785
Views
55
CrossRef citations to date
0
Altmetric
Review Article

Muscle ankyrin repeat proteins: their role in striated muscle function in health and disease

, &
Pages 269-294 | Received 21 Oct 2011, Accepted 20 Nov 2011, Published online: 20 Dec 2011

References

  • Fluck M, Hoppeler H. Molecular basis of skeletal muscle plasticity-from gene to form and function. Rev Physiol Biochem Pharmacol 2003;146:159–216.
  • Potthoff MJ, Olson EN, Bassel-Duby R. Skeletal muscle remodeling. Curr Opin Rheumatol 2007;19:542–549.
  • Kung C. A possible unifying principle for mechanosensation. Nature 2005;436:647–654
  • Buyandelger B, Ng KE, Miocic S, Gunkel S, Piotrowska I, Ku CH, Knoll R. Genetics of mechanosensation in the heart. J Cardiovasc Transl Res 2011;4:238–244.
  • Burkholder TJ. Mechanotransduction in skeletal muscle. Front Biosci 2007;12:174–191
  • Kresh JY, Chopra A. Intercellular and extracellular mechanotransduction in cardiac myocytes. Pflugers Arch 2011;462:75–87.
  • Epstein ND, Davis JS. Sensing stretch is fundamental. Cell 2003;112:147–150.
  • Granzier HL, Labeit S. The giant protein titin: A major player in myocardial mechanics, signaling, and disease. Circ Res 2004;94:284–295.
  • Miller MK, Bang ML, Witt CC, Labeit D, Trombitas C, Watanabe K, Granzier H, et al. The muscle ankyrin repeat proteins: Carp, Ankrd2/Arpp and Darp as a family of titin filament-based stress response molecules. J Mol Biol 2003;333:951–964.
  • Linke WA. Sense and stretchability: The role of titin and titin-associated proteins in myocardial stress-sensing and mechanical dysfunction. Cardiovasc Res 2008;77:637–648.
  • Voelkel T, Linke WA. Conformation-regulated mechanosensory control via titin domains in cardiac muscle. Pflugers Arch 2011;462:143–154.
  • Lange S, Ehler E, Gautel M. From A to Z and back?Multicompartment proteins in the sarcomere. Trends Cell Biol 2006;16:11–18
  • Williams RS, Neufer PD.Exercise: Regulation and integration of multiple systems. In: Peachey LD, ed. The Handbook of Physiology; New York: American Physiology Society, 1996:1124–1150.
  • Pette D, Staron RS. Myosin isoforms, muscle fiber types, and transitions. Microsc Res Tech 2000;50:500–509.
  • Schiaffino S, Reggiani C. Molecular diversity of myofibrillar proteins: Gene regulation and functional significance. Physiol Rev 1996;76:371–423.
  • Wang K, McClure J, Tu A. Titin: Major myofibrillar components of striated muscle. Proc Natl Acad Sci USA 1979;76:3698–3702.
  • Labeit S, Gautel M, Lakey A, Trinick J. Towards a molecular understanding of titin. EMBO J 1992;11:1711–1716.
  • Labeit S, Kolmerer B. Titins: Giant proteins in charge of muscle ultrastructure and elasticity. Science 1995;270:293–296.
  • Freiburg A, Gautel M. A molecular map of the interactions between titin and myosin-binding protein C. Implications for sarcomeric assembly in familial hypertrophic cardiomyopathy. Eur J Biochem 1996;235:317–323
  • Maruyama K. Connectin/titin, giant elastic protein of muscle. FASEB J 1997;11:341–345.
  • Gautel M, Mues A, Young P. Control of sarcomeric assembly: The flow of information on titin. Rev Physiol Biochem Pharmacol 1999;138:97–137.
  • Clark KA, McElhinny AS, Beckerle MC, Gregorio CC. Striated muscle cytoarchitecture: An intricate web of form and function. Annu Rev Cell Dev Biol 2002;18:637–706.
  • Faulkner G, Lanfranchi G, Valle G. Telethonin and other new proteins of the Z-disc of skeletal muscle. IUBMB Life 2001;51:275–282.
  • Bonnemann CG, Laing NG. Myopathies resulting from mutations in sarcomeric proteins. Curr Opin Neurol 2004;17:529–537
  • Laing NG, Nowak KJ. When contractile proteins go bad: The sarcomere and skeletal muscle disease. Bioessays 2005;27:809–822.
  • Kruger M, Linke WA. The giant protein titin: A regulatory node that integrates myocyte signaling pathways. J Biol Chem 2011;286:9905–9912.
  • Bang ML, Centner T, Fornoff F, Geach AJ, Gotthardt M, McNabb M, Witt CC, et al. The complete gene sequence of titin, expression of an unusual approximately 700-kda titin isoform, and its interaction with obscurin identify a novel Z-line to I-band linking system. Circ Res 2001;89:1065–1072.
  • Tskhovrebova L, Trinick J. Titin: Properties and family relationships. Nat Rev Mol Cell Biol 2003;4:679–689.
  • Granzier HL, Labeit S. Titin and its associated proteins: The third myofilament system of the sarcomere. Adv Protein Chem 2005;71:89–119.
  • Granzier HL, Labeit S. The giant muscle protein titin is an adjustable molecular spring. Exerc Sport Sci Rev 2006;34:50–53.
  • de Seze J, Udd B, Haravuori H, Sablonniere B, Maurage CA, Hurtevent JF, Boutry N, Stojkovic T, et al. The first European family with tibial muscular dystrophy outside the Finnish population.Neurology 1998;51:1746–1748
  • Hackman P, Vihola A, Haravuori H, Marchand S, Sarparanta J, De Seze J, Labeit S, Witt C, Peltonen L, Richard I, Udd B. Tibial muscular dystrophy is a titinopathy caused by mutations in TTN, the gene encoding the giant skeletal-muscle protein titin. Am J Hum Genet 2002;71:492–500.
  • Van den Bergh PY, Bouquiaux O, Verellen C, Marchand S, Richard I, Hackman P, Udd B. Tibial muscular dystrophy in a Belgian family. Ann Neurol 2003;54:248–251.
  • Hackman P, Marchand S, Sarparanta J, Vihola A, Penisson-Besnier I, Eymard B, Pardal-Fernandez JM, et al. Truncating mutations in C-terminal titin may cause more severe tibial muscular dystrophy (TMD). Neuromuscul Disord 2008;18:922–928.
  • Haravuori H, Vihola A, Straub V, Auranen M, Richard I, Marchand S, Voit T, Labeit S, Somer H, Peltonen L, Beckmann JS, Udd B. Secondary calpain3 deficiency in 2q-linked muscular dystrophy: Titin is the candidate gene. Neurology 2001;56:869–877.
  • Sorimachi H, Imajoh-Ohmi S, Emori Y, Kawasaki H, Ohno S, Minami Y, Suzuki K. Molecular cloning of a novel mammalian calcium-dependent protease distinct from both m- and mu-types. Specific expression of the mRNA in skeletal muscle. J Biol Chem 1989;264:20106–20111
  • Sorimachi H, Toyama-Sorimachi N, Saido TC, Kawasaki H, Sugita H, Miyasaka M, Arahata K, et al. Muscle-specific calpain, p94, is degraded by autolysis immediately after translation, resulting in disappearance from muscle. J Biol Chem 1993;268:10593–10605.
  • Sorimachi H, Kinbara K, Kimura S, Takahashi M, Ishiura S, Sasagawa N, Sorimachi N, et al. Muscle-specific calpain, p94, responsible for limb girdle muscular dystrophy type 2A, associates with connectin through IS2, a p94-specific sequence. J Biol Chem 1995;270:31158–31162.
  • Kinbara K, Sorimachi H, Ishiura S, Suzuki K. Muscle-specific calpain, p94, interacts with the extreme C-terminal region of connectin, a unique region flanked by two immunoglobulin C2 motifs. Arch Biochem Biophys 1997;342:99–107.
  • Taveau M, Bourg N, Sillon G, Roudaut C, Bartoli M, Richard I. Calpain 3 is activated through autolysis within the active site and lyses sarcomeric and sarcolemmal components. Mol Cell Biol 2003;23:9127–9135.
  • Ono Y, Torii F, Ojima K, Doi N, Yoshioka K, Kawabata Y, Labeit D, et al. Suppressed disassembly of autolyzing p94/capn3 by N2A connectin/titin in a genetic reporter system. J Biol Chem 2006;281:18519–18531.
