372
Views
10
CrossRef citations to date
0
Altmetric
Review Article

Molecules modulating gene transcription during muscle wasting in cancer, sepsis, and other critical illness

, &
Pages 71-86 | Received 05 Mar 2011, Accepted 23 May 2011, Published online: 29 Aug 2011

References

  • Lecker SH, Goldberg AL, Mitch WE. Protein degradation by the ubiquitin-proteasome pathway in normal and disease states. J Am Soc Nephrol 2006;17:1807–1819.
  • Hasselgren PO, Menconi MJ, Fareed MU, Yang H, Wei W, Evenson A. Novel aspects on the regulation of muscle wasting in sepsis. Int J Biochem Cell Biol 2005;37:2156–2168.
  • Lang CH, Frost RA, Vary TC. Regulation of muscle protein synthesis during sepsis and inflammation. Am J Physiol Endocrinol Metab 2007;293:E453–E459.
  • Glass DJ. Signaling pathways perturbing muscle mass. Curr Opin Clin Nutr Metab Care 2010;13:225–229.
  • Zhao J, Brault JJ, Schild A, Goldberg AL. Coordinate activation of autophagy and the proteasome pathway by FoxO transcription factor. Autophagy 2008;4:378–380.
  • Mammucari C, Milan G, Romanello V, Masiero E, Rudolf R, Del Piccolo P et al. FoxO3 controls autophagy in skeletal muscle in vivo. Cell Metab 2007;6:458–471.
  • Sandri M. Autophagy in health and disease. 3. Involvement of autophagy in muscle atrophy. Am J Physiol, Cell Physiol 2010;298:C1291–C1297.
  • Du J, Wang X, Miereles C, Bailey JL, Debigare R, Zheng B et al. Activation of caspase-3 is an initial step triggering accelerated muscle proteolysis in catabolic conditions. J Clin Invest 2004;113:115–123.
  • Fareed MU, Evenson AR, Wei W, Menconi M, Poylin V, Petkova V et al. Treatment of rats with calpain inhibitors prevents sepsis-induced muscle proteolysis independent of atrogin-1/MAFbx and MuRF1 expression. Am J Physiol Regul Integr Comp Physiol 2006;290:R1589–R1597.
  • Smith IJ, Lecker SH, Hasselgren PO. Calpain activity and muscle wasting in sepsis. Am J Physiol Endocrinol Metab 2008;295:E762–E771.
  • Smith IJ, Aversa Z, Hasselgren PO, Pacelli F, Rosa F, Doglietto GB et al. Calpain activity is increased in skeletal muscle from gastric cancer patients with no or minimal weight loss. Muscle Nerve 2011;43:410–414.
  • Tisdale MJ. Mechanisms of cancer cachexia. Physiol Rev 2009;89:381–410.
  • Jeschke MG, Chinkes DL, Finnerty CC, Kulp G, Suman OE, Norbury WB et al. Pathophysiologic response to severe burn injury. Ann Surg 2008;248:387–401.
  • Roberts-Wilson TK, Reddy RN, Bailey JL, Zheng B, Ordas R, Gooch JL et al. Calcineurin signaling and PGC-1α expression are suppressed during muscle atrophy due to diabetes. Biochim Biophys Acta 2010;1803:960–967.
  • Muscaritoli M, Molfino A, Bollea MR, Rossi Fanelli F. Malnutrition and wasting in renal disease. Curr Opin Clin Nutr Metab Care 2009;12:378–383.
  • Khan J, Harrison TB, Rich MM. Mechanisms of neuromuscular dysfunction in critical illness. Crit Care Clin 2008;24: 165–77.
  • Callahan LA, Supinski GS. Sepsis-induced myopathy. Crit Care Med 2009;37:S354–S367.
  • De Jonghe B, Bastuji-Garin S, Durand MC, Malissin I, Rodrigues P, Cerf C et al.; Groupe de Réflexion et d’Etude des Neuromyopathies en Réanimation. Respiratory weakness is associated with limb weakness and delayed weaning in critical illness. Crit Care Med 2007;35:2007–2015.
