924
Views
29
CrossRef citations to date
0
Altmetric
Review Article

Genetic predisposition to respiratory infection and sepsis

&
Pages 250-268 | Received 09 Oct 2011, Accepted 14 Nov 2011, Published online: 20 Dec 2011

References

  • Mandell LA, Wunderink RG, Anzueto A, Bartlett JG, Campbell GD, Dean NC, Dowell SF, File TM, Musher DM, Niederman MS et al. Infectious Diseases Society of America/American Thoracic Society Consensus Guidelines on the Management of Community-Acquired Pneumonia in Adults. Clin Infect Dis 2007;44:S27–S72.
  • Sorensen T, Nielsen G, Andersen P, Teasdale T. Genetic and environmental influences on premature death in adult adoptees. N Engl J Med 1988;318:727–732.
  • Horrevoets A. Plasminogen activator inhibitor 1 (PAI-1) - in vitro activities and clinical relevance. Br J Haematol 2004;125:12–23.
  • Rantala A, Lajunen T, Juvonen R, Bloigu A, Silvennoinen-Kassinen S, Peitso A, Saikku P, Vainio O, Lenonen M. Mannose-binding lectin concentrations, MBL2 polymorphisms, and susceptibility to respiratory tract infections in young men. J Infect Dis 2008;198:1247–1253.
  • Huh J, Song K, Yum J, Hong S, Lim C, Koh Y. Association of mannose-binding lectin-2 genotype and serum levels with prognosis of sepsis. Crit Care 2009;13:R176.
  • Eisen DP, Dean MM, Boermeester MA. Low serum mannose-binding lectin level increases the risk of death due to pneumococcal infection. Clin Infect Dis 2008;47:510–516.
  • Garred P, Larsen F, Seyfarth J, Fujita R, Maden H. Mannose-binding lectin and its genetic variants. Genes Immunol 2006;7:85–94.
  • Minchinton RM, Dean MM, Clark TR, Heatley S, Mullighan CG. Analysis of the relationship between mannose-binding lectin (MBL) genotype, MBL levels and function in an Australian blood donor population. Scand J Immunol 2002;56:630–641.
  • Madsen HO, Garred P, Thiel S, Kurtzhals JA, Lamm LU, Ryder LP, Svejgaard A. Interplay between promoter and structural gene variants control basal serum level of mannan-binding protein. J Immunol 1995;155:3013–3020.
  • Stengaard-Pedersen K, Thiel S, Gadjeva M, Moller-Kristensen M, Sorensen R, Jensen L, Sjoholm A, Fugger L, Jensenius JC. Inherited deficiency of mannan-binding lectin-associated serine protease 2. N Engl J Med 2003;349:554–560.
  • Garcia-Laorden M, Sole-Violan J, Rodriguez de Castro F, Aspa J, Briones ML, Garcia-Saavedra A, Rautanen A, Blanquer J, Curhan GC, Marcos-Ramos JA et al. Mannose-binding lectin and mannose-binding lectin-associated serine protease 2 in susceptibility, severity, and outcome of pneumonia in adults. J Allergy Clin Immunol 2008;122:368–374.
  • Eisen DP, Dean MM, Thomas P, Marshall P, Gerns N, Heatley S, Quinn J, Minchinton RM, Lipman J. Low mannose-binding lectin function is associated with sepsis in adult patients. FEMS Immunol Med Microbiol 2006;48:274–282.
  • Garred P. J. Strøm J, Quist L, Taaning E, Madsen HO. Association of mannose-binding lectin polymorphisms with sepsis and fatal outcome, in patients with systemic inflammatory response syndrome. J Infect Dis 2003;18:1394–1403.
  • Gordon A, Waheed U, Hansen T, Hitman G, Garrard C, Turner M, Klein N, Brett S, Hinds C. Mannose-binding lectin polymorphisms in severe sepsis: relationship to levels, incidence, and outcome. Shock 2006;25:88–93.
  • Sutherland AM, Walley KR, Russell JA. Polymorphisms in CD14, mannose-binding lectin, and Toll-like receptor-2 are associated with increased prevalence of infection in critically ill adults. Crit Care Med 2005;33:638–644
  • Garred P, Strom JJ, Quist L. Association of mannose-binding lectin polymorphisms with sepsis and fatal outcome, in patients with systemic inflammatory response syndrome. J Infect Dis 2003;188:1394–1403
  • Endeman H, Herpers BL, de Jong BAW, Voorn GP, Grutters JC, van Velzen-Blad H, Biesma DH. Mannose-binding lectin genotypes in susceptibility to community-acquired pneumonia. Chest 2008;134:1135–1140.
  • Henckaerts L, Nielsen KR, Steffensen R, Van Steen K, Mathieu C, Giulietti A, Wouters PJ, Milants I, Vanhorebeek I, Langouche L et al. Polymorphisms in innate immunity genes predispose to bacteremia and death in the medical intensive care unit. Crit Care Med 2009;37:192–201.
  • Herpers BL, Yzerman EPF, de Jong BAW, Bruin JP, Lettinga KD, Kuipers S, Den Boer JW, van Hannen EJ, Rijkers GT, van Velzen-Blad H et al. Deficient mannose-binding lectin-mediated complement activation despite mannose-binding lectin-sufficient genotypes in an outbreak of Legionella pneumophila pneumonia. Hum Immunol 2009;70:125–129.
  • Kronborg G, Weis N, Madsen HO, Pedersen SS, Wejse C, Nielsen H, Skinhøj P, Garred P. Variant mannose-binding lectin alleles are not associated with susceptibility to or outcome of invasive pneumococcal infection in randomly included patients. J Infect Dis 2002;185:1517–1520.
  • Brouwer M, de Gans J, Heckenberg S, Zwinderman A, van der Poll T, van de Beek D. Host genetic susceptibility to pneumococcal and meningococcal disease: a systemic review and meta-analysis. Lancet Infect Dis 2009;9:31–44.
  • Kronborg G, Garred P. Mannose-binding lectin genotype as a risk factor for invasive pneumococcal infection. Lancet 2002;360:1176.
  • Moens L, Van Hoeyveld E, Peetermans W, De Boeck C, Verhaegen J, Bossuyt X. Mannose-binding lectin genotype and invasive pneumococcal infection. Hum Immunol 2006;67:605–611.
  • Roy S, Knox K, Segal S, Griffiths D, Moore CE, Welsh KI, Smarason A, Day NP, McPheat WL, Crook DW et al. MBL genotype and risk of invasive pneumococcal disease: a case-control study. Lancet 2002;359:1569–1573.
  • Huttunen R, Aittoniemi J, Laine J, Vuento R, Karjalainen J, Rovio AT, Eklund C, Hurme M, Huhtala H, Syrjänen J. Gene–environment interaction between MBL2 genotype and smoking, and the risk of Gram-positive bacteraemia. Scand J Immunol 2008;68:438–444.
  • Sopori M. Effects of cigarette smoke on the immune system. Nat Rev Immunol 2002;2:372–377.
  • Neth O, Jack DL, Dodds AW, Holzel H, Klein NJ, Turner MW. Mannose-binding lectin binds to a range of clinically relevant microorganisms and promotes complement deposition. Infect Immun 2000;68:688–693.