  • Herasse M, Ono Y, Fougerousse F, Kimura E, Stockholm D, Beley C, Montarras D, et al. Expression and functional characteristics of calpain 3 isoforms generated through tissue-specific transcriptional and posttranscriptional events. Mol Cell Biol 1999;19:4047–4055.
  • Kinbara K, Ishiura S, Tomioka S, Sorimachi H, Jeong SY, Amano S, Kawasaki H, et al. Purification of native p94, a muscle-specific calpain, and characterization of its autolysis. Biochem J 1998;335:589–596.
  • Sorimachi H, Ishiura S, Suzuki K. Structure and physiological function of calpains. Biochem J 1997;328:721–732.
  • Ono Y, Ojima K, Torii F, Takaya E, Doi N, Nakagawa K, Hata S, Abe K, Sorimachi H. Skeletal muscle-specific calpain is an intracellular Na+-dependent protease. J Biol Chem 2010;285:22986–22998.
  • Guyon JR, Kudryashova E, Potts A, Dalkilic I, Brosius MA, Thompson TG, Beckmann JS, et al. Calpain 3 cleaves filamin C and regulates its ability to interact with gamma- and delta-sarcoglycans. Muscle Nerve 2003;28:472–483.
  • Cohen N, Kudryashova E, Kramerova I, Anderson LV, Beckmann JS, Bushby K, Spencer MJ. Identification of putative in vivo substrates of calpain 3 by comparative proteomics of overexpressing transgenic and nontransgenic mice. Proteomics 2006;6:6075–6084.
  • Ono Y, Hayashi C, Doi N, Kitamura F, Shindo M, Kudo K, Tsubata T, Yanagida M, Sorimachi H. Comprehensive survey of p94/calpain 3 substrates by comparative proteomics-possible regulation of protein synthesis by p94. Biotechnol J 2007;2:565–576.
  • Kramerova I, Kudryashova E, Wu B, Ottenheijm C, Granzier H, Spencer MJ. Novel role of calpain-3 in the triad-associated protein complex regulating calcium release in skeletal muscle. Hum Mol Genet 2008;17:3271–3280
  • Richard I, Broux O, Allamand V, Fougerousse F, Chiannilkulchai N, Bourg N, Brenguier L, et al. Mutations in the proteolytic enzyme calpain 3 cause limb-girdle muscular dystrophy type 2A. Cell 1995;81:27–40.
  • Baghdiguian S, Martin M, Richard I, Pons F, Astier C, Bourg N, Hay RT, et al. Calpain 3 deficiency is associated with myonuclear apoptosis and profound perturbation of the IkappaB alpha/NF-kappaB pathway in limb-girdle muscular dystrophy type 2A. Nat Med 1999;5:503–511.
  • Benayoun B, Baghdiguian S, Lajmanovich A, Bartoli M, Daniele N, Gicquel E, Bourg N, et al. NF-kappaB-dependent expression of the antiapoptotic factor c-FLIP is regulated by calpain 3, the protein involved in limb-girdle muscular dystrophy type 2A. FASEB J 2008;22:1521–1529.
  • Kramerova I, Kudryashova E, Tidball JG, Spencer MJ. Null mutation of calpain 3 (p94) in mice causes abnormal sarcomere formation in vivo and in vitro. Hum Mol Genet 2004;13:1373–1388.
  • Hayashi C, Ono Y, Doi N, Kitamura F, Tagami M, Mineki R, Arai T, et al. Multiple molecular interactions implicate the connectin/titin N2A region as a modulating scaffold for p94/calpain 3 activity in skeletal muscle. J Biol Chem 2008;283:14801–14814.
  • Laure L, Daniele N, Suel L, Marchand S, Aubert S, Bourg N, Roudaut C, et al. A new pathway encompassing calpain 3 and its newly identified substrate cardiac ankyrin repeat protein is involved in the regulation of the nuclear factor-kappaB pathway in skeletal muscle. FEBS J 2010;277:4322–4337.
  • Duguez S, Bartoli M, Richard I. Calpain 3: A key regulator of the sarcomere? FEBS J 2006;273:3427–3436.
  • Kramerova I, Kudryashova E, Venkatraman G, Spencer MJ. Calpain 3 participates in sarcomere remodeling by acting upstream of the ubiquitin-proteasome pathway. Hum Mol Genet 2005;14:2125–2134.
  • Baghdiguian S, Richard I, Martin M, Coopman P, Beckmann JS, Mangeat P, Lefranc G. Pathophysiology of limb girdle muscular dystrophy type 2A: Hypothesis and new insights into the IkappaBalpha/NF-kappaB survival pathway in skeletal muscle. J Mol Med (Berl) 2001;79:254–261.
  • Hoshijima M. Mechanical stress-strain sensors embedded in cardiac cytoskeleton: Z disk, titin, and associated structures. Am J Physiol Heart Circ Physiol 2006;290:H1313–1325.
  • Knoll R, Hoshijima M, Hoffman HM, Person V, Lorenzen-Schmidt I, Bang ML, Hayashi T, et al. The cardiac mechanical stretch sensor machinery involves a Z disc complex that is defective in a subset of human dilated cardiomyopathy. Cell 2002;111:943–955.
  • Valle G, Faulkner G, De Antoni A, Pacchioni B, Pallavicini A, Pandolfo D, Tiso N, et al. Telethonin, a novel sarcomeric protein of heart and skeletal muscle. FEBS Lett 1997;415:163–168.
  • Gregorio CC, Trombitas K, Centner T, Kolmerer B, Stier G, Kunke K, Suzuki K, et al. The N-terminus of titin spans the Z-disc: Its interaction with a novel 19-kd ligand (T-cap) is required for sarcomeric integrity. J Cell Biol 1998;143:1013–1027.
  • Mues A, van der Ven PF, Young P, Furst DO, Gautel M. Two immunoglobulin-like domains of the Z-disc portion of titin interact in a conformation-dependent way with telethonin. FEBS Lett 1998;428:111–114.
  • Lee EH, Gao M, Pinotsis N, Wilmanns M, Schulten K. Mechanical strength of the titin Z1Z2-telethonin complex. Structure 2006;14:497–509.
  • Zou P, Pinotsis N, Lange S, Song YH, Popov A, Mavridis I, Mayans OM, et al. Palindromic assembly of the giant muscle protein titin in the sarcomeric Z-disk. Nature 2006;439:229–233.
  • Bertz M, Wilmanns M, Rief M. The titin-telethonin complex is a directed, superstable molecular bond in the muscle Z-disk. Proc Natl Acad Sci USA 2009;106:13307–133310.
  • Knoll R, Linke WA, Zou P, Miocic S, Kostin S, Buyandelger B, Ku CH, et al. Telethonin deficiency is associated with maladaptation to biomechanical stress in the mammalian heart. Circ Res 2011;109:758–769.
  • Moreira ES, Wiltshire TJ, Faulkner G, Nilforoushan A, Vainzof M, Suzuki OT, Valle G, et al. Limb-girdle muscular dystrophy type 2G is caused by mutations in the gene encoding the sarcomeric protein telethonin. Nat Genet 2000;24:163–166.
  • Olive M, Shatunov A, Gonzalez L, Carmona O, Moreno D, Quereda LG, Martinez-Matos JA, Goldfarb LG, Ferrer I. Transcription-terminating mutation in telethonin causing autosomal recessive muscular dystrophy type 2G in a European patient. Neuromuscul Disord 2008;18:929–933.
  • Ferreiro A, Mezmezian M, Olive M, Herlicoviez D, Fardeau M, Richard P, Romero NB. Telethonin-deficiency initially presenting as a congenital muscular dystrophy. Neuromuscul Disord 2011;21:433–438
  • Hayashi T, Arimura T, Itoh-Satoh M, Ueda K, Hohda S, Inagaki N, Takahashi M, et al. Tcap gene mutations in hypertrophic cardiomyopathy and dilated cardiomyopathy. J Am Coll Cardiol 2004;44:2192–2201.
  • Bos JM, Poley RN, Ny M, Tester DJ, Xu X, Vatta M, Towbin JA, et al. Genotype-phenotype relationships involving hypertrophic cardiomyopathy-associated mutations in titin, muscle LIM protein, and telethonin. Mol Genet Metab 2006;88:78–85
  • Barash IA, Mathew L, Lahey M, Greaser ML, Lieber RL. Muscle LIM protein plays both structural and functional roles in skeletal muscle. Am J Physiol Cell Physiol 2005;289:C1312–1320.
  • Heineke J, Ruetten H, Willenbockel C, Gross SC, Naguib M, Schaefer A, Kempf T, et al. Attenuation of cardiac remodeling after myocardial infarction by muscle LIM protein-calcineurin signaling at the sarcomeric Z-disc. Proc Natl Acad Sci USA 2005;102:1655–1660.
