subunit. Anal Chem 2003;75:2633–2639.
  • Dupont-Filliard A, Roget A, Livache T, Billon M. Reverse oligonucleotide immobilisation based on biotinylated polypyrrole film. Anal Chim Acta 2001;449:45–50.
  • Ionescu RE, Gondran C, Cosnier S, Gheber LA, Marks RS. Comparison between the performances of amperometric immunosensors for cholera antitoxin based on three enzyme markers. Talanta 2005;66:15–20.
  • Chen H, Zheng Y, Jian-Hui J, Hai-Long W, Guo-Li S, Ru-Qin Y. An ultrasensitive chemiluminescence biosensor for cholera toxin based on ganglioside-functionalized supported lipid membrane and liposome. Biosens Bioelectron 2009;24:684–689.
  • Pai NP. Oral fluid-based rapid HIV testing: issues, challenges and research directions. Expert Rev Mol Diagn 2007;7:325–328.
  • Franco-Paredes C, Tellez I, del Rio C. Rapid HIV testing: a review of the literature and implications for the clinician. Curr HIV/AIDS Rep 2006;3:169–175.
  • Kendrick SR, Kroc KA, Withum D, Rydman RJ, Branson BM, Weinstein RA. Outcomes of offering rapid point-of-care HIV testing in a sexually transmitted disease clinic. J Acquir Immune Defic Syndr 2005;38:142–146.
  • Liddicoat RV, Horton NJ, Urban R, Maier E, Christiansen D, Samet JH. Assessing missed opportunities for HIV testing in medical settings. J Gen Intern Med 2004;19:349–356.
  • Kimmel AD, Losina E, Freedberg KA, Goldie SJ. Diagnostic tests in HIV management: a review of clinical and laboratory strategies to monitor HIV-infected individuals in developing countries. Bull World Health Organ 2006;84:581–588.
  • Mahmoud KA, Hrapovic S, Luong JHT. Picomolar detection of protease using peptide/single walled carbon nanotube/gold nanoparticle-modified electrode. ACS Nano 2008;2:1051–1057.
  • Zhang D, Peng Y, Qi H, Zhang C. Label-free electrochemical DNA biosensor array for simultaneous detection of the HIV-1 and HIV-2 oligonucleotides incorporating different hairpin-DNA probes and redox indicator. Biosens Bioelectron 2010;25:1088–1094.
  • Epstein JR, Leung APK, Lee KH, Walt DR. High-density, microsphere-based fiber optic DNA microarrays. Biosens Bioelectron 2003;18:541–546.
  • Sia SK, Linder V, Parviz BA, Siegel A, Whitesides GM. An integrated approach to a portable and low-cost immunoassay for resource-poor settings. Angew Chem Int Ed Engl 2004;43:498–502.
  • Lee SH, Kim SW, Kang JY, Ahn CH. A polymer lab-on-a-chip for reverse transcription (RT)-PCR based point-of-care clinical diagnostics. Lab Chip 2008;8:2121–2127.
  • Cheng X, Irimia D, Dixon M, Sekine K, Demirci U, Zamir L, Tompkins RG, Rodriguez W, Toner M. A microfluidic device for practical label-free CD4(+) T cell counting of HIV-infected subjects. Lab Chip 2007;7:170–178.
  • Kim YG, Moon S, Kuritzkes DR, Demirci U. Quantum dot-based HIV capture and imaging in a microfluidic channel. Biosens Bioelectron 2009;25:253–258.
  • Meheus A, Antal GM. The endemic treponematoses: not yet eradicated. World Health Stat Q 1992;45:228–237.
  • World Bank. World Bank world development report 1993: investing in health. New York: Oxford University Press, 1993.
  • Mehrvar M, Abdi M. Recent developments, characteristics, and potential applications of electrochemical biosensors. Anal Sci 2004;20:1113–1126.
  • Andreescu S, Sadik OA. Trends and challenges in biochemical sensors for clinical and environmental monitoring. Pure Appl Chem 2004;76:861–878.
  • Cammann K, Lemke U, Rohen A, Sander J, Wilken H, Winter B. Chemical sensors and biosensors – principles and applications. Angew Chem Int Ed Engl 1991;30:516–539.
  • Caruso F, Rodda E, Furlong DN. Quartz crystal microbalance study of DNA immobilization and hybridization for nucleic acid sensor development. Anal Chem 1997;69:2043–2049.
  • The TDR Diagnostics Evaluation Expert Panel. Evaluation of diagnostic tests for infectious diseases: general principles. Nat Rev Microbiol 2006;4(Suppl):S20–S32.
  • Pang T, Peeling RW. Diagnostic tests for infectious diseases in the developing world: two sides of the coin. Trans R Soc Trop Med Hyg 2007;101:856–857.
  • Bossuyt PM, Reitsma JB, Bruns DE, Gatsonis CA, Glasziou PP, Irwig LM, Lijmer JG, Moher D, Rennie D, Vet HCW de, for the STARD Group. Towards complete and accurate reporting of studies of diagnostic accuracy: the STARD initiative. Vet Clin Pathol 2007;36:8–12.
  • Breslauer DN, Maamari RN, Switz NA, Lam WA, Fletcher DA. Mobile phone based clinical microscopy for global health applications. PLoS ONE 2009;4:e6320 (1–7).
  • Peeling RW, Smith PG, Bossuyt PM. A guide for diagnostic evaluations. Nat Rev Microbiol 2006;4:S2–S6.
  • Weigl B, Domingo G, Labarre P, Gerlach J. Towards non- and minimally instrumented, microfluidics-based diagnostic devices. Lab Chip 2008;8:1999–2014.
  • Bualombai P, Prajakwong S, Aussawatheerakul N, Congpoung K, Sudathip S, Thimasarn K, Sirichaisinthop J, Indaratna K, Kidson C, Srisuphanand M. Determining cost-effectiveness and cost component of three malaria diagnostic models being used in remote non-microscope areas. Southeast Asian J Trop Med Public Health 2003;34:322–333.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.