  • Larsson L, Li X, Edström L, Eriksson LI, Zackrisson H, Argentini C et al. Acute quadriplegia and loss of muscle myosin in patients treated with nondepolarizing neuromuscular blocking agents and corticosteroids: mechanisms at the cellular and molecular levels. Crit Care Med 2000;28:34–45.
  • Stevens JE, Pathare NC, Tillman SM, Scarborough MT, Gibbs CP, Shah P et al. Relative contributions of muscle activation and muscle size to plantarflexor torque during rehabilitation after immobilization. J Orthop Res 2006;24:1729–1736.
  • Chambers MA, Moylan JS, Reid MB. Physical inactivity and muscle weakness in the critically ill. Crit Care Med 2009;37:S337–S346.
  • Ogawa T, Furochi H, Mameoka M, Hirasaka K, Onishi Y, Suzue N et al. Ubiquitin ligase gene expression in healthy volunteers with 20-day bedrest. Muscle Nerve 2006;34:463–469.
  • De Jonghe B, Bastuji-Garin S, Sharshar T, Outin H, Brochard L. Does ICU-acquired paresis lengthen weaning from mechanical ventilation? Intensive Care Med 2004;30:1117–1121.
  • Levine S, Nguyen T, Taylor N, Friscia ME, Budak MT, Rothenberg P et al. Rapid disuse atrophy of diaphragm fibers in mechanically ventilated humans. N Engl J Med 2008;358:1327–1335.
  • Herridge MS. Legacy of intensive care unit-acquired weakness. Crit Care Med 2009;37:S457–S461.
  • Esper DH, Harb WA. The cancer cachexia syndrome: a review of metabolic and clinical manifestations. Nutr Clin Pract 2005;20:369–376.
  • Ross PJ, Ashley S, Norton A, Priest K, Waters JS, Eisen T et al. Do patients with weight loss have a worse outcome when undergoing chemotherapy for lung cancers? Br J Cancer 2004;90:1905–1911.
  • Burckart K, Beca S, Urban RJ, Sheffield-Moore M. Pathogenesis of muscle wasting in cancer cachexia: targeted anabolic and anticatabolic therapies. Curr Opin Clin Nutr Metab Care 2010;13:410–416.
  • Klaude M, Fredriksson K, Tjäder I, Hammarqvist F, Ahlman B, Rooyackers O et al. Proteasome proteolytic activity in skeletal muscle is increased in patients with sepsis. Clin Sci 2007;112:499–506.
  • McFarlane C, Plummer E, Thomas M, Hennebry A, Ashby M, Ling N et al. Myostatin induces cachexia by activating the ubiquitin proteolytic system through an NF-κB-independent, FoxO1-dependent mechanism. J Cell Physiol 2006;209:501–514.
  • Schuelke M, Wagner KR, Stolz LE, Hübner C, Riebel T, Kömen W et al. Myostatin mutation associated with gross muscle hypertrophy in a child. N Engl J Med 2004;350:2682–2688.
  • Smith IJ, Aversa Z, Alamdari N, Petkova V, Hasselgren PO. Sepsis downregulates myostatin mRNA levels without altering myostatin protein levels in skeletal muscle. J Cell Biochem 2010;111:1059–1073.
  • Sakuma K, Watanabe K, Sano M, Uramoto I, Totsuka T. Differential adaptation of growth and differentiation factor 8/myostatin, fibroblast growth factor 6 and leukemia inhibitory factor in overloaded, regenerating and denervated rat muscles. Biochim Biophys Acta 2000;1497:77–88.
  • Baumann AP, Ibebunjo C, Grasser WA, Paralkar VM. Myostatin expression in age and denervation-induced skeletal muscle atrophy. J Musculoskelet Neuronal Interact 2003;3:8–16.