  • Chin ER, Olson EN, Richardson JA, Yang Q, Humphries C, Shelton JM, Wu H, et al. A calcineurin-dependent transcriptional pathway controls skeletal muscle fiber type. Genes Dev 1998;12:2499–2509.
  • da Costa N, Edgar J, Ooi PT, Su Y, Meissner JD, Chang KC. Calcineurin differentially regulates fast myosin heavy chain genes in oxidative muscle fibre type conversion. Cell Tissue Res 2007;329:515–527.
  • Flick MJ, Konieczny SF. The muscle regulatory and structural protein MLP is a cytoskeletal binding partner of betaI-spectrin. J Cell Sci 2000;113:1553–1564.
  • Ecarnot-Laubriet A, De Luca K, Vandroux D, Moisant M, Bernard C, Assem M, Rochette L, Teyssier JR. Downregulation and nuclear relocation of MLP during the progression of right ventricular hypertrophy induced by chronic pressure overload. J Mol Cell Cardiol 2000;32:2385–2395.
  • Boateng SY, Belin RJ, Geenen DL, Margulies KB, Martin JL, Hoshijima M, de Tombe PP, Russell B. Cardiac dysfunction and heart failure are associated with abnormalities in the subcellular distribution and amounts of oligomeric muscle lim protein. Am J Physiol Heart Circ Physiol 2007;292:H259–269.
  • Luther P, Squire J. Three-dimensional structure of the vertebrate muscle M-region. J Mol Biol 1978;125:313–324.
  • Mayans O, van der Ven PF, Wilm M, Mues A, Young P, Furst DO, Wilmanns M, Gautel M. Structural basis for activation of the titin kinase domain during myofibrillogenesis. Nature 1998;395:863–869.
  • Centner T, Yano J, Kimura E, McElhinny AS, Pelin K, Witt CC, Bang ML, et al. Identification of muscle specific ring finger proteins as potential regulators of the titin kinase domain. J Mol Biol 2001;306:717–726.
  • McElhinny AS, Kakinuma K, Sorimachi H, Labeit S, Gregorio CC. Muscle-specific ring finger-1 interacts with titin to regulate sarcomeric M-line and thick filament structure and may have nuclear functions via its interaction with glucocorticoid modulatory element binding protein-1. J Cell Biol 2002;157:125–136.
  • Pizon V, Iakovenko A, Van Der Ven PF, Kelly R, Fatu C, Furst DO, Karsenti E, Gautel M. Transient association of titin and myosin with microtubules in nascent myofibrils directed by the MURF2 RING-finger protein. J Cell Sci 2002;115:4469–4482.
  • Witt SH, Granzier H, Witt CC, Labeit S. MURF-1 and MURF-2 target a specific subset of myofibrillar proteins redundantly: Towards understanding MURF-dependent muscle ubiquitination. J Mol Biol 2005;350:713–722.
  • Lange S, Xiang F, Yakovenko A, Vihola A, Hackman P, Rostkova E, Kristensen J, et al. The kinase domain of titin controls muscle gene expression and protein turnover. Science 2005;308:1599–1603.
  • Puchner EM, Alexandrovich A, Kho AL, Hensen U, Schafer LV, Brandmeier B, Grater F, Grubmuller H, Gaub HE, Gautel M. Mechanoenzymatics of titin kinase. Proc Natl Acad Sci USA 2008;105:13385–13390.
  • Lange S, Auerbach D, McLoughlin P, Perriard E, Schafer BW, Perriard JC, Ehler E. Subcellular targeting of metabolic enzymes to titin in heart muscle may be mediated by DRAL/FHL-2. J Cell Sci 2002;115:4925–4936.
  • Sheikh F, Raskin A, Chu PH, Lange S, Domenighetti AA, Zheng M, Liang X, et al. An FHL1-containing complex within the cardiomyocyte sarcomere mediates hypertrophic biomechanical stress responses in mice. J Clin Invest 2008;118:3870–3880.
  • Ojima K, Ono Y, Hata S, Koyama S, Doi N, Sorimachi H. Possible functions of p94 in connectin-mediated signaling pathways in skeletal muscle cells. J Muscle Res Cell Motil 2005;26:409–417.
  • Garvey SM, Rajan C, Lerner AP, Frankel WN, Cox GA. The muscular dystrophy with myositis (mdm) mouse mutation disrupts a skeletal muscle-specific domain of titin. Genomics 2002;79:146–149.
  • Witt CC, Ono Y, Puschmann E, McNabb M, Wu Y, Gotthardt M, Witt SH, Haak M, Labeit D, Gregorio CC, Sorimachi H, Granzier H, Labeit S. Induction and myofibrillar targeting of CARP, and suppression of the Nkx2.5 pathway in the MDM mouse with impaired titin-based signaling. J Mol Biol 2004;336:145–154.
  • Chu W, Burns DK, Swerlick RA, Presky DH. Identification and characterization of a novel cytokine-inducible nuclear protein from human endothelial cells. J Biol Chem 1995;270:10236–10245
  • Baumeister A, Arber S, Caroni P. Accumulation of muscle ankyrin repeat protein transcript reveals local activation of primary myotube endcompartments during muscle morphogenesis. J Cell Biol 1997;139:1231–1242.
  • Kuo H, Chen J, Ruiz-Lozano P, Zou Y, Nemer M, Chien KR. Control of segmental expression of the cardiac-restricted ankyrin repeat protein gene by distinct regulatory pathways in murine cardiogenesis. Development 1999;126:4223–4234.
  • Kemp TJ, Sadusky TJ, Saltisi F, Carey N, Moss J, Yang SY, Sassoon DA, et al. Identification of Ankrd2, a novel skeletal muscle gene coding for a stretch-responsive ankyrin-repeat protein. Genomics 2000;66:229–241.
  • Pallavicini A, Kojic S, Bean C, Vainzof M, Salamon M, Ievolella C, Bortoletto G, et al. Characterization of human skeletal muscle Ankrd2. Biochem Biophys Res Commun 2001;285:378–386.
  • Moriyama M, Tsukamoto Y, Fujiwara M, Kondo G, Nakada C, Baba T, Ishiguro N, et al. Identification of a novel human ankyrin-repeated protein homologous to CARP. Biochem Biophys Res Commun 2001;285:715–723.
  • Ikeda K, Emoto N, Matsuo M, Yokoyama M. Molecular identification and characterization of a novel nuclear protein whose expression is up-regulated in insulin-resistant animals. J Biol Chem 2003;278:3514–3520.
  • Zou Y, Evans S, Chen J, Kuo HC, Harvey RP, Chien KR. CARP, a cardiac ankyrin repeat protein, is downstream in the Nkx2-5 homeobox gene pathway. Development 1997;124:793–804.
  • Jeyaseelan R, Poizat C, Baker RK, Abdishoo S, Isterabadi LB, Lyons GE, Kedes L. A novel cardiac-restricted target for doxorubicin.CARP, a nuclear modulator of gene expression in cardiac progenitor cells and cardiomyocytes. J Biol Chem 1997;272:22800–22808
  • Tsukamoto Y, Senda T, Nakano T, Nakada C, Hida T, Ishiguro N, Kondo G, Baba T, Sato K, Osaki M, Mori S, Ito H, Moriyama M. Arpp, a new homolog of CARP, is preferentially expressed in type 1 skeletal muscle fibers and is markedly induced by denervation. Lab Invest 2002;82:645–655.
  • Mosavi LK, Cammett TJ, Desrosiers DC, Peng ZY. The ankyrin repeat as molecular architecture for protein recognition. Protein Sci 2004;13:1435–1448.
  • Tee JM, Peppelenbosch MP. Anchoring skeletal muscle development and disease: The role of ankyrin repeat domain containing proteins in muscle physiology. Crit Rev Biochem Mol Biol 2010;45:318–330.
  • Torrado M, Nespereira B, Lopez E, Centeno A, Castro-Beiras A, Mikhailov AT. Ankrd1 specifically binds CASQ2 in heart extracts and both proteins are co-enriched in piglet cardiac purkinje cells. J Mol Cell Cardiol 2005;38:353–365.
  • Belgrano A, Rakicevic L, Mittempergher L, Campanaro S, Martinelli VC, Mouly V, Valle G, Kojic S, Faulkner G. Multi-tasking role of the mechanosensing protein Ankrd2 in the signaling network of striated muscle. PLoS ONE 2011;6:e25519.
  • Burkhard P, Stetefeld J, Strelkov SV. Coiled coils: A highly versatile protein folding motif. Trends Cell Biol 2001;11:82–88.