  • Hamvas R, Johnson M, Vlieger A, Ling C, Sherriff A, Wade A, Klein N, Turner M, Webster A. Role for mannose binding lectin in the prevention of Mycoplasma infection. Infect Immun 2005;73:5238–5240.
  • Kuipers S, Aerts PC, van Dijk H. Differential microorganism-induced mannose-binding lectin activation. FEMS Immunol Med Microbiol 2003;36:33–39.
  • Garred P, Harboe M, Oettinger T, Koch C, Svekgaard A. Dual role of mannan-binding protein in infections: another case of heterosis? Eur J Immunogenet 1994;21:125–131.
  • Polotsky V, Belisle J, Mukusova K, Ezekowitz R, Joiner K. Interaction of human mannose-binding protein with Mycobacterium avium. J Infect Dis 1997;175:1159–1168.
  • Ip WKE, Chan KH, Law HKW, Tso GHW, Kong EKP, Wong WHS, To YF, Yung RWH, Chow EY, Au KL et al. Mannose-binding lectin in severe acute respiratory syndrome Coronavirus infection. J Infect Dis 2005;191:1697–1704.
  • Krarup A, Sorensen UBS, Matsushita M, Jensenius JC, Thiel S. Effect of capsulation of opportunistic pathogenic bacteria on binding of the pattern recognition molecules mannan-binding lectin, L-Ficolin, and H-Ficolin. Infect Immun 2005;73:1052–1060.
  • Brouwer N, Dolman KM, van Zwieten R, Nieuwenhuys E, Hart M, Aarden LA, Roos D, Kuijpers TW. Mannan-binding lectin (MBL)-mediated opsonization is enhanced by the alternative pathway amplification loop. Mol Immunol 2006;43:2051–2060.
  • Lynch NJ, Roscher S, Hartung T, Morath S, Matsushita M, Maennel DN, Kuraya M, Fujita T, Schwaeble WJ. L-Ficolin specifically binds to lipoteichoic acid, a cell wall constituent of Gram-positive bacteria, and activates the lectin pathway of complement. J Immunol 2004;172:1198–1202
  • Roos A, Garred P, Wildenberg ME, Lynch NJ, Munoz JR, Zuiverloon TCM, Bouwman LH, Schlagwein N, van den Houten FCF, Faber-Krol MC et al. Antibody-mediated activation of the classical pathway of complement may compensate for mannose-binding lectin deficiency. Eur J Immunol 2004;34:2589–2598.
  • Brown JS, Hussell T, Gilliland SM, Holden DW, Paton JC, Ehrenstein MR, Walport MJ, Botto M. The classical pathway is the dominant complement pathway required for innate immunity to Streptococcus pneumoniae infection in mice. Proc Natl Acad Sci USA 2002;99:16969–16974.
  • Eisen DP. Mannose-binding lectin deficiency and respiratory tract infection. J Innate Immun 2010;2:114–122.
  • Eisen DP, Stubbs J, Spilsbury D, Carnie J, Leydon J, Howden BP. Low mannose-binding lectin complement activation function is associated with predisposition to Legionnaires’ disease. Clin Exp Immunol 2007;149:97–102.
  • Denholm JT, McBryde ES, Eisen DP. Mannose-binding lectin and susceptibility to tuberculosis: a meta-analysis. Clin Exp Immunol 2010;162:84–90.
  • Soborg C, Madsen H, Andersen A, Lillebaek T, Kok-Jensen A, Garred P. Mannose-binding lectin polymorphisms in clinical tuberculosis. J Infect Dis 2003;188:777–782.
  • Zhang H, Zhou G, Zhi L, Yang H, Zhai Y, Dong X, Zhang X, Gao X, Zhu Y, He F. Association between mannose-binding lectin gene polymorphisms and susceptibility to severe acute respiratory syndrome Coronavirus infection. J Infect Dis 2005;192:1355–1361.
  • Kolble K, Lu J, Mole S, Kaluz S, Reid K. Assignment of the human pulmonary surfactant protein D gene (SFTP4) to 10q22-q23 close to the surfactant protein A gene cluster. Genomics 1993;17:294–298.
  • Griese M, Steinecker M, Schumacher S, Braun A, Lohse P, Heinrich S. Children with absent surfactant protein D in bronchoalveolar lavage have more frequently pneumonia. Pediatr Allergy Immunol 2008;19:639–647.
  • Quasney MW, Waterer GW, Dahmer MK, Kron GK, Zhang Q, Kessler LA, Wunderink RG. Association between surfactant protein B + 1580 polymorphism and the risk of respiratory failure in adults with community-acquired pneumonia. Crit Care Med 2004;32:1115–1119.
  • Weiss J. Bacteriricidal/permeability-increasing protein (BPI) and lipopolysaccharide-binding protein (LBP): structure, function and regulation in host defence against gram negative bacteria. Biochem Soc Trans 2003;31:785–790.
  • Michalek J, Svetlikova P, Fedora M, Klimovic M, Klapacova L, Bartosova D, Elbl L, Hrstkova H, Hubacek J. Bactericidal permeability increasing protein gene variants in children with sepsis. Intensive Care Med 2007;33:2158–2164.
  • Hubacek JA, Stuber F, Frohlich D, Book M, Wetegrove S, Ritter M, Rothe G, Schmitz G. Gene variants of the bactericidal/permeability increasing protein and lipopolysaccharide binding protein in sepsis patients: Gender-specific genetic predisposition to sepsis. Crit Care Med 2001;29:557–561.
  • Schutt C. Molecules in focus: CD14. Int J Biochem Cell Biol 1999;31:545–549.
  • Jersmann H. Time to abandon dogma: CD14 is expressed by non-myeloid lineage cells. Immunol Cell Biol 2005;83:462–467.
  • Goyert S, Ferrero E, Rettig W, Yenamandra A, Obata F, Le Beau M. The CD14 monocyte differentiation antigen maps to regin encoding growth factors and receptors. Science 1988;239:497–500.
  • Landmann R, Reber AM, Sansano S, Zimmerli W. Function of soluble CD14 in serum from patients with septic shock. J Infect Dis 1996;173:661–668.
  • Brunialti M, Martins P, Carvalho H, Machado F, Barbosa L, Salomao R. TLR2, TLR4, CD14, CD11B, and CD11C expression on monocytes surface and cytokine production in patients with sepsis, severe sepsis, and septic shock. Shock 2006;25:351–357.
  • Burgmann H, Winkler S, Locker G, Presterl E, Laczika K, Staudinger T, Knapp S, Thalhammer F, Wenisch C, Zedwitz-Liebenstein K et al. Increased serum concentration of soluble CD14 is a prognostic marker in gram-positive sepsis. Clin Immunol Immunopathol 1996;80:307–310.
  • Carrillo E, Gordon L, Goode E, Davis E, Polk H. Early elevation of soluble CD14 may help identify trauma patients at high risk for infection. J Trauma 2001;50:810–815.
  • Gluck T, Silver J, Epstein M, Cao P, Farber B, Goyert S. Parameters influencing membrane CD14 expression and soluble CD14 levels in sepsis. Eur J Med Res 2001;6:351–358.