  • Bogdanovich S, Krag TO, Barton ER, Morris LD, Whittemore LA, Ahima RS et al. Functional improvement of dystrophic muscle by myostatin blockade. Nature 2002;420:418–421.
  • Lecker SH, Jagoe RT, Gilbert A, Gomes M, Baracos V, Bailey J et al. Multiple types of skeletal muscle atrophy involve a common program of changes in gene expression. FASEB J 2004;18:39–51.
  • Wray CJ, Mammen JM, Hershko DD, Hasselgren PO. Sepsis upregulates the gene expression of multiple ubiquitin ligases in skeletal muscle. Int J Biochem Cell Biol 2003;35:698–705.
  • Bodine SC, Latres E, Baumhueter S, Lai VK, Nunez L, Clarke BA et al. Identification of ubiquitin ligases required for skeletal muscle atrophy. Science 2001;294:1704–1708.
  • Gomes MD, Lecker SH, Jagoe RT, Navon A, Goldberg AL. Atrogin-1, a muscle-specific F-box protein highly expressed during muscle atrophy. Proc Natl Acad Sci USA 2001;98:14440–14445.
  • Deval C, Mordier S, Obled C, Bechet D, Combaret L, Attaix D et al. Identification of cathepsin L as a differentially expressed message associated with skeletal muscle wasting. Biochem J 2001;360:143–150.
  • Schwartz AL, Ciechanover A. Targeting proteins for destruction by the ubiquitin system: implications for human pathobiology. Annu Rev Pharmacol Toxicol 2009;49:73–96.
  • Besche HC, Peth A, Goldberg AL. Getting to first base in proteasome assembly. Cell 2009;138:25–28.
  • Argilés JM, López-Soriano FJ, Busquets S. Mechanisms to explain wasting of muscle and fat in cancer cachexia. Curr Opin Support Palliat Care 2007;1:293–298.
  • Zheng B, Ohkawa S, Li H, Roberts-Wilson TK, Price SR. FOXO3a mediates signaling crosstalk that coordinates ubiquitin and atrogin-1/MAFbx expression during glucocorticoid-induced skeletal muscle atrophy. FASEB J 2010;24:2660–2669.
  • Mammucari C, Schiaffino S, Sandri M. Downstream of Akt: FoxO3 and mTOR in the regulation of autophagy in skeletal muscle. Autophagy 2008;4:524–526.
  • Cai D, Frantz JD, Tawa NE Jr, Melendez PA, Oh BC, Lidov HG et al. IKKβ/NF-κB activation causes severe muscle wasting in mice. Cell 2004;119:285–298.
  • Hasselgren PO. Ubiquitination, phosphorylation, and acetylation–triple threat in muscle wasting. J Cell Physiol 2007;213:679–689.
  • Freiman RN, Tjian R. Regulating the regulators: lysine modifications make their mark. Cell 2003;112:11–17.
  • Hayden MS, Ghosh S. Shared principles in NF-κB signaling. Cell 2008;132:344–362.
  • Li H, Malhotra S, Kumar A. Nuclear factor-κB signaling in skeletal muscle atrophy. J Mol Med 2008;86:1113–1126.
  • Penner CG, Gang G, Wray C, Fischer JE, Hasselgren PO. The transcription factors NF-κb and AP-1 are differentially regulated in skeletal muscle during sepsis. Biochem Biophys Res Commun 2001;281:1331–1336.
  • Poylin V, Fareed MU, O’Neal P, Alamdari N, Reilly N, Menconi M et al. The NF-κB inhibitor curcumin blocks sepsis-induced muscle proteolysis. Mediators Inflamm 2008;2008:317851.
  • Demoule A, Divangahi M, Yahiaoui L, Danialou G, Gvozdic D, Labbe K et al. Endotoxin triggers nuclear factor-κB-dependent up-regulation of multiple proinflammatory genes in the diaphragm. Am J Respir Crit Care Med 2006;174:646–653.