  • Torrado M, Lopez E, Centeno A, Castro-Beiras A, Mikhailov AT. Left-right asymmetric ventricular expression of CARP in the piglet heart: Regional response to experimental heart failure. Eur J Heart Fail 2004;6:161–172.
  • Kojic S, Medeot E, Guccione E, Krmac H, Zara I, Martinelli V, Valle G, Faulkner G. The Ankrd2 protein, a link between the sarcomere and the nucleus in skeletal muscle. J Mol Biol 2004;339:313–325
  • Witt SH, Labeit D, Granzier H, Labeit S, Witt CC. Dimerization of the cardiac ankyrin protein CARP: Implications for MARP titin-based signaling. J Muscle Res Cell Motil 2005;26:401–408.
  • Torrado M, Iglesias R, Mikhailov AT. Detection of protein interactions based on GFP fragment complementation by fluorescence microscopy and spectrofluorometry. Biotechniques 2008;44:70–74.
  • Rogers S, Wells R, Rechsteiner M. Amino acid sequences common to rapidly degraded proteins: The PEST hypothesis. Science 1986;234:364–368.
  • Rechsteiner M, Rogers SW. PEST sequences and regulation by proteolysis. Trends Biochem Sci 1996;21:267–271.
  • Badi I, Cinquetti R, Frascoli M, Parolini C, Chiesa G, Taramelli R, Acquati F. Intracellular Ankrd1 protein levels are regulated by 26S proteasome-mediated degradation. FEBS Lett 2009;583:2486–2492.
  • Dingwall C, Laskey RA. Nuclear targeting sequences-a consensus? Trends Biochem Sci 1991;16:478–481.
  • Wagner P, Hall MN. Nuclear protein transport is functionally conserved between yeast and higher eukaryotes. FEBS Lett 1993;321:261–266.
  • Ishiguro N, Baba T, Ishida T, Takeuchi K, Osaki M, Araki N, Okada E, et al. CARP, a cardiac ankyrin-repeated protein, and its new homologue, Arpp, are differentially expressed in heart, skeletal muscle, and rhabdomyosarcomas. Am J Pathol 2002;160:1767–1778.
  • Mikhailov AT, Torrado M. The enigmatic role of the ankyrin repeat domain 1 gene in heart development and disease. Int J Dev Biol 2008;52:811–821.
  • Nakamura K, Nakada C, Takeuchi K, Osaki M, Shomori K, Kato S, Ohama E, et al. Altered expression of cardiac ankyrin repeat protein and its homologue, ankyrin repeat protein with PEST and proline-rich region, in atrophic muscles in amyotrophic lateral sclerosis. Pathobiology 2002;70:197–203.
  • Arber S, Hunter JJ, Ross J, Jr., Hongo M, Sansig G, Borg J, Perriard JC, Chien KR, Caroni P. MLP-deficient mice exhibit a disruption of cardiac cytoarchitectural organization, dilated cardiomyopathy, and heart failure. Cell 1997;88:393–403.
  • Aihara Y, Kurabayashi M, Saito Y, Ohyama Y, Tanaka T, Takeda S, Tomaru K, et al. Cardiac ankyrin repeat protein is a novel marker of cardiac hypertrophy: Role of M-CAT element within the promoter. Hypertension 2000;36:48–53.
  • Ihara Y, Suzuki YJ, Kitta K, Jones LR, Ikeda T. Modulation of gene expression in transgenic mouse hearts overexpressing calsequestrin. Cell Calcium 2002;32:21–29.
  • Zolk O, Frohme M, Maurer A, Kluxen FW, Hentsch B, Zubakov D, Hoheisel JD, et al. Cardiac ankyrin repeat protein, a negative regulator of cardiac gene expression, is augmented in human heart failure. Biochem Biophys Res Commun 2002;293:1377–1382.
  • Nagueh SF, Shah G, Wu Y, Torre-Amione G, King NM, Lahmers S, Witt CC, Becker K, Labeit S, Granzier HL. Altered titin expression, myocardial stiffness, and left ventricular function in patients with dilated cardiomyopathy. Circulation 2004;110:155–162.
  • Carson JA, Nettleton D, Reecy JM. Differential gene expression in the rat soleus muscle during early work overload-induced hypertrophy. FASEB J 2002;16:207–209
  • Chen YW, Nader GA, Baar KR, Fedele MJ, Hoffman EP, Esser KA. Response of rat muscle to acute resistance exercise defined by transcriptional and translational profiling. J Physiol 2002;545:27–41.
  • Barash IA, Mathew L, Ryan AF, Chen J, Lieber RL. Rapid muscle-specific gene expression changes after a single bout of eccentric contractions in the mouse. Am J Physiol Cell Physiol 2004;286:C355–364.
  • Hentzen ER, Lahey M, Peters D, Mathew L, Barash IA, Friden J, Lieber RL. Stress-dependent and -independent expression of the myogenic regulatory factors and the MARP genes after eccentric contractions in rats. J Physiol 2006;570:157–167
  • Lehti M, Kivela R, Komi P, Komulainen J, Kainulainen H, Kyrolainen H. Effects of fatiguing jumping exercise on mRNA expression of titin-complex proteins and calpains. J Appl Physiol 2009;106:1419–1424.
  • Bakay M, Zhao P, Chen J, Hoffman EP. A web-accessible complete transcriptome of normal human and DMD muscle. Neuromuscul Disord 2002;12:S125–141
  • Nakada C, Tsukamoto Y, Oka A, Nonaka I, Takeda S, Sato K, Mori S, Ito H, Moriyama M. Cardiac-restricted ankyrin-repeated protein is differentially induced in Duchenne and congenital muscular dystrophy. Lab Invest 2003;83:711–719.
  • Nakada C, Oka A, Nonaka I, Sato K, Mori S, Ito H, Moriyama M. Cardiac ankyrin repeat protein is preferentially induced in atrophic myofibers of congenital myopathy and spinal muscular atrophy. Pathol Int 2003;53:653–658.
  • Laure L, Suel L, Roudaut C, Bourg N, Ouali A, Bartoli M, Richard I, Daniele N. Cardiac ankyrin repeat protein is a marker of skeletal muscle pathological remodelling. FEBS J 2009;276:669–684.
  • Stevenson EJ, Giresi PG, Koncarevic A, Kandarian SC. Global analysis of gene expression patterns during disuse atrophy in rat skeletal muscle. J Physiol 2003;551:33–48.
  • Yang W, Zhang Y, Ma G, Zhao X, Chen Y, Zhu D. Identification of gene expression modifications in myostatin-stimulated myoblasts. Biochem Biophys Res Commun 2005;326:660–666.
  • Shi Y, Reitmaier B, Regenbogen J, Slowey RM, Opalenik SR, Wolf E, Goppelt A, Davidson JM. CARP, a cardiac ankyrin repeat protein, is up-regulated during wound healing and induces angiogenesis in experimental granulation tissue. Am J Pathol 2005;166:303–312.
  • Bean C, Facchinello N, Faulkner G, Lanfranchi G. The effects of Ankrd2 alteration indicate its involvement in cell cycle regulation during muscle differentiation. Biochim Biophys Acta 2008;1783:1023–1035.
  • Tsukamoto Y, Hijiya N, Yano S, Yokoyama S, Nakada C, Uchida T, Matsuura K, Moriyama M. Arpp/Ankrd2, a member of the muscle ankyrin repeat proteins (MARPs), translocates from the I-band to the nucleus after muscle injury. Histochem Cell Biol 2008;129:55–64.
  • McKoy G, Hou Y, Yang SY, Vega Avelaira D, Degens H, Goldspink G, Coulton GR. Expression of Ankrd2 in fast and slow muscles and its response to stretch are consistent with a role in slow muscle function. J Appl Physiol 2005;98:2337–2343.
  • Lehti TM, Silvennoinen M, Kivela R, Kainulainen H, Komulainen J. Effects of streptozotocin-induced diabetes and physical training on gene expression of titin-based stretch-sensing complexes in mouse striated muscle. Am J Physiol Endocrinol Metab 2007;292:E533–542.
  • Braun T, Gautel M. Transcriptional mechanisms regulating skeletal muscle differentiation, growth and homeostasis. Nat Rev Mol Cell Biol 2011;12:349–361.
  • Bean C, Salamon M, Raffaello A, Campanaro S, Pallavicini A, Lanfranchi G. The Ankrd2, Cdkn1c and calcyclin genes are under the control of MyoD during myogenic differentiation. J Mol Biol 2005;349:349–366.