  • Hiki N, Berger D, Prigl C, Boelke E, Wiedeck H, Seidelmann M, Staib L, Kaminishi M, Ooohara T, Beger H. Endotoxin binding and elimination by monocytes: secretion of soluble CD14 represents an indubicle mechanism counteracting reduced expression of membrane CD14 in patients with sepsis and in a patient with paroxysmal nocturnal hemoglobinuria. Infect Immun 1998;66:1135–1141.
  • Landmann R, Zimmerli W, Sansano S, Link S, Hahn A, Glauser MP, Calandra T. Increased circulating soluble Cd14 is associated with high mortality in Gram-negative septic shock. J Infect Dis 1995;171:639–644.
  • Ertel W, Kremer J, Steckholzer U, Jarrar D, Trentz O, Schildberg F. Downregulation of proinflammatory cytokine release in whole blood from septic patients. Blood 1995;85:1341–1347.
  • Calvano J, Agnese D, Um J, Goshima M, Singhal R, Coyle S, Reddell M, Kumar A, Calvano S, Lowry S. Modulation of the lipopolysaccharide receptor complex (CD14, TLR4, MD-2) and toll-like receptor 2 in systemic inflammatory response syndrome-positive patients with and without infection:relationship to tolerance. Shock 2003;20:415–419.
  • Tsujimoto H, Ono S, Majima T, Kawarabayashi N, Takayama E, Kinoshita M, Seki S, Hiraide H, Moldawer LL, Mochizuki H. Neutrophil elastase, MIP-2, and TLR-4 expression during human and experimental sepsis. Shock 2005;23:39–44.
  • de Aguiar B, Girardi I, Paskulin D, de Franca E, Dornelles C, Dias F, Bonorina C, Alho C. CD14 Expression in the first 24hrs of sepsis: effect of -260C>T CD14 SNP. Immunol Invest 2008;37:752–769.
  • Gibot S, Cariou A, Drouet L, Rossignol M, Ripoll L. Association between a genomic polymorphism within the CD14 locus and septic shock susceptibility and mortality. Crit Care Med 2002;30:969–973.
  • Temple SEL, Cheong KY, Almeida C-AM Price, P, Waterer GW. Polymorphisms in lymphotoxin alpha and CD14 genes influence TNFalpha production induced by Gram-positive and Gram-negative bacteria. Genes Immunol 2003;4:283–288.
  • Baldini M, Lohman C, Halonen M, Erickson R, Holt P, Martinez F. A polymorphismin the 5′flanking region of the CD14 gene is associated with circulating soluble CD14 levels and with total serum immunoglobulin E. Am J Respirat Cell Mol Biol 1999;20:976–983.
  • Hubacek J, Pit’ha J, Skodova Z, Stanek V, Poledne R, Schmitz G. C(-260) a T polymorphism in the promoter of the CD14 monocyte receptor gene as a risk factor for myocardial infarction. Circulation 1999;99:3218–3220.
  • Karhukorpi J, Yan Y, Niemela S, Valtonen J, Koistinen P, Joensuu T, Saikku P, Karttnunen R. Effect of CD14 promoter polymorphism and H. pylori infection and its clinical outcomes on circulating CD14. Clin Exp Immunol 2002;128:326–332.
  • Koenig W, Khuseyinova N, Hoffmann M, Marz W, Frohlich M, Hoffmeister A, Bremner H, Rothenbacher D. CD14C(-260) aT polymorphism plasma levels of the soluble endotoxin receptor CD14, their association with chronic infections and risk of stale coronoary artery disease. J Am Coll Cardiol 2002;40:34–42.
  • Lin J, Yao YM, Yu Y, Chai JK, Huang ZH, Dong N, Sheng ZY. Effects of Cd14–159 C/T polymorphism on Cd14 expression and the balance between proinflammatory and anti-inflammatory cytokines in whole blood culture. Shock 2007;28:148–153.
  • Lin J, Yao Y, Huang ZH, Hou X, Zhu J, Chai J. Association between a genomic polymorphism within the CD14 locus and severe sepsis susceptibility as well as prognosis in patients after extensive burns. Zhong Bing Ji Jiu Yi Xue 2004;16:271–273.
  • Barber R, Aragaki C, Chang L, Purdue G, Hunt J, Arnoldo B, Horton J. CD14–159 C allele is associated with increased riks of mortality after burn injury. Shock 2007;27:232–237.
  • Barber R, Chang L, Arnoldo B, Purdue G, Hunt J, Horton J, Aragaki C. Innate immunity SNPs are associated with risk for severe sepsis after burn injury. Clin Med Res 2006;4:250–255.
  • Agnese D, Calvano J, Hahm S, Coyle S, Corbett S, Calvano S, Lowry S. Human toll-like receptor 4 mutations but not CD14 polymorphisms are associated wtih an increased risk of gram-negative infections. J Infect Dis 2002;186:1522–1525.
  • Heesen M, Bloemeke B, Schade U, Obertacke U, Majetschak M. The -260C>T promoter polymorphism of the lipopolysaccharide receptor CD14 and severe sepsis in trauma patients. Intensive Care Med 2002;28:1161–1163.
  • Hubacek J, Stuber F, Frohlich D, Book M, Wetegrove S, Rothe G, Schmitz G. The common functional C(-159)T polymorphism within promoter region of the lipopolysaccharide receptor CD14 is not associated with sepsis development or mortality. Genes Immunol 2000;1:405–407.
  • Rivera-Chavez F, Peters-Hybki D, Barber R, Lindberg G, Jialal I, Munford R, O’Keefe G. Innate immunity genes influence the severity of acute appendicitis. Ann Surg 2004;240:269–277.
  • Lien E, Ingalls R. Toll-like receptors. Crit Care Med 2002;30:S1–11.
  • Beutler B. Toll-like receptors: how they work and what they do. Curr Opin Hematol 2002;9:2–10.
  • Arbour NC, Lorenz E, Schutte BC, Zabner J, Kline JN, Jones M, Frees K, Watt JL, Schwartz DA. TLR4 mutations are associated with endotoxin hyporesponsiveness in humans. Nat Genet 2000;25:187–191.
  • Lorenz E, Mira JP, Frees KL, Schwartz DA. Relevance of mutations in the TLR4 receptor in patients with Gram-negative septic shock. Arch Intern Med 2002;162:1028–1032.
  • Kiechl S, Lorenz E, Reindl M, Wiedermann C, Oberhollenzer F, Bonora E, Willeit J, Schwartz DA. Toll-like receptor 4 polymorphisms and atherogenesis. N Engl J Med 2002;347:185–192.
  • Brenmoehl J, Herfarth H, Glück T, Audebert F, Barlage S, Schmitz G, Froehlich D, Schreiber S, Hampe J, Schölmerich J et al. Genetic variants in the NOD2/CARD15 gene are associated with early mortality in sepsis patients. Intensive Care Med 2007;33:1541–1548.
  • www.hapmap.org: accessed 15 Jan 2011.