  • Boyd JH, Divangahi M, Yahiaoui L, Gvozdic D, Qureshi S, Petrof BJ. Toll-like receptors differentially regulate CC and CXC chemokines in skeletal muscle via NF-κB and calcineurin. Infect Immun 2006;74:6829–6838.
  • Frost RA, Nystrom GJ, Lang CH. Lipopolysaccharide and proinflammatory cytokines stimulate interleukin-6 expression in C2C12 myoblasts: role of the Jun NH2-terminal kinase. Am J Physiol Regul Integr Comp Physiol 2003;285:R1153–R1164.
  • Ladner KJ, Caligiuri MA, Guttridge DC. Tumor necrosis factor-regulated biphasic activation of NF-κB is required for cytokine-induced loss of skeletal muscle gene products. J Biol Chem 2003;278:2294–2303.
  • Rhoads MG, Kandarian SC, Pacelli F, Doglietto GB, Bossola M. Expression of NF-κB and IκB proteins in skeletal muscle of gastric cancer patients. Eur J Cancer 2010;46:191–197.
  • Monici MC, Aguennouz M, Mazzeo A, Messina C, Vita G. Activation of nuclear factor-κB in inflammatory myopathies and Duchenne muscular dystrophy. Neurology 2003;60:993–997.
  • Agustí A, Morlá M, Sauleda J, Saus C, Busquets X. NF-κB activation and iNOS upregulation in skeletal muscle of patients with COPD and low body weight. Thorax 2004;59:483–487.
  • Frier BC, Noble EG, Locke M. Diabetes-induced atrophy is associated with a muscle-specific alteration in NF-κB activation and expression. Cell Stress Chaperones 2008;13:287–296.
  • Dodd SL, Gagnon BJ, Senf SM, Hain BA, Judge AR. Ros-mediated activation of NF-κB and Foxo during muscle disuse. Muscle Nerve 2010;41:110–113.
  • Van Gammeren D, Damrauer JS, Jackman RW, Kandarian SC. The IκB kinases IKKα and IKKβ are necessary and sufficient for skeletal muscle atrophy. FASEB J 2009;23:362–370.
  • Katoh M, Katoh M. Human FOX gene family. Int J Oncol 2004;25:1495–1500.
  • Brunet A, Sweeney LB, Sturgill JF, Chua KF, Greer PL, Lin Y et al. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 2004;303:2011–2015.
  • Hu MC, Lee DF, Xia W, Golfman LS, Ou-Yang F, Yang JY et al. IκB kinase promotes tumorigenesis through inhibition of forkhead FOXO3a. Cell 2004;117:225–237.
  • Matsuzaki H, Daitoku H, Hatta M, Aoyama H, Yoshimochi K, Fukamizu A. Acetylation of Foxo1 alters its DNA-binding ability and sensitivity to phosphorylation. Proc Natl Acad Sci USA 2005;102:11278–11283.
  • Yaffe MB. How do 14-3-3 proteins work?– Gatekeeper phosphorylation and the molecular anvil hypothesis. FEBS Lett 2002;513:53–57.
  • Aoki M, Jiang H, Vogt PK. Proteasomal degradation of the FoxO1 transcriptional regulator in cells transformed by the P3k and Akt oncoproteins. Proc Natl Acad Sci USA 2004;101:13613–13617.
  • Charvet C, Alberti I, Luciano F, Jacquel A, Bernard A, Auberger P et al. Proteolytic regulation of Forkhead transcription factor FOXO3a by caspase-3-like proteases. Oncogene 2003;22:4557–4568.
  • Liu CM, Yang Z, Liu CW, Wang R, Tien P, Dale R et al. Effect of RNA oligonucleotide targeting Foxo-1 on muscle growth in normal and cancer cachexia mice. Cancer Gene Ther 2007;14:945–952.