  • Kojic S, Nestorovic A, Rakicevic L, Belgrano A, Stankovic M, Divac A, Faulkner G. A novel role for cardiac ankyrin repeat protein Ankrd1/CARP as a co-activator of the p53 tumor suppressor protein. Arch Biochem Biophys 2010;502:60–67.
  • Blais A, Tsikitis M, Acosta-Alvear D, Sharan R, Kluger Y, Dynlacht BD. An initial blueprint for myogenic differentiation. Genes Dev 2005;19:553–569
  • Weintraub H, Hauschka S, Tapscott SJ. The MCK enhancer contains a p53 responsive element. Proc Natl Acad Sci USA 1991;88:4570–4571.
  • Tamir Y, Bengal E. p53 protein is activated during muscle differentiation and participates with MyoD in the transcription of muscle creatine kinase gene. Oncogene 1998;17:347–356.
  • Ruiz-Lozano P, Hixon ML, Wagner MW, Flores AI, Ikawa S, Baldwin AS, Jr., Chien KR, Gualberto A. P53 is a transcriptional activator of the muscle-specific phosphoglycerate mutase gene and contributes in vivo to the control of its cardiac expression. Cell Growth Differ 1999;10:295–306.
  • Takimoto E, Mizuno T, Terasaki F, Shimoyama M, Honda H, Shiojima I, Hiroi Y, et al. Up-regulation of natriuretic peptides in the ventricle of Csx/Nkx2-5 transgenic mice. Biochem Biophys Res Commun 2000;270:1074–1079.
  • van Loo PF, Mahtab EA, Wisse LJ, Hou J, Grosveld F, Suske G, Philipsen S, Gittenberger-de Groot AC. Transcription factor Sp3 knockout mice display serious cardiac malformations. Mol Cell Biol 2007;27:8571–8582.
  • Redfern CH, Degtyarev MY, Kwa AT, Salomonis N, Cotte N, Nanevicz T, Fidelman N, et al. Conditional expression of a Gi-coupled receptor causes ventricular conduction delay and a lethal cardiomyopathy. Proc Natl Acad Sci USA 2000;97:4826–4831.
  • Clerk A, Michael A, Sugden PH. Stimulation of the p38 mitogen-activated protein kinase pathway in neonatal rat ventricular myocytes by the G protein-coupled receptor agonists, endothelin-1 and phenylephrine: A role in cardiac myocyte hypertrophy? J Cell Biol 1998;142:523–535.
  • Pracyk JB, Tanaka K, Hegland DD, Kim KS, Sethi R, Rovira, II, Blazina DR, et al. A requirement for the Rac1 GTPase in the signal transduction pathway leading to cardiac myocyte hypertrophy. J Clin Invest 1998;102:929–937
  • Sussman MA, Welch S, Walker A, Klevitsky R, Hewett TE, Price RL, Schaefer E, Yager K. Altered focal adhesion regulation correlates with cardiomyopathy in mice expressing constitutively active Rac1. J Clin Invest 2000;105:875–886.
  • Clerk A, Sugden PH. Small guanine nucleotide-binding proteins and myocardial hypertrophy. Circ Res 2000;86:1019–1023.
  • Zetser A, Gredinger E, Bengal E. P38 mitogen-activated protein kinase pathway promotes skeletal muscle differentiation. Participation of the MEF2C transcription factor. J Biol Chem 1999;274:5193–5200
  • Roux PP, Blenis J. Erk and p38 mapk-activated protein kinases: A family of protein kinases with diverse biological functions. Microbiol Mol Biol Rev 2004;68:320–344.
  • Maeda T, Sepulveda J, Chen HH, Stewart AF. Alpha(1)-adrenergic activation of the cardiac ankyrin repeat protein gene in cardiac myocytes. Gene 2002;297:1–9.
  • Zolk O, Marx M, Jackel E, El-Armouche A, Eschenhagen T. Beta-adrenergic stimulation induces cardiac ankyrin repeat protein expression: Involvement of protein kinase A and calmodulin-dependent kinase. Cardiovasc Res 2003;59:563–572.
  • Barki-Harrington L, Perrino C, Rockman HA. Network integration of the adrenergic system in cardiac hypertrophy. Cardiovasc Res 2004;63:391–402.
  • Kanai H, Tanaka T, Aihara Y, Takeda S, Kawabata M, Miyazono K, Nagai R, Kurabayashi M. Transforming growth factor-beta/Smads signaling induces transcription of the cell type-restricted ankyrin repeat protein CARP gene through CAGA motif in vascular smooth muscle cells. Circ Res 2001;88:30–36.
  • Boengler K, Pipp F, Fernandez B, Ziegelhoeffer T, Schaper W, Deindl E. Arteriogenesis is associated with an induction of the cardiac ankyrin repeat protein (CARP). Cardiovasc Res 2003;59:573–581.
  • Wu CL, Kandarian SC, Jackman RW. Identification of genes that elicit disuse muscle atrophy via the transcription factors p50 and Bcl-3. PLoS One; 2011;6:e16171.
  • Han XJ, Chae JK, Lee MJ, You KR, Lee BH, Kim DG. Involvement of GADD153 and cardiac ankyrin repeat protein in hypoxia-induced apoptosis of H9c2 cells. J Biol Chem 2005;280:23122–23129.
  • Mohamed JS, Lopez MA, Cox GA, Boriek AM. Anisotropic regulation of Ankrd2 gene expression in skeletal muscle by mechanical stretch. Faseb J. 2010;24:3330–3340
  • Barash IA, Bang ML, Mathew L, Greaser ML, Chen J, Lieber RL. Structural and regulatory roles of muscle ankyrin repeat protein family in skeletal muscle. Am J Physiol Cell Physiol 2007;293:C218–227.
  • Velders M, Legerlotz K, Falconer SJ, Stott NS, McMahon CD, Smith HK. Effect of botulinum toxin A-induced paralysis and exercise training on mechanosensing and signalling gene expression in juvenile rat gastrocnemius muscle. Exp Physiol 2008;93:1273–1283
  • Bang ML, Mudry RE, McElhinny AS, Trombitas K, Geach AJ, Yamasaki R, Sorimachi H, Granzier H, Gregorio CC, Labeit S. Myopalladin, a novel 145-kilodalton sarcomeric protein with multiple roles in Z-disc and I-band protein assemblies. J Cell Biol 2001;153:413–427.
  • Harvey RP, Biben C, Elliot D. Transcriptional control and pattern formation in the developing vertebrate heart: Studies on NK-2 class homeodomain factors. In: Harvey PR, Rosenthal N, eds. Heart Development;.San Diego: Informa Healthcare, 1999:111–130.
  • Nguyen-Tran VTB, Chen J, Ruiz-Lozano P, Chien KR. The MLC-2 paradigm for ventricular heart chamber specification, maturation, and morphogenesis. In: Harvey RP, Rosenthal N, eds. Heart Development. San Diego: Academic Press, 1999:255–272.
  • Chen EH, Olson EN. Towards a molecular pathway for myoblast fusion in Drosophila. Trends Cell Biol 2004;14:452–460
  • Horsley V, Pavlath GK. Forming a multinucleated cell: Molecules that regulate myoblast fusion. Cells Tissues Organs 2004;176:67–78.
  • Krauss RS, Cole F, Gaio U, Takaesu G, Zhang W, Kang JS. Close encounters: Regulation of vertebrate skeletal myogenesis by cell-cell contact. J Cell Sci 2005;118:2355–2362.
  • Cenni V, Bavelloni A, Beretti F, Tagliavini F, Manzoli L, Lattanzi G, Maraldi NM, Cocco L, Marmiroli S. Ankrd2/arpp is a novel Akt2 specific substrate and regulates myogenic differentiation upon cellular exposure to H2O2. Mol Biol Cell 2011;22:2946–2956.
  • Heron-Milhavet L, Franckhauser C, Rana V, Berthenet C, Fisher D, Hemmings BA, Fernandez A, Lamb NJ. Only Akt1 is required for proliferation, while Akt2 promotes cell cycle exit through p21 binding. Mol Cell Biol 2006;26:8267–8280.
  • Akazawa H, Komuro I. Roles of cardiac transcription factors in cardiac hypertrophy. Circ Res 2003;92:1079–1088.
  • Takebayashi-Suzuki K, Pauliks LB, Eltsefon Y, Mikawa T. Purkinje fibers of the avian heart express a myogenic transcription factor program distinct from cardiac and skeletal muscle. Dev Biol 2001;234:390–401.
  • Bassel-Duby R, Olson EN. Signaling pathways in skeletal muscle remodeling. Annu Rev Biochem 2006;75:19–37.