  • Lorenz E, Mira J, Cornish K, Arbour N, Schwartz D. A novel polymorphism in the toll-like receptor 2 gene and its potential association with staphylococcal infection. Infect Immun 2000;68:6398–6401.
  • Ogus A, Yoldas B, Ozdemir T, Uguz A, Olcen S, Keser I, Coskun M, Cilli A, Yegin O. The Arg753Gln polymorphism of the human toll-like receptor 2 gene in tuberculosis disease. Eur Respir J 2004;23:219–223.
  • Woehrle T, Du W, Goetz A, Hsu H, Joos T, Weiss M, Bauer U, Brueckner U, Marion Schneider E. Pathogen-specific cytokine release reveals an effect of TLR2 Arg753Gln during Candida sepsis in humans. Cytokine 2008;41:322–329.
  • Bochud P, Hawn T, Siddiqui M, Saunderson P, Britton S, Abraham I, Argaw A, Janer M, Zhao L, Kaplan G et al. Toll-like receptor 2 (TLR2) polymorphisms are associated with reversal reaction in leprosy. J Infect Dis 2008;197:253–261.
  • Everett B, Cameron B, Li H, Vollmer-Conna U, Davenport T, Hickie I, Wakefield D, Vernon S, Reeves WC, Lloyd AR: Polymorphisms in Toll-like receptors-2 and -4 are not associated with disease manifestations in acute Q fever. Genes Immun 2007;8:699–702
  • Yoon HJ, Choi JY, Kim CO, Park YS, Kim MS, Kim YK, Shin SY, Kim JM, Song YG: Lack of Toll-like receptor 4, and 2 polymorphisms in Korean patients with bacteremia. J Korean Med Sci 2006;21:979–982
  • Yuan FF, Marks K, Wong M, Watson S, de Leon E, McIntyre PB, Sullivan JS. Clinical relevance of TLR2, TLR4, CD14 and Fcgamma RIIA gene polymorphisms in Streptococcus pneumoniae infection. Immunol Cell Biol 2008;86:268–270.
  • Chen K, Gu W, Zeng L, Jiang D, Zhang L, Zhou J, Du D, Hu P, Liu Q, Huang S et al. Identification of haplotype Tag SNPs within the entire TLR2 gene and their clinical relevance in patients with major trauma. Shock 2011;35:35–41.
  • Hawn T, Verbon A, Lettinga K, Zhao L, Li S, Laws R, Skerrett S, Beutler B, Schroeder L, Nachman A et al. A common dominant TLR5 stop codon polymorphism abolishes flagellin signalling and is associated with susceptibility to Legionnaires’ disease. J Exp Med 2003;198:1563–1572.
  • Parren PW, Warmerdam PA, Boeije LC, Arts J, Westerdaal NA, Vlug A, Capel PJ, Aarden LA, van de Winkel JG. On the interaction of IgG subclasses with the low affinity Fc gamma RIIa (CD32) on human monocytes, neutrophils, and platelets. Analysis of a functional polymorphism to human IgG2. J Clin Invest 1992;90:1537–1546.
  • Yee A, Ng S, Sober R, Salmon J. Fcgamma RIIA polymorphism as a risk factor for invasive pneumococcal infections in systemic lupus erythematosus. Arthritis Rheum 1997;40:1180–1182.
  • Yuan F, Sullivan J. Fcgamma RIIA polymorphism as risk factor for invasive Streptococcus pneumoniae. Clin Appl Immunol Rev 2005;5:397–403.
  • Yuan FF, Wong M, Pererva N, Keating J, Davis AR, Bryant JA, Sullivan JS. Fcgamma RIIA polymorphisms in Streptococcus pneumoniae infection. Immunol Cell Biol 2003;81:192–195.
  • Moens L, Van Hoeyveld E, Verhaegen J, De Boeck K, Peetermans W, Bossuyt X. Fcgamma receptor IIA genotype and invasive pneumococcal infection. Clin Immunol 2006;118:20–23.
  • Endeman H, Cornips M, Grutters JC, van den Bosch J, Ruven H, van Velzen-Blad H, Rijkers G, Biesma DH. The Fcgamma receptor IIA-R/R131 genotype is associated with severe sepsis in community-acquired pneumonia. Clin Vaccine Immunol 2009;16:1087–1090.
  • van der Pol WL, Huizinga TWJ, Vidarsson G, van der Linden MW, Jansen MD, Keijsers V, de Straat FGJL-v, Westerdaal NAC, de Winkel JGJv, Westendorp RGJ. Relevance of Fcgamma receptor and interleukin-10 polymorphisms for meningococcal disease. J Infect Dis 2001;184:1548–1555.
  • Allcock RJN, Windsor L, Gut IG, Kucharzak R, Sobre L, Lechner D, Garnier J-G, Baltic S, Christiansen FT, Price P. High-density SNP genotyping defines 17 distinct haplotypes of the TNF block in the Caucasian population: Implications for haplotype tagging. Hum Mutat 2004;24:517–525.
  • Waterer GW, Quasney MW, Cantor RM, Wunderink RG. Septic shock and respiratory failure in community-acquired pneumonia have different TNF polymorphism associations. Am J Respir Crit Care Med 2001;163:1599–1604.
  • Valente F, Tan C, Temple S, Phipps M, Witt C, Kaur G, Gut I, McGinn S, Allcock R, Chew C et al. The evolution and diversity of TNF block haplotypes in European, Asian and Australia Aboriginal populations. Genes Immun 2009;10:607–615.
  • Kinder B, Freemer M, King Jr T, Lum R, Nititham J, Taylor K. JC E, Bridges Jr S, Criswell L. Clinical and genetic risk factors for pneumonia in systemic lupus erythematosus. Arthritis Rheum 2007;56:2679–2686.
  • Solé-Violán J, Rodríguez de Castro F, García-Laorden MI, Blanquer J, Aspa J, Borderías L, Briones ML, Rajas O, Martín-Loeches Carrondo I, Marcos-Ramos JA et al. Genetic variability in the severity and outcome of community-acquired pneumonia. Resp Med 2009;104:440–447.
  • Pappachan J, Coulson T, Child N, Markham D, Nour S, Pulletz M, Rose-Zerilli M, de Courcey-Golder K, Barton S, Yang I et al. Mortality in adult intensive care patients with severe systemic inflammatory response syndromes is strongly associated with the hypo-immune TNF−238A polymorphism. Immunogenetics 2009;61:657–662.
  • Pfeffer K. Biological functions of tumour necrosis factor cytokines and their receptors. Cytokine Growth Factor Rev 2003;14:185–191.
  • Majetschak M, Flohe S, Obertacke U, Schroder J, Staubach K, Nast-Kolb D, Schade FU, Stuber F. Relation of a TNF Gene Polymorphism to Severe Sepsis in Trauma Patients. Ann Surg 1999;230:207–214.
  • Temple SEL, Cheong KY, Ardlie KG, Sayer D, Waterer GW. The septic shock associated HSPA1B1267 polymorphism influences production of HSPA1A and HSPA1B. Intensive Care Med 2004;30:1761–1767.