  • Stitt TN, Drujan D, Clarke BA, Panaro F, Timofeyva Y, Kline WO et al. The IGF-1/PI3K/Akt pathway prevents expression of muscle atrophy-induced ubiquitin ligases by inhibiting FOXO transcription factors. Mol Cell 2004;14:395–403.
  • Sandri M, Sandri C, Gilbert A, Skurk C, Calabria E, Picard A et al. Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell 2004;117:399–412.
  • Furuyama T, Kitayama K, Yamashita H, Mori N. Forkhead transcription factor FOXO1 (FKHR)-dependent induction of PDK4 gene expression in skeletal muscle during energy deprivation. Biochem J 2003;375:365–371.
  • Smith IJ, Alamdari N, O’Neal P, Gonnella P, Aversa Z, Hasselgren PO. Sepsis increases the expression and activity of the transcription factor Forkhead Box O 1 (FOXO1) in skeletal muscle by a glucocorticoid-dependent mechanism. Int J Biochem Cell Biol 2010;42:701–711.
  • Zhao J, Brault JJ, Schild A, Cao P, Sandri M, Schiaffino S et al. FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells. Cell Metab 2007;6:472–483.
  • Allen DL, Unterman TG. Regulation of myostatin expression and myoblast differentiation by FoxO and SMAD transcription factors. Am J Physiol Cell 2007;292:C188–C199.
  • Kamei Y, Miura S, Suzuki M, Kai Y, Mizukami J, Taniguchi T et al. Skeletal muscle FOXO1 (FKHR) transgenic mice have less skeletal muscle mass, down-regulated Type I (slow twitch/red muscle) fiber genes, and impaired glycemic control. J Biol Chem 2004;279:41114–41123.
  • Ramji DP, Foka P. CCAAT/enhancer-binding proteins: structure, function and regulation. Biochem J 2002;365:561–575.
  • Zwergal A, Quirling M, Saugel B, Huth KC, Sydlik C, Poli V et al. C/EBP β blocks p65 phosphorylation and thereby NF-κB-mediated transcription in TNF-tolerant cells. J Immunol 2006;177:665–672.
  • Lu YC, Kim I, Lye E, Shen F, Suzuki N, Suzuki S et al. Differential role for c-Rel and C/EBPβ/δ in TLR-mediated induction of proinflammatory cytokines. J Immunol 2009;182:7212–7221.
  • Kim JW, Tang QQ, Li X, Lane MD. Effect of phosphorylation and S-S bond-induced dimerization on DNA binding and transcriptional activation by C/EBPβ. Proc Natl Acad Sci USA 2007;104:1800–1804.
  • Tang QQ, Grønborg M, Huang H, Kim JW, Otto TC, Pandey A et al. Sequential phosphorylation of CCAAT enhancer-binding protein β by MAPK and glycogen synthase kinase 3β is required for adipogenesis. Proc Natl Acad Sci USA 2005;102:9766–9771.
  • Cui TX, Piwien-Pilipuk G, Huo JS, Kaplani J, Kwok R, Schwartz J. Endogenous CCAAT/enhancer binding protein β and p300 are both regulated by growth hormone to mediate transcriptional activation. Mol Endocrinol 2005;19:2175–2186.
  • Berg T, Didon L, Barton J, Andersson O, Nord M. Glucocorticoids increase C/EBPβ activity in the lung epithelium via phosphorylation. Biochem Biophys Res Commun 2005;334:638–645.
  • Hasselgren PO, Alamdari N, Aversa Z, Gonnella P, Smith IJ, Tizio S. Corticosteroids and muscle wasting: role of transcription factors, nuclear cofactors, and hyperacetylation. Curr Opin Clin Nutr Metab Care 2010;13:423–428.
  • Yang H, Menconi MJ, Wei W, Petkova V, Hasselgren PO. Dexamethasone upregulates the expression of the nuclear cofactor p300 and its interaction with C/EBPβ in cultured myotubes. J Cell Biochem 2005;94:1058–1067.