  • Samaras SE, Shi Y, Davidson JM. CARP: Fishing for novel mechanisms of neovascularization. J Investig Dermatol Symp Proc 2006;11:124–131.
  • Stam FJ, MacGillavry H, Armstrong N, de Gunst MC, Yhang Y, van Kesteren RE, Smit AB, Verhaagen J. Identification of candidate transcriptional modulators involved in successfulregeneration after nerve injury. Eur J Neurosci 2007;25:3629–3637.
  • Witt CC, Witt SH, Lerche S, Labeit D, Back W, Labeit S. Cooperative control of striated muscle mass and metabolism by MURF1 and MURF2. EMBO J. 2008;27:350–360.
  • Lane DP, Crawford LV. T antigen is bound to a host protein in SV40-transformed cells. Nature 1979;278:261–263.
  • Lane DP. Cancer. P53, guardian of the genome. Nature 1992;358:15–16
  • Levine AJ. P53, the cellular gatekeeper for growth and division. Cell. 1997;88:323–331
  • Vogelstein B, Lane D, Levine AJ. Surfing the p53 network. Nature. 2000;408:307–310.
  • Momand J, Zambetti GP, Olson DC, George D, Levine AJ. The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell 1992;69:1237–1245.
  • Li M, Brooks CL, Wu-Baer F, Chen D, Baer R, Gu W. Mono- versus polyubiquitination: Differential control of p53 fate by MDM2. Science 2003;302:1972–1975.
  • Brooks CL, Gu W. Ubiquitination, phosphorylation and acetylation: The molecular basis for p53 regulation. Curr Opin Cell Biol 2003;15:164–171.
  • Levine AJ, Hu W, Feng Z. The p53 pathway: What questions remain to be explored? Cell Death Differ 2006;13:1027–1036.
  • Vousden KH, Prives C. Blinded by the light: The growing complexity of p53. Cell 2009;137:413–431.
  • Soddu S, Blandino G, Scardigli R, Coen S, Marchetti A, Rizzo MG, Bossi G, Cimino L, Crescenzi M, Sacchi A. Interference with p53 protein inhibits hematopoietic and muscle differentiation. J Cell Biol 1996;134:193–204.
  • Porrello A, Cerone MA, Coen S, Gurtner A, Fontemaggi G, Cimino L, Piaggio G, Sacchi A, Soddu S. P53 regulates myogenesis by triggering the differentiation activity of pRb. J Cell Biol 2000;151:1295–1304.
  • Khidr L, Chen PL. Rb, the conductor that orchestrates life, death and differentiation. Oncogene 2006;25:5210–5219.
  • Donehower LA, Harvey M, Slagle BL, McArthur MJ, Montgomery CA, Butel JS, Bradley A. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 1992;356:215–221.
  • Kim KK, Soonpaa MH, Daud AI, Koh GY, Kim JS, Field LJ. Tumor suppressor gene expression during normal and pathologic myocardial growth. J Biol Chem 1994;269:22607–22613
  • Siu PM, Alway SE. Subcellular responses of p53 and Id2 in fast and slow skeletal muscle in response to stretch-induced overload. J Appl Physiol 2005;99:1897–1904.
  • Siu PM, Alway SE. Id2 and p53 participate in apoptosis during unloading-induced muscle atrophy. Am J Physiol Cell Physiol 2005;288:C1058–1073.
  • Leri A, Claudio PP, Li Q, Wang X, Reiss K, Wang S, Malhotra A, Kajstura J, Anversa P. Stretch-mediated release of angiotensin II induces myocyte apoptosis by activating p53 that enhances the local renin-angiotensin system and decreases the Bcl-2-to-Bax protein ratio in the cell. J Clin Invest 1998;101:1326–1342.
  • Liao XD, Wang XH, Jin HJ, Chen LY, Chen Q. Mechanical stretch induces mitochondria-dependent apoptosis in neonatal rat cardiomyocytes and G2/M accumulation in cardiac fibroblasts. Cell Res 2004;14:16–26.
  • Leri A, Fiordaliso F, Setoguchi M, Limana F, Bishopric NH, Kajstura J, Webster K, Anversa P. Inhibition of p53 function prevents renin-angiotensin system activation and stretch-mediated myocyte apoptosis. Am J Pathol 2000;157:843–857.
  • Kohno K, Izumi H, Uchiumi T, Ashizuka M, Kuwano M. The pleiotropic functions of the Y-box-binding protein, YB-1. Bioessays 2003;25:691–698
  • Wolffe AP. Structural and functional properties of the evolutionarily ancient Y-box family of nucleic acid binding proteins. Bioessays 1994;16:245–251.
  • Matsumoto K, Wolffe AP. Gene regulation by Y-box proteins: Coupling control of transcription and translation. Trends Cell Biol 1998;8:318–323.
  • Sommerville J. Activities of cold-shock domain proteins in translation control. Bioessays 1999;21:319–325.
  • Koike K, Uchiumi T, Ohga T, Toh S, Wada M, Kohno K, Kuwano M. Nuclear translocation of the Y-box binding protein by ultraviolet irradiation. FEBS Lett 1997;417:390–394.
  • Ohga T, Uchiumi T, Makino Y, Koike K, Wada M, Kuwano M, Kohno K. Direct involvement of the Y-box binding protein YB-1 in genotoxic stress-induced activation of the human multidrug resistance 1 gene. J Biol Chem 1998;273:5997–6000.
  • Stein U, Jurchott K, Walther W, Bergmann S, Schlag PM, Royer HD. Hyperthermia-induced nuclear translocation of transcription factor YB-1 leads to enhanced expression of multidrug resistance-related abc transporters. J Biol Chem 2001;276:28562–28569.
  • Bargou RC, Jurchott K, Wagener C, Bergmann S, Metzner S, Bommert K, Mapara MY, et al. Nuclear localization and increased levels of transcription factor YB-1 in primary human breast cancers are associated with intrinsic MDR1 gene expression. Nat Med 1997;3:447–450.
  • Janz M, Harbeck N, Dettmar P, Berger U, Schmidt A, Jurchott K, Schmitt M, Royer HD. Y-box factor YB-1 predicts drug resistance and patient outcome in breast cancer independent of clinically relevant tumor biologic factors HER2, uPA and PAI-1. Int J Cancer 2002;97:278–282.
  • Lasham A, Moloney S, Hale T, Homer C, Zhang YF, Murison JG, Braithwaite AW, Watson J. The Y-box-binding protein, YB1, is a potential negative regulator of the p53 tumor suppressor. J Biol Chem. 2003;278:35516–35523.
  • Okamoto T, Izumi H, Imamura T, Takano H, Ise T, Uchiumi T, Kuwano M, Kohno K. Direct interaction of p53 with the Y-box binding protein, YB-1: A mechanism for regulation of human gene expression. Oncogene 2000;19:6194–6202.
  • Song YJ, Lee H. YB1/p32, a nuclear Y-box binding protein 1, is a novel regulator of myoblast differentiation that interacts with Msx1 homeoprotein. Exp Cell Res 2010;316:517–529.
  • O’Brien TX, Lee KJ, Chien KR. Positional specification of ventricular myosin light chain 2 expression in the primitive murine heart tube. Proc Natl Acad Sci USA 1993;90:5157–5161.
  • Morimoto S. Sarcomeric proteins and inherited cardiomyopathies. Cardiovasc Res 2008;77:659–666.
  • Satoh M, Takahashi M, Sakamoto T, Hiroe M, Marumo F, Kimura A. Structural analysis of the titin gene in hypertrophic cardiomyopathy: Identification of a novel disease gene. Biochem Biophys Res Commun 1999;262:411–417.
  • Matsumoto Y, Hayashi T, Inagaki N, Takahashi M, Hiroi S, Nakamura T, Arimura T, et al. Functional analysis of titin/connectin N2-B mutations found in cardiomyopathy. J Muscle Res Cell Motil 2005;26:367–374.
  • Gerull B, Gramlich M, Atherton J, McNabb M, Trombitas K, Sasse-Klaassen S, Seidman JG, et al. Mutations of TTN, encoding the giant muscle filament titin, cause familial dilated cardiomyopathy. Nat Genet 2002;30:201–204.
  • Itoh-Satoh M, Hayashi T, Nishi H, Koga Y, Arimura T, Koyanagi T, Takahashi M, et al. Titin mutations as the molecular basis for dilated cardiomyopathy. Biochem Biophys Res Commun 2002;291:385–393.