  • Waterer GW, ElBahlawan L, Quasney MW, Zhang Q, Kessler LA, Wunderink RG. Heat shock protein 70-2 + 1267 AA homozygotes have an increased risk of septic shock in adults with community-acquired pneumonia. Crit Care Med 2003;31:1367–1372
  • Fishman D, Faulds G, Jeffery R, Mohamed-Ali V, Yudkin J, Humphries S, Woo P. The effect of novel polymorphisms in the interleukin-6 (IL-6) transcription and plasma IL-6 levels, and an association with systemic-onset juvenile chronic arthritis. J Clin Invest 1998;102:1369–1376.
  • Gaudino M, Andreotti F, Zamparelli R, Di Castelnuovo A, Nasso G, Burzotta F, Lacoviello L, Donati MB, Schiavello R, Maseri A et al. The -174G/C interluekin-6 polymorphism influences postoperative interleukin-6 levels and postoperative arterial fibrillation. Is atrial fibrillation an inflammatory complication? Circulation 2003;108:195–199.
  • Roth-Isigkeit A, Hasselback L, Ocklitz E, Bruckner S, Ros A, Gehring H, Schmucker P, Rink L, Seyfarth M. Inter-individual differences in cytokine release in patients undergoing cardiac surgery with cardiopulmonary bypass. Clin Exp Immunol 2001;125:80–88.
  • Michalek J, Svetlikova P, Fedora M, Klimovic M, Klapacova L, Drahomira B, Hrstkova H, Hubacek J. Interleukin-6 gene variants and the risk of sepsis development in children. Hum Immunol 2007;68:756–760.
  • Schluter B, Raufhake C, Erren M, Schotte H, Kipp F, Rust S, Van A, Assmann G, Berendes E. Effect of the interluekin-6 promoter polymorphism (-174G/C) on the incidence and outcome of sepsis. Crit Care Med 2002;30:32–37.
  • Tischenfort J, Yagmur E, Scholten D, Vidacek D, Koch A, Winograd R, Gressner A, Trautwein C, Wasmuth H, Lammert F. The interleukin-6 (IL6)-174G/C promoter genotype is associated with the presence of septic shock and the ex vivo secretion of IL6. Int J Immunogenet 2007;34:413–418.
  • Sutherland AM, Walley KR, Monacha S, Russell JA. The association of interluekin 6 haplotype clades with mortality in critically ill patients. Arch Intern Med 2005;165:75–82.
  • Flores C, Ma S, Marresso K, Wade M, Villar J, Garcia J. IL6 genome-wide haplotype is associated with susceptibility to acute lung injury. Transl Res 2008;152:11–17.
  • Sainz J, Perez E, Gomex-Lopera S, Lopez-Fernandez E, Moratalla L, Oyonarte S, Jurado M. Genetic variants of IL6 gene promoter influence on C-reactive protein levels but are not associated with susceptibility to invasive pulmonary aspergillosis in haematological patients. Cytokine 2008;41:268–278.
  • Baugh JA, Bucala R. Macrophage migration inhibitory factor. Crit Care Med 2002;30:S27–S35.
  • Bozza M, Satoskar A, Lin G, Lu B, Humbles A, Gerard C, David J. Targeted disruption of migration inhibitory factor gene reveals its critical role in sepsis. J Exp Med 1999;189:341–346.
  • Calandra T, Echtenacher B, Roy D, Pugin J, Metz C, Hultner L, Heumann D, Mannel D, Bucala R, Glauser M. Protection from septic shock by neutralization of macrophage migration inhibitor factor. Nat Med 2000;6:164–170.
  • Calandra T, Spiegel L, Metz C, Bucala R. Macrophage migration inhibitory factor is a critical mediator of the activation of immune cells by exotoxins of gram-positive bacteria. Proc Natl Acad Sci USA 1998;95:11383–11388.
  • Beishuizen A, Thijs L, Haanen C, Vermes I. Macrophage migration inhibitory factor and hypothalamo-pituitary-adrenal function during critical illness. J Clin Endocrinol Metab 2001;86:2811–2816.
  • Bozza F, Gomes R, Japiassu A, Soares M, Castro-Faria-Neto H, Bozza M. Macrophage migration inhibitory factor levels correlated with fatal outcome in sepsis. Shock 2004;22:309–313.
  • Gando S, Nishihira J, Kobayashi S, Morimoto Y, Nanzaki S, Kemmotsu O. Macrophage migration inhibitory factor is a critical mediator of systemic inflammatory response syndrome. Intens Care Med 2001;27:1187–1193.
  • Lehmann L, Novender U, Schroeder S, Pietsch T, von Spiegel T, Putensen C, Hoeft A, Stüber F. Plasma levels of macrophage migration inhibitory factor are elevated in patients with severe sepsis. Intens Care Med 2001;27:1412–1415.
  • Pollak N, Sterns T, Echtenacher B, Mannel D. Improved resistance to bacterial superinfection in mice by treatment with macrophage migration inhibitory factor. Infect Immun 2005;73:6488–6492.
  • Baugh JA, Chitnis S, Donnelly S, Monteiro J, Lin X, Plant B, Wolfe F, Gregersen P, Bucala R. A functional promoter polymorphism in the macrophage migration inhibitory factor (MIF) gene associated with disease severity in rheumatoid arthritis. Genes Immun 2002;3:170–176.
  • Donn R, Shelley E, Ollier W, Thomson W. A novel 5′-flanking region polymrophism of macrophage migration inhibitory factor is associated with systemic-onset juvenile idiopathic arthritis. Arthris Rheum 2001;44:1782–1785.
  • Yende S, Angus D, Kong L, Kellum J, Weissfeld L, Ferrell R, Finegold D, Carter M, Leng L, Peng Z et al. The influence of macrophage migration inhibitory factor gene polymorphisms on outcome from community-acquired pneumonia. FASEB J 2009;23:2403–2411.
  • Moore K, de Waal Malefyt R, Coffman R, O’Garra A. Interleukin-10 and the interluekin-10 receptor. Annu Rev Immunol 2001;19:683–765.
  • Surbatovic M, Grujic K, Cikota B, Jevtic M, Filipovic N, Romic P, Strelic N, Magic Z. Polymorphisms of genes encoding tumor necrosis factor-alpha, interleukin-10, cluster of differentiation-14 and interleukin-1ra in critically ill patients. J Crit Care 2010;25:542.e1-8.
  • Stanilova S, Miteva L, Karakolev Z, Stefanov C. Interleukin-10–1082 promoter polymorphism in association with cytokine production and sepsis susceptibility. Intensive Care Med 2006;32:260–266.
  • Gallagher PM, Lowe G, Fitzgerald T, Bella A, Greene CM, McElvaney NG, O’Neill SJ. Association of IL-10 polymorphism with severity of illness in community acquired pneumonia. Thorax 2003;58:154–156.
  • Schaaf BM, Boehmke F, Esnaashari H, Seitzer U, Kothe H, Maass M, Zabel P, Dalhoff K. Pneumococcal septic shock is associated with the interleukin-10–1082 gene promoter polymorphism. Am J Respir Crit Care Med 2003;168:476–480.
  • Carregaro F, Carta A, Cordeiro JAn, Lobo SM, Silva EHTd, Leopoldino AiM. Polymorphisms IL10–819 and TLR-2 are potentially associated with sepsis in Brazilian patients. Memorias do Instituto Oswaldo Cruz 2010;105:649–656.
