406
Views
16
CrossRef citations to date
0
Altmetric
Review Article

Characterization of immunoglobulin by mass spectrometry with applications for the clinical laboratory