  • Ceseña TI, Cardinaux JR, Kwok R, Schwartz J. CCAAT/enhancer-binding protein (C/EBP) β is acetylated at multiple lysines: acetylation of C/EBPβ at lysine 39 modulates its ability to activate transcription. J Biol Chem 2007;282:956–967.
  • Penner G, Gang G, Sun X, Wray C, Hasselgren PO. C/EBP DNA-binding activity is upregulated by a glucocorticoid-dependent mechanism in septic muscle. Am J Physiol Regul Integr Comp Physiol 2002;282:R439–R444.
  • Yang H, Mammen J, Wei W, Menconi M, Evenson A, Fareed M et al. Expression and activity of C/EBPβ and δ are upregulated by dexamethasone in skeletal muscle. J Cell Physiol 2005;204:219–226.
  • Gonnella P, Alamdari N, Tizio S, Aversa Z, Petkova V, Hasselgren PO. C/EBPß regulates dexamethasone-induced muscle cell atrophy and expression of atrogin-1 and MuRF1. J Cell Biochem 2011;112:1737–1748.
  • Feng XH, Derynck R. Specificity and versatility in tgf-β signaling through Smads. Annu Rev Cell Dev Biol 2005;21:659–693.
  • Sartori R, Milan G, Patron M, Mammucari C, Blaauw B, Abraham R et al. Smad2 and 3 transcription factors control muscle mass in adulthood. Am J Physiol Cell 2009;296:C1248–C1257.
  • Remy I, Montmarquette A, Michnick SW. PKB/Akt modulates TGF-β signalling through a direct interaction with Smad3. Nat Cell Biol 2004;6:358–365.
  • Lang CH, Krawiec BJ, Huber D, McCoy JM, Frost RA. Sepsis and inflammatory insults downregulate IGFBP-5, but not IGFBP-4, in skeletal muscle via a TNF-dependent mechanism. Am J Physiol Regul Integr Comp Physiol 2006;290:R963–R972.
  • Lee KC, Lee Kraus W. Nuclear receptors, coactivators and chromatin: new approaches, new insights. Trends Endocrinol Metab 2001;12:191–197.
  • Li B, Carey M, Workman JL. The role of chromatin during transcription. Cell 2007;128:707–719.
  • Chen LF, Greene WC. Regulation of distinct biological activities of the NF-κB transcription factor complex by acetylation. J Mol Med 2003;81:549–557.
  • Perrot V, Rechler MM. The coactivator p300 directly acetylates the forkhead transcription factor Foxo1 and stimulates Foxo1-induced transcription. Mol Endocrinol 2005;19:2283–2298.
  • Schwartz C, Beck K, Mink S, Schmolke M, Budde B, Wenning D et al. Recruitment of p300 by C/EBPβ triggers phosphorylation of p300 and modulates coactivator activity. EMBO J 2003;22:882–892.
  • Polesskaya A, Naguibneva I, Fritsch L, Duquet A, Ait-Si-Ali S, Robin P et al. CBP/p300 and muscle differentiation: no HAT, no muscle. EMBO J 2001;20:6816–6825.
  • McKinsey TA, Zhang CL, Olson EN. Control of muscle development by dueling HATs and HDACs. Curr Opin Genet Dev 2001;11:497–504.
  • de Ruijter AJ, van Gennip AH, Caron HN, Kemp S, van Kuilenburg AB. Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem J 2003;370:737–749.
  • Yang H, Wei W, Menconi M, Hasselgren PO. Dexamethasone-induced protein degradation in cultured myotubes is p300/HAT dependent. Am J Physiol Regul Integr Comp Physiol 2007;292:R337–R334.
  • Tobimatsu K, Noguchi T, Hosooka T, Sakai M, Inagaki K, Matsuki Y et al. Overexpression of the transcriptional coregulator Cited2 protects against glucocorticoid-induced atrophy of C2C12 myotubes. Biochem Biophys Res Commun 2009;378:399–403.