  • Temple SEL, Lim E, Cheong KY, Almeida C-AM Price, P, Ardlie KG, Waterer GW. Alleles carried at positions -819 and -592 of the IL10 promoter affect transcription following stimulation of peripheral blood cells with Streptococcus pneumoniae. Immunogenetics 2003;55:629–632.
  • Wattanathum A, Manocha S, Groshaus H, Russell JA, Walley KR. Interleukin-10 haplotype associated with increased mortality in critically ill patients with sepsis from pneumonia but not in patients with extrapulmonary sepsis. Chest 2005;128:1690–1698.
  • Song Y, Lynch S, Flanagan J, H Z, Tom W, Dotson R, Baek M, Rubio-Mills A, Singh G, Kipnis E et al. Increased plasminogen activator inhibitor-1 concentrations in bronchoalveolar lavage fluids are associated wtih increased mortality in a cohort of patients with Pseudomonas aeroginosa. Anesthesiology 2007;106:252–261.
  • Ware L, Matthay M, Parsons P, Thompson B, Januzzi J, Eisner M. Pathogenetic and prognostic significance of altered coagulation and fibrinolysis in acurte lung injury/acute respiratory distress syndrome. Crit Care Med 2007;35:1821–1828.
  • Hermans P, Hazelzet J. Plasminogen activator inhibitor type 1 gene polymorphism and sepsis. Clin Infect Dis 2005;41:S453–458.
  • Binder A, Endler G, Muller M, Mannhalter C, Zenz W. 4G5G gentoype of the palsminogen activator inhibitor-1 promoter polymorphism associates wtih disseminated intravascular coagulation in children with systemic meningococcaemia. J Thromb Haemost 2007;5:2049–2054.
  • Garcia-Segarra G, Espinosa G, Tassies D, Oriola J, Aibar J, Bove A, Castro P, Reverter J, Nicolas J. Increased mortality in septic shock with the 4G/4G genotype of plasminogen activator inhibitor-1 in patients of white descent. Intensive Care Med 2007;33:1354–1362.
  • Haralambous E, Hibberd M, Hermans P, Ninis N, Nadel S, Levin M. Role of functional plasminogen-activator-inhibitor-1 4G/5G promoter polymorphism in susceptibility, severity, and outcome of meningococcal disease in Caucasian children. Crit Care Med 2003;31:2788–2793.
  • Menges T, Hermans P, Little S, Langefeld T, Boning O, Engel J, Sluijter M, de Groot R, Hempelmann G. Plasminogen-activator-inhibitor-1 4G/5G promoter polymorphism and prognosis of severely injured patients. Lancet 2001;357:1096–1097.
  • Westendorp R, Hottenga J, Slagboom P. Variation in plasminogen-activator-inhibitor-1 gene and risk of meningococcal septic shock. Lancet 1999;354:561–563.
  • Sapru A, Hansen H, Ajayi T, Brown R, Garcia O, Zhuo H, Wiemels J, Matthay MA, Wiener-Kronish J. 4G/5G polymorphism of plasminogen activator inhibitor -1 gene is associated with mortality in intensive care unit patients with severe pneumonia. Anesthesiology 2009;110:1086–1091.
  • Madach K, Aladzsity I, Szilagyi A, Fust G, Gal J, Penzes I, Prohaszka Z. 4G/5G polymorphism of PAI-1 gene is associated with multiple organ dysfunction and septic shock in pneumonia induced severe sepsis: prospective, observational, genetic study. Crit Care Med 2010;14:R79–87.
  • Hermans P, Hibberd M, Booy R, Daramola O, Hazelzet J, De Groot R, Levin M. 4G/5G promoter polymorphism in the plasminogen-activator-inhibitor-1 gene and outcome of meningococal disease. Meningococcal Research Group. Lancet 1999;354:556–560.
  • Yende S, Angus D, Ding J, Newman A, Kellum F, Li R, Ferrell R, Zmuda J, Kritchevsky S, Harris T et al. 4G/5G plasminogen activator inhibitor-1 polymorphisms and haplotypes are associated with pneumonia. Am J Respir Crit Care Med 2007;176:1129–1137.
  • Yan S, Nelson D. Effect of factor V Leiden polymorphisms in severe sepsis adn on treatment with recombinant human activated protein C. Crit Care Med 2004;5:S239–246.
  • Spek C, Koster T, Rosendaal F, Bertina R, Reitsma P. Genotypic variation in promoter region of the protein C gene is associated with plasma protein C levels and thrombotic risk. Arterioscler Thromb Vasc Biol 1995;15:214–218.
  • Walley KR, Russell J. Protein C -1641AA is associatd with decreased survival and more organ dysfunction in severe sepsis. Crit Care Med 2007;35:12–17.
  • Russell J. Genetics of coaguation factors in acute lung injury. Crit Care Med 2003;31:S243–247.
  • Chen Q, Wu S, Wang H, Lv C, Cheng B, Xie G, Fang X. Protein C -1641A/-1654C haplotype is associated with organ dysfunction and the fatal outcome of severe sepsis in Chinese Han population. Hum Genet 2008;123:281–287.
  • Russell J, Wellman H, Walley KR. Protein C rs2069912 C allele is associated with increased mortality from sepsis in North Americans of East Asian ancestry. Hum Genet 2008;123:661–663.
  • Solé-Violán J, Rodríguez de Castro F, García-Laorden MI, Blanquer J, Aspa J, Borderías L, Briones ML, Rajas O, Martín-Loeches Carrondo I, Marcos-Ramos JA et al. Genetic variability in the severity and outcome of community-acquired pneumonia. Resp Med 2010;104:440–447.
  • Watanabe E, Buchman T, Hirasawa H, Zehnbauer B. Association between lymphotoxin-[alpha] (tumor necrosis factor-[beta]) intron polymorphism and predisposition to severe sepsis is modified by gender and age. Crit Care Med 2010;38:181–193.
  • Jessen K, Lindboe S, Petersen A, Eugen-Olsen J, Benfield T. Common TNFalpha, IL1beta, PAI-1, uPA, CD14 and TLR4 polymorphisms are not associated with disease severity or outcome from Gram negative sepsis. BMC Infect Dis 2007;7:108.
  • http://wtccc.org.uk. Accessed February 15 2011.
  • Wong HR, Cvijanovich N, Allen GL, Lin R, Anas N, Meyer K, Freishtat RJ, Monaco M, Odoms K, Sakthivel B et al. Genomic expression profiling across the pediatric systemic inflammatory response syndrome, sepsis, and septic shock spectrum. Crit Care Med 2009;37:1558–1566.
  • http://www.nihroadmap.nih.gov/GTEx/index.asp. Accessed 1 March 2011.
  • Tang B, Huang S, McLean A. Genome-wide transcription profiling of human sepsis: a systematic review. Crit Care 2010;14:R237.
  • Perl T, Dvolak L, Hwang T, Wenzel R. Long term survival and function after suspected gram-negative sepsis. JAMA 1995;274:338–345.