  • Geier C, Perrot A, Ozcelik C, Binner P, Counsell D, Hoffmann K, Pilz B, et al. Mutations in the human muscle LIM protein gene in families with hypertrophic cardiomyopathy. Circulation 2003;107:1390–1395
  • Mohapatra B, Jimenez S, Lin JH, Bowles KR, Coveler KJ, Marx JG, Chrisco MA, et al. Mutations in the muscle LIM protein and alpha-actinin-2 genes in dilated cardiomyopathy and endocardial fibroelastosis. Mol Genet Metab 2003;80:207–215.
  • Osio A, Tan L, Chen SN, Lombardi R, Nagueh SF, Shete S, Roberts R, et al. Myozenin 2 is a novel gene for human hypertrophic cardiomyopathy. Circ Res 2007;100:766–768.
  • Vatta M, Mohapatra B, Jimenez S, Sanchez X, Faulkner G, Perles Z, Sinagra G, et al. Mutations in Cypher/ZASP in patients with dilated cardiomyopathy and left ventricular non-compaction. J Am Coll Cardiol 2003;42:2014–2027
  • Greenberg SA, Walsh RJ. Molecular diagnosis of inheritable neuromuscular disorders. Part II: Application of genetic testing in neuromuscular disease. Muscle Nerve. 2005;31:431–451.
  • Amato AA, Griggs RC. Overview of the muscular dystrophies. Handb Clin Neurol 2011;101:1–9
  • Morrison LA. Dystrophinopathies. Handb Clin Neurol 2011;101:11–39.
  • Cohn RD. Dystroglycan: Important player in skeletal muscle and beyond. Neuromuscul Disord 2005;15:207–217.
  • Ervasti JM, Sonnemann KJ. Biology of the striated muscle dystrophin-glycoprotein complex. Int Rev Cytol 2008;265:191–225
  • Koenig M, Beggs AH, Moyer M, Scherpf S, Heindrich K, Bettecken T, Meng G, et al. The molecular basis for Duchenne versus Becker muscular dystrophy: Correlation of severity with type of deletion. Am J Hum Genet 1989;45:498–506.
  • Daniele N, Richard I, Bartoli M. Ins and outs of therapy in limb girdle muscular dystrophies. Int J Biochem Cell Biol 2007;39:1608–1624.
  • van der Kooi AJ, Ledderhof TM, de Voogt WG, Res CJ, Bouwsma G, Troost D, Busch HF, et al. A newly recognized autosomal dominant limb girdle muscular dystrophy with cardiac involvement. Ann Neurol 1996;39:636–642
  • Urtasun M, Saenz A, Roudaut C, Poza JJ, Urtizberea JA, Cobo AM, Richard I, et al. Limb-girdle muscular dystrophy in Guipuzcoa (Basque Country, Spain). Brain 1998;121 (Pt 9):1735–1747.
  • Tawil R, Figlewicz DA, Griggs RC, Weiffenbach B. Facioscapulohumeral dystrophy: A distinct regional myopathy with a novel molecular pathogenesis. FSH consortium. Ann Neurol 1998;43:279–282.
  • Orrell RW. Facioscapulohumeral dystrophy and scapuloperoneal syndromes. Handb Clin Neurol 2011;101:167–180
  • Wijmenga C, Hewitt JE, Sandkuijl LA, Clark LN, Wright TJ, Dauwerse HG, Gruter AM, et al. Chromosome 4q DNA rearrangements associated with facioscapulohumeral muscular dystrophy. Nat Genet1992;2:26–30.
  • van Deutekom JC, Wijmenga C, van Tienhoven EA, Gruter AM, Hewitt JE, Padberg GW, van Ommen GJ, et al. FSHD associated DNA rearrangements are due to deletions of integral copies of a 3.2 kb tandemly repeated unit. Hum Mol Genet 1993;2:2037–2042.
  • Sparks SE, Escolar DM. Congenital muscular dystrophies. Handb Clin Neurol 2011;101:47–79.
  • Mostacciuolo ML, Miorin M, Martinello F, Angelini C, Perini P, Trevisan CP. Genetic epidemiology of congenital muscular dystrophy in a sample from north-east Italy. Hum Genet 1996;97:277–279.
  • Darin N, Kimber E, Kroksmark AK, Tulinius M. Multiple congenital contractures: Birth prevalence, etiology, and outcome. J Pediatr 2002;140:61–67.
  • Nakada C, Tsukamoto Y, Oka A, Nonaka I, Sato K, Mori S, Ito H, Moriyama M. Altered expression of Arpp protein in skeletal muscles of patients with muscular dystrophy, congenital myopathy and spinal muscular atrophy. Pathobiology 2004;71:43–51.
  • Goebel HH. Congenital myopathies. In: Karpati G, Hilton-Jones D, Griggs RC, eds. Disorders of Voluntary Muscle. Cambridge: Cambridge University Press, 2001:525–540.
  • North K. What’s new in congenital myopathies? Neuromuscul Disord 2008;18:433–442.
  • Laporte J, Hu LJ, Kretz C, Mandel JL, Kioschis P, Coy JF, Klauck SM, et al. A gene mutated in X-linked myotubular myopathy defines a new putative tyrosine phosphatase family conserved in yeast. Nat Genet 1996;13:175–182.
  • Clague MJ, Lorenzo O. The myotubularin family of lipid phosphatases. Traffic 2005;6:1063–1069
  • Di Paolo G, De Camilli P. Phosphoinositides in cell regulation and membrane dynamics. Nature 2006;443:651–657.
  • Robinson FL, Dixon JE. Myotubularin phosphatases: Policing 3-phosphoinositides. Trends Cell Biol 2006;16:403–412.
  • Nicot AS, Laporte J. Endosomal phosphoinositides and human diseases. Traffic 2008;9:1240–1249.
  • Al-Qusairi L, Weiss N, Toussaint A, Berbey C, Messaddeq N, Kretz C, Sanoudou D, et al. T-tubule disorganization and defective excitation-contraction coupling in muscle fibers lacking myotubularin lipid phosphatase. Proc Natl Acad Sci USA 2009;106:18763–18768.
  • D’Amico A, Bertini E. Congenital myopathies. Curr Neurol Neurosci Rep 2008;8:73–79.
  • Sanoudou D, Beggs AH. Clinical and genetic heterogeneity in nemaline myopathy-a disease of skeletal muscle thin filaments. Trends Mol Med 2001;7:362–368
  • Lunn MR, Wang CH. Spinal muscular atrophy. Lancet 2008;371:2120–2133.
  • Prevalence of rare diseases: Bibliographic data ORS, Rare Diseases collection, May 2011, Number 1: Listed in alphabetical order of diseases. Available at: http://www.orpha.net/orphacom/cahiers/docs/GB/Prevalence_of_rare_diseases_by_alphabetical_list.pdf.
  • Lefebvre S, Burglen L, Reboullet S, Clermont O, Burlet P, Viollet L, Benichou B, et al. Identification and characterization of a spinal muscular atrophy-determining gene. Cell 1995;80:155–165.
  • Heffner RR, Schochet SS. Skeletal muscle. In: Damjanov I, Linder J eds. Anderson’s Pathology. St Louis: Mosby, 1996:2653–2690.
  • Kiernan MC, Vucic S, Cheah BC, Turner MR, Eisen A, Hardiman O, Burrell JR, Zoing MC. Amyotrophic lateral sclerosis. Lancet 2011;377:942–955.
  • Logroscino G, Traynor BJ, Hardiman O, Chio A, Mitchell D, Swingler RJ, Millul A, et al. Incidence of amyotrophic lateral sclerosis in Europe. J Neurol Neurosurg Psychiatry 2009;81:385–390.
  • Pasinelli P, Brown RH. Molecular biology of amyotrophic lateral sclerosis: Insights from genetics. Nat Rev Neurosci 2006;7:710–723.
  • Rosen DR. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 1993;364:362.
  • Banker BQ. The pathology of the motor neuron disorders. In: Engel AG, Banker BQ, eds.Myology. New York: McGraw-Hill, 1986:2031–2069.
  • Barber SC, Mead RJ, Shaw PJ. Oxidative stress in ALS: A mechanism of neurodegeneration and a therapeutic target. Biochim Biophys Acta 2006;1762:1051–1067.
  • Leal J, Luengo-Fernandez R, Gray A, Petersen S, Rayner M. Economic burden of cardiovascular diseases in the enlarged European union. Eur Heart J 2006;27:1610–1619.