  • Alamdari N, Smith IJ, Aversa Z, Hasselgren PO. Sepsis and glucocorticoids upregulate p300 and downregulate HDAC6 expression and activity in skeletal muscle. Am J Physiol Regul Integr Comp Physiol 2010;299:R509–R520.
  • Caron C, Boyault C, Khochbin S. Regulatory cross-talk between lysine acetylation and ubiquitination: role in the control of protein stability. Bioessays 2005;27:408–415.
  • Sadoul K, Boyault C, Pabion M, Khochbin S. Regulation of protein turnover by acetyltransferases and deacetylases. Biochimie 2008;90:306–312.
  • Lin J, Handschin C, Spiegelman BM. Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab 2005;1:361–370.
  • Arany Z. PGC-1 coactivators and skeletal muscle adaptations in health and disease. Curr Opin Genet Dev 2008;18:426–434.
  • Jäger S, Handschin C, St-Pierre J, Spiegelman BM. AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1α. Proc Natl Acad Sci USA 2007;104:12017–12022.
  • Gerhart-Hines Z, Rodgers JT, Bare O, Lerin C, Kim SH, Mostoslavsky R et al. Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1α. EMBO J 2007;26:1913–1923.
  • Teyssier C, Ma H, Emter R, Kralli A, Stallcup MR. Activation of nuclear receptor coactivator PGC-1α by arginine methylation. Genes Dev 2005;19:1466–1473.
  • Lin J, Wu H, Tarr PT, Zhang CY, Wu Z, Boss O et al. Transcriptional co-activator PGC-1 α drives the formation of slow-twitch muscle fibres. Nature 2002;418:797–801.
  • Arany Z, Lebrasseur N, Morris C, Smith E, Yang W, Ma Y et al. The transcriptional coactivator PGC-1β drives the formation of oxidative type IIX fibers in skeletal muscle. Cell Metab 2007;5:35–46.
  • Sandri M, Lin J, Handschin C, Yang W, Arany ZP, Lecker SH et al. PGC-1α protects skeletal muscle from atrophy by suppressing FoxO3 action and atrophy-specific gene transcription. Proc Natl Acad Sci USA 2006;103:16260–16265.
  • St-Pierre J, Lin J, Krauss S, Tarr PT, Yang R, Newgard CB et al. Bioenergetic analysis of peroxisome proliferator-activated receptor γ coactivators 1α and 1β (PGC-1α and PGC-1β) in muscle cells. J Biol Chem 2003;278:26597–26603.
  • Meirhaeghe A, Crowley V, Lenaghan C, Lelliott C, Green K, Stewart A et al. Characterization of the human, mouse and rat PGC1 β (peroxisome-proliferator-activated receptor-γ co-activator 1 β) gene in vitro and in vivo. Biochem J 2003;373:155–165.
  • Akimoto T, Pohnert SC, Li P, Zhang M, Gumbs C, Rosenberg PB et al. Exercise stimulates Pgc-1α transcription in skeletal muscle through activation of the p38 MAPK pathway. J Biol Chem 2005;280:19587–19593.
  • Sacheck JM, Hyatt JP, Raffaello A, Jagoe RT, Roy RR, Edgerton VR et al. Rapid disuse and denervation atrophy involve transcriptional changes similar to those of muscle wasting during systemic diseases. FASEB J 2007;21:140–155.
  • Wenz T, Rossi SG, Rotundo RL, Spiegelman BM, Moraes CT. Increased muscle PGC-1α expression protects from sarcopenia and metabolic disease during aging. Proc Natl Acad Sci USA 2009;106:20405–20410.
  • Handschin C, Kobayashi YM, Chin S, Seale P, Campbell KP, Spiegelman BM. PGC-1α regulates the neuromuscular junction program and ameliorates Duchenne muscular dystrophy. Genes Dev 2007;21:770–783.