  • Quartin A, Schein R, Kett D, Peduzzi P. Magnitude and duration of the effect of sepsis on survival. Department of Veterans Affairs Systemic Sepsis Cooperative Studies Group. JAMA 1997;277:1058–1063.
  • Benjamin C, Hogaboam C, Lukacs N, Kunkel S. Septic mice are susceptible to pulmonary aspergillosis. Am J Pathol 2003;163:2605–2617.
  • Benjamin C, Lunky S, Lukacs N, Hogaboam C, Kunkel S. Reversal of long-term sepsis-induced immunosuppression by dendritic cells. Blood 2005;105:3588–3595.
  • Nafee T, Farrell W, Carroll W, Fryer A, Ismail K. Epigenetic control of fetal gene expression. BJOG 2008;115:158–168.
  • De Santa F, Narang V, Yap ZH, Tusi BK, Burgold T, Austenaa L, Bucci G, Caganova M, Notarbartolo S, Casola S et al. Jmjd3 contributes to the control of gene expression in LPS-activated macrophages. EMBO J 2009;28:3341–3352.
  • Lyn-Kew K, Rich E, Zeng X, Wen H, Kunkel SL, Newstead MW, Bhan U, Standiford TJ. IRAK-M regulates chromatin remodeling in lung macrophages during experimental sepsis. PLoS ONE 2010;5:e11145.
  • Chan C, Li L, McCall C, Yoza B. Endotoxin tolerance disrupts chromatin remodelling and NFkappaB transactivation at the IL-1beta promoter. J Immunol 2005;175:461–468.
  • El Gazzar M, Yoza B, Chen X, Garcia B, Young N, McCall C. Chromatin-specific remodeling by HMGB1 and linker histone H1 silences proinflammatory genes during endotoxin tolerance. Mol Cell Biol 2009;29:1959–1971.
  • Carson W, Cavassani K, Dou Y, Kunkel S. Epigenetic regulation of immune cell functions during post-septic immunosuppression. Epigenetics 2011;6:273–283.
  • Brogdon JL, Xu Y, Szabo SJ, An S, Buxton F, Cohen D, Huang Q. Histone deacetylase activities are required for innate immune cell control of Th1 but not Th2 effector cell function. Blood 2007;109:1123–1130.
  • Ding Y, Chung C, Newton S, Chen Y, Carlton S, Albina J, Ayala A. Polymicrobial sepsis induces divergent effects on splenic and peritoneal dendritic cell function in mice. Shock 2004;22:137–144.
  • Efron P, MArtins A, Minnich D, Tinsley K, Ungaro R, Bahjat F, Hotchkiss R, Clare-Salzler M, Moldawer LL. Characterization of the systemic loss of dendritic cells in murine lymph nodes during polymicrobial sepsis. J Immunol 2004;173:3035–3043.
  • Flohe S, Agrawal H, Schmitz D, Gertz M, Flohe S, Schade F. Dendritic cells during polymicrobial sepsis rapidly mature but fail to initiate a protective Th1-type immune response. J Leukoc Biol 2006;79:473–481.
  • Hiramatsu M, Hotchkiss R, Karl I, Buchman TG. Cecal ligation and puncture (CLP) induces apoptosis in thymus, spleen, lung, and gut by an endotoxin and TNF-independent pathway. Shock 1997;7:247–253.
  • Hotchkiss R, Nicholson D. Apoptosis and caspases regulated death and inflammation in sepsis. Nat Rev Immunol 2006;6:813–822.
  • Hotchkiss R, Swanson P, Cobb J, Jacobson A, Buchman TG, Karl I. Apoptosis in lymphoid and parenchymal cells during sepsis: findings in normal and T- and B-cell-deficient mice. Crit Care Med 1997;25:1298–1307.
  • Hotchkiss R, Swanson P, Freeman B, Tinsley K, Cobb J, Mutuschak G, Buchman T, Karl I. Apoptotic cell death in patients with sepsis, shock, and multiple organ dysfunction. Crit Care Med 1999;27:1230–1251.
  • Wen H, Dou Y, Hogaboam C, Kunkel S. Epigenetic regulation of dendritic derived interleukin-12 facilitates immunosuppression after a severe innate immune response. Blood 2008;111:1797–1804.
  • Wen H, Schaller MA, Dou Y, Hogaboam CM, Kunkel SL. Dendritic cells at the interface of innate and acquired immunity: the role for epigenetic changes. J Leuko Biol 2008;83:439–446.
  • Napolitano L, Campbell C. Polymicrobial sepsis folllowing trauma inhibits interleukin-10 secretion and lymphocyte proliferation. J Trauma 1995;39:104–110.
  • Roth G, Moser B, Krenn C, Brunner M, Haisjackl M, Almer G, Gerlitz S, Wolner E, Boltz-Nitulescu G, Ankersmit HJ. Susceptibility to programmed cell death in T-lymphocytes from septic patients: a mechanism for lymphopenia and Th2 predominance. Biochem Biophys Res Commun 2003;308:840–846.
  • Bentwich I, Avniel A, Karov Y, Aharonov R, Gilad S, Barad O, Barzilai A, Einat P, Einav U, Meiri E et al. Identification of hundreds of conserved and nonconserved human microRNAs. Nat Genet 2005;37:766–770.
  • Friedman RC, Farh KK-H, Burge CB, Bartel DP. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 2009;19:92–105.
  • Vasilescu C, Rossi S, Shimizu M, Tudor S, Veronese A, Ferracin M, Nicoloso MS, Barbarotto E, Popa M, Stanciulea O et al. MicroRNA fingerprints identify miR-150 as a plasma prognostic marker in patients with sepsis. PLoS ONE 2009;4:e7405.
  • Wang JF, Yu ML, Yu G, Bian JJ, Deng XM, Wan XJ, Zhu KM. Serum miR-146a and miR-223 as potential new biomarkers for sepsis. Biochem Biophys Res Commun 2010;394:184–188.
  • El Mazzar M, McCall C. MicroRNAs distinguish translational from transcriptional silencing during endotoxin tolerance. J Biol Chem 2010;285:20940–20951.
  • Henckaerts L, Nielsen KR, Steffensen R, Van Steen K, Mathieu C, Giulietti A, Wouters PJ, Milants I, Vanhorebeek I, Langouche L et al. Polymorphisms in innate immunity genes predispose to bacteremia and death in the medical intensive care unit. Crit Care Med 2009;37:192–201.
  • Barber RC, Chang L-YE Arnoldo, BD, Purdue GF, Hunt JL, Horton JW, Aragaki CC: Innate immunity SNPs are associated with risk for severe sepsis after burn injury. Clin Med Res 2006;4:250–255
  • Moens L, Verhaegen J, Pierik M, Vermeire S, De Boeck K, Peetermans WE, Bossuyt X. Toll-like receptor 2 and Toll-like receptor 4 polymorphisms in invasive pneumococcal disease. Microbes Infect 2007;9:15–20.
  • Wurfel MM, Gordon AC, Holden TD, Radella F, Strout J, Kajikawa O, Ruzinski JT, Rona G, Black RA, Stratton S et al. Toll-like receptor 1 polymorphisms affect innate immune responses and outcomes in sepsis. Am J Respir Crit Care Med 2008;178:710–720.