  • Maron BJ, Towbin JA, Thiene G, Antzelevitch C, Corrado D, Arnett D, Moss AJ, Seidman CE, Young JB. Contemporary definitions and classification of the cardiomyopathies: An American heart association scientific statement from the council on clinical cardiology, heart failure and transplantation committee; quality of care and outcomes research and functional genomics and translational biology interdisciplinary working groups; and council on epidemiology and prevention. Circulation 2006;113:1807–1816.
  • Kimura A. Molecular basis of hereditary cardiomyopathy: Abnormalities in calcium sensitivity, stretch response, stress response and beyond. J Hum Genet 2010;55:81–90.
  • Arimura T, Bos JM, Sato A, Kubo T, Okamoto H, Nishi H, Harada H, et al. Cardiac ankyrin repeat protein gene (Ankrd1) mutations in hypertrophic cardiomyopathy. J Am Coll Cardiol 2009;54:334–342.
  • Duboscq-Bidot L, Charron P, Ruppert V, Fauchier L, Richter A, Tavazzi L, Arbustini E, et al. Mutations in the Ankrd1 gene encoding CARP are responsible for human dilated cardiomyopathy. Eur Heart J 2009;30:2128–2136.
  • Moulik M, Vatta M, Witt SH, Arola AM, Murphy RT, McKenna WJ, Boriek AM, et al. Ankrd1, the gene encoding cardiac ankyrin repeat protein, is a novel dilated cardiomyopathy gene. J Am Coll Cardiol 2009;54:325–333.
  • Swynghedauw B. Molecular mechanisms of myocardial remodeling. Physiol Rev 1999;79:215–262.
  • Swynghedauw B, Baillard C. Biology of hypertensive cardiopathy. Curr Opin Cardiol 2000;15:247–253.
  • Burns T, El-Deiry W. Cell death signaling in malignancy. In: Frank DA, ed Signal Transduction in Cancer. New York: Kluwer Academic Publishers, 2004:319–343.
  • Zambetti GP. The p53 Tumor Suppressor Pathway and Cancer. New York: Springer, 2005:199–225.
  • Frank DA. STAT signaling in cancer: Insights into pathogenesis and treatment strategies. In: Frank DA, ed. Signal Transduction in Cancer. New York: Kluwer Academic Publishers, 2004:267–293.
  • Dreesen O, Brivanlou AH. Signaling pathways in cancer and embryonic stem cells. Stem Cell Rev 2007;3:7–17.
  • Ball D, Leach S. Notch in malignancy. In: Frank DA, ed. Signal Transduction in Cancer. New York: Kluwer Academic Publishers, 2004:95–123.
  • Dhillon AS, Hagan S, Rath O, Kolch W. MAP kinase signalling pathways in cancer. Oncogene 2007;26:3279–3290.
  • Paez J, Sellers W. PI3K/PTEN/Akt pathway, a critical mediator of oncogenic signaling. In: Frank DA, ed. Signal Transduction in Cancer. New York: Kluwer Academic Publishers, 2004:145–169.
  • Gilmore T. The Rel/NF-κB/IκB signal transduction pathway and cancer. In: Frank DA, ed. Signal Transduction in Cancer. New York: Kluwer Academic Publishers, 2004:241–267.
  • Morin P, Weeraratna A. Wnt signaling in human cancer. In: Frank DA, ed. Signal Transduction in Cancer. New York: Kluwer Academic Publishers. 2004:169–189.
  • Bian Y, Kaklamani V, Reich J, Pasche B. TGF-β signaling alterations in cancer. In: Frank DA, ed. Signal Transduction in Cancer. New York: Kluwer Academic Publishers, 2004:73–95.
  • Jacks T, Remington L, Williams BO, Schmitt EM, Halachmi S, Bronson RT, Weinberg RA. Tumor spectrum analysis in p53-mutant mice.Curr Biol 1994;4:1–7
  • Levine AJ, Finlay CA, Hinds PW. P53 is a tumor suppressor gene. Cell 2004;116:S67–69.
  • Olivier M, Hussain SP, Caron de Fromentel C, Hainaut P, Harris CC. TP53 mutation spectra and load: A tool for generating hypotheses on the etiology of cancer. IARC Sci Publ 2004;247–270.
  • Elliott RL, Blobe GC. Role of transforming growth factor beta in human cancer.J Clin Oncol 2005;23:2078–2093
  • Sparks AB, Morin PJ, Vogelstein B, Kinzler KW. Mutational analysis of the APC/beta-catenin/Tcf pathway in colorectal cancer.Cancer Res 1998;58:1130–1134
  • Labbe E, Lock L, Letamendia A, Gorska AE, Gryfe R, Gallinger S, Moses HL, Attisano L. Transcriptional cooperation between the transforming growth factor-beta and Wnt pathways in mammary and intestinal tumorigenesis. Cancer Res 2007;67:75–84.
  • Ishiguro N, Motoi T, Araki N, Ito H, Moriyama M, Yoshida H. Expression of cardiac ankyrin repeat protein, CARP, in malignant tumors: Diagnostic use of CARP protein immunostaining in rhabdomyosarcoma. Hum Pathol 2008;39:1673–1679.
  • Ishiguro N, Motoi T, Osaki M, Araki N, Minamizaki T, Moriyama M, Ito H, Yoshida H. Immunohistochemical analysis of a muscle ankyrin-repeat protein, Arpp, in paraffin-embedded tumors: Evaluation of Arpp as a tumor marker for rhabdomyosarcoma. Hum Pathol 2005;36:620–625.
  • Scurr LL, Guminski AD, Chiew YE, Balleine RL, Sharma R, Lei Y, Pryor K, Wain GV, Brand A, Byth K, Kennedy C, Rizos H, Harnett PR, deFazio A. Ankyrin repeat domain 1, Ankrd1, a novel determinant of cisplatin sensitivity expressed in ovarian cancer. Clin Cancer Res 2008;14:6924–6932.
  • Shomori K, Nagashima Y, Kuroda N, Honjo A, Tsukamoto Y, Tokuyasu N, Maeta N, Matsuura K, Hijiya N, Yano S, Yokoyama S, Ito H, Moriyama M. Arpp protein is selectively expressed in renal oncocytoma, but rarely in renal cell carcinomas. Mod Pathol 2007;20:199–207.
  • Arndt CA, Crist WM. Common musculoskeletal tumors of childhood and adolescence. N Engl J Med 1999;341:342–352.
  • Parham DM, Ellison DA. Rhabdomyosarcomas in adults and children: An update. Arch Pathol Lab Med 2006;130:1454–1465.
  • Morotti RA, Nicol KK, Parham DM, Teot LA, Moore J, Hayes J, Meyer W, Qualman SJ. An immunohistochemical algorithm to facilitate diagnosis and subtyping of rhabdomyosarcoma: The children’s oncology group experience. Am J Surg Pathol 2006;30:962–968.
  • Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T, Thun MJ. Cancer statistics, 2008. CA Cancer J Clin 2008;58:71–96
  • Dinh P, Harnett P, Piccart-Gebhart MJ, Awada A. New therapies for ovarian cancer: Cytotoxics and molecularly targeted agents. Crit Rev Oncol Hematol 2008;67:103–112.
  • Fehrmann RS, Li XY, van der Zee AG, de Jong S, Te Meerman GJ, de Vries EG, Crijns AP. Profiling studies in ovarian cancer: A review. Oncologist 2007;12:960–966.
  • Lieber MM. Renal oncocytoma: Prognosis and treatment. Eur Urol 1990;18 Suppl 2:17–21.
  • Zerban H, Nogueira E, Riedasch G, Bannasch P. Renal oncocytoma: Origin from the collecting duct. Virchows Arch B Cell Pathol Incl Mol Pathol 1987;52:375–387.
  • Morra MN, Das S. Renal oncocytoma: A review of histogenesis, histopathology, diagnosis and treatment. J Urol 1993;150:295–302.
  • Yusenko MV. Molecular pathology of renal oncocytoma: A review. Int J Urol 2010;17:602–612.
  • Licht MR, Novick AC, Tubbs RR, Klein EA, Levin HS, Streem SB. Renal oncocytoma: Clinical and biological correlates. J Urol 1993;150:1380–1383.
  • Carrion R, Morgan BE, Tannenbaum M, Salup R, Morgan MB. Caveolin expression in adult renal tumors. Urol Oncol 2003;21:191–196
  • Gould CM, Diella F, Via A, Puntervoll P, Gemund C, Chabanis-Davidson S, Michael S, et al. ELM: The status of the 2010 eukaryotic linear motif resource. Nucleic Acids Res 2010;38:D167–180.
  • Rice P, Longden I, Bleasby A. EMBOSS: The European Molecular Biology Open Software Suite. Trends Genet 2000;16:276–277.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.