  • Menconi MJ, Arany ZP, Alamdari N, Aversa Z, Gonnella P, O’Neal P et al. Sepsis and glucocorticoids downregulate the expression of the nuclear cofactor PGC-1β in skeletal muscle. Am J Physiol Endocrinol Metab 2010;299:E533–E543.
  • Brault JJ, Jespersen JG, Goldberg AL. Peroxisome proliferator-activated receptor γ coactivator 1α or 1β overexpression inhibits muscle protein degradation, induction of ubiquitin ligases, and disuse atrophy. J Biol Chem 2010;285:19460–19471.
  • Arany Z, Wagner BK, Ma Y, Chinsomboon J, Laznik D, Spiegelman BM. Gene expression-based screening identifies microtubule inhibitors as inducers of PGC-1α and oxidative phosphorylation. Proc Natl Acad Sci USA 2008;105:4721–4726.
  • Dudgeon WD, Phillips KD, Carson JA, Brewer RB, Durstine JL, Hand GA. Counteracting muscle wasting in HIV-infected individuals. HIV Med 2006;7:299–310.
  • Lang CH, Huber D, Frost RA. Burn-induced increase in atrogin-1 and MuRF-1 in skeletal muscle is glucocorticoid independent but downregulated by IGF-I. Am J Physiol Regul Integr Comp Physiol 2007;292:R328–R336.
  • Branski LK, Herndon DN, Barrow RE, Kulp GA, Klein GL, Suman OE et al. Randomized controlled trial to determine the efficacy of long-term growth hormone treatment in severely burned children. Ann Surg 2009;250:514–523.
  • Fang CH, Li BG, James JH, King JK, Evenson AR, Warden GD et al. Protein breakdown in muscle from burned rats is blocked by insulin-like growth factor i and glycogen synthase kinase-3β inhibitors. Endocrinology 2005;146:3141–3149.
  • Fang CH, Li BG, Sun X, Hasselgren PO. Insulin-like growth factor I reduces ubiquitin and ubiquitin-conjugating enzyme gene expression but does not inhibit muscle proteolysis in septic rats. Endocrinology 2000;141:2743–2751.
  • Hasselgren PO, Hubbard WJ, Chaudry IH. Metabolic and inflammatory responses to trauma and infection. In Fischer JE (ed) Mastery of Surgery, 5th edition, 2007; pp 2–23.
  • Lynch GS, Schertzer JD, Ryall JG. Therapeutic approaches for muscle wasting disorders. Pharmacol Ther 2007;113:461–487.
  • Wagner KR. Muscle regeneration through myostatin inhibition. Curr Opin Rheumatol 2005;17:720–724.
  • Haidet AM, Rizo L, Handy C, Umapathi P, Eagle A, Shilling C et al. Long-term enhancement of skeletal muscle mass and strength by single gene administration of myostatin inhibitors. Proc Natl Acad Sci USA 2008;105:4318–4322.
  • Rodino-Klapac LR, Haidet AM, Kota J, Handy C, Kaspar BK, Mendell JR. Inhibition of myostatin with emphasis on follistatin as a therapy for muscle disease. Muscle Nerve 2009;39:283–296.
  • Arif M, Pradhan SK, Thanuja GR, Vedamurthy BM, Agrawal S, Dasgupta D et al. Mechanism of p300 specific histone acetyltransferase inhibition by small molecules. J Med Chem 2009;52:267–277.
  • Bowers EM, Yan G, Mukherjee C, Orry A, Wang L, Holbert MA et al. Virtual ligand screening of the p300/CBP histone acetyltransferase: identification of a selective small molecule inhibitor. Chem Biol 2010;17:471–482.
  • Milne JC, Lambert PD, Schenk S, Carney DP, Smith JJ, Gagne DJ et al. Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature 2007;450:712–716.
  • Dai H, Kustigian L, Carney D, Case A, Considine T, Hubbard BP et al. SIRT1 activation by small molecules: kinetic and biophysical evidence for direct interaction of enzyme and activator. J Biol Chem 2010;285:32695–32703.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.