  • Khor CC, Chapman SJ, Vannberg FO, Dunne A, Murphy C, Ling EY, Frodsham AJ, Walley AJ, Kyrieleis O, Khan A et al. A malfunctional variant is associated with protection against invasive pneumococcal disease, bacteremia, malaria and tuberculosis. Nat Genet 2007;39:523–528.
  • Ku C-L, Picard C, Erdos M, Jeurissen A, Bustamante J, Puel A, von Bernuth H, Filipe-Santos O, Chang H-H, Lawrence T et al. IRAK4 and NEMO mutations in otherwise healthy children with recurrent invasive pneumococcal disease. J Med Genet 2007;44:16–23.
  • Azim K, McManus R, Brophy K, Ryan A, Kellleher D, Reynolds J. Genetic polymorphisms and the risk of infection followign esophagectomy positive assocation with TNF alpha gene -308 genotype. Ann Surg 2007;246:122–128.
  • Calvano J, Um J, Agnese D, Hahm S, Kumar A, Coyle S, Calvano S, Lowry S. Influence of the TNFalpha and TNFbeta polymorphisms upon infectious risk and outcome in surgical intensive care patients. Surg Infect (Larchmt) 2003;4:163–169.
  • Hedberg CL, Adcock K, Martin J, Loggin J, Kruger TE, Baier RJ. Tumor necrosis factor alpha -308 polymorphism associated with increased sepsis mortality in ventilated very low birth weight infants. Pediatr Infect Dis J 2004;25:424–428.
  • Menges T, Konig IR, Hossain H, Little S, Tchatalbachev S, Thierer F, Hackstein H, Franjkovic I, Colaris T, Martens F et al. Sepsis syndrome and death in trauma patients are associated with variation in the gene encoding tumor necrosis factor. Crit Care Med 2008;36:1456–1462.
  • Mira J-P, Cariou A, Grall F, Delclaux C, Losser M-R, Heshmati F, Cheval C, Monchi M, Teboul J-L, Riche F et al. Association of TNF2, a TNF-α Promoter Polymorphism, With Septic Shock Susceptibility and Mortality. JAMA 1999;282:561–568.
  • Nuntayamuwat S, Dharakul T, Chaowagul W, Songsivilai S. Polymorphism in the promoter region of tumor necrosis factor alpha gene is associated with severe meliodosis. Hum Immunol 1999;60:979–983.
  • O’Keefe G, Hybki D, Munford R. The G > A single nucleotide polymorphism at the -108 position in the tumor necrosis factor-alpha promoter increases the risk for severe sepsis after trauma. J Trauma 2002;52:817–825.
  • Stuber F, Petersen M, Bokelmann F, Schade U. A genomic polymorphism within the tumor necrosis factor locus influences plasma tumor necrosis factor alpha concentrations an outcome of patients with sepsis. Crit Care Med 1996;24:381–384.
  • Arnalich F, Lopez-Maderuelo D, Codoceo R, Lopez J, Solis-Garrido LM, Capiscol C, Fernandez-Capitan C, Madero R, Montiel C. Interleukin-1 receptor antagonist gene polymorphism and mortality in patients with severe sepsis. Clin Exp Immunol 2002;127:331–336.
  • Fang XM, Schroder S, Hoeft A, Stuber F. Comparison of two polymorphisms of the interleukin-1 gene family: Interleukin-1 receptor antagonist polymorphism contributes to susceptibility to severe sepsis. Crit Care Med 1999;27:1330–1334.
  • Ma P, Chen D, Pan J, Du B. Genomic polymorphism within interleukin-1 family cytokines influences the outcome of septic patients. Crit Care Med 2002;30:1046–1050.
  • Arcaroli J, Silva E, Maloney JP, He Q, Svetkauskaite D, Murphy JR, Abraham E. Variant IRAK-1 haplotype is associated with increased nuclear factor-{kappa}B activation and worse outcomes in sepsis. Am J Respir Crit Care Med 2006;173:1335–1341.
  • Baier R, Loggins J, Yanamandra K. IL10, IL6 and CD14 polymorphisms and sepsis outcome in ventilated very low birth weight children. BMC Med 2006;12:10–12.
  • Stassen N, Breit C, Norfleet L, Polk HJ. IL18 promoter polymorphisms correlated with the development of post-injury sepsis. Surgery 2003;134:351–356.
  • Stassen N, Leslie-Norfleet L, Robertson A, Eichenberger M, Polk HJ. Interferon gamma gene polymorphisms and the development of sepsis in patients with trauma. Surgery 2002;132:289–292.
  • Flores C, Maca-Meyer N, Perez-Mendez L, Sanguesa R, Espinosa E, Muriel A, Blanco J, Villar J. A CXCL2 tandem repeat promoter polymorphism is associated with susceptibility to severe sepsis in the Spanish population. Genes Immun 2006;7:141–149.
  • Gallagher PM, Lowe G, Fitzgerald T, Bella A, Greene CM, McElvaney NG, O’Neill SJ. Association of IL-10 polymorphism with severity of illness in community acquired pneumonia. Thorax 2003;58:154–156.
  • Gong MN, Thompson BT, Williams PL, Zhou W, Wang MZ, Pothier L, Christiani DC. Interleukin-10 polymorphism in position -1082 and acute respiratory distress syndrome. Eur Respir J 2006;27:674–681.
  • Shu Q, Fang X, Chen Q, Stuber F. IL10 polymorphism is associated with increased incidence of severe sepsis. Chin Med J (Engl) 2003;116:1756–1759.
  • Yende S, Angus DC, Ding J, Newman AB, Kellum JA, Li R, Ferrell RE, Zmuda J, Kritchevsky SB, Harris TB et al. 4G/5G plasminogen activator inhibitor-1 polymorphisms and haplotypes are associated with pneumonia. Am J Respir Crit Care Med 2007;176:1129–1137.
  • Moretti EW, Morris RW, Podgoreanu M, Schwinn DA, Newman MF, Bennett E, Moulin VG, Mba UU, Laskowitz DT, for the Perioperative Genetics,and Safety Outcomes Study (PEGASUS) Investigative Team. APOE polymorphism is associated with risk of severe sepsis in surgical patients. Crit Care Med 2005;33:2521–2526
  • Bunder-Wiersman H, Koopmans R, Kuipers T, Knoester H, Bos A. Single nucleotide polymorphisms in genes of circulatory homeostasis in surviving pediatric intensive care patients with meningococcal infection. Pediatr Crit Care Med 2008;9:517–523.
  • Mukamal KJ, Pai JK, O’Meara ES, Tracy RP, Psaty BM, Kuller LH, Newman AB, Yende S, Curhan GC, Siscovick DS et al. CRP gene variation and risk of community-acquired pneumonia. Respirology 2010;15:160–164.
  • Gao L, Grant A, Halder I, Brower R, Sevransky J, Maloney JP, Moss M, Shanholtz C, Yates CR, Meduri GU et al. Novel polymorphisms in the myosin light chain kinase gene confer risk for acute lung injury. Am J Respir Cell Mol Biol 2006; 34:487–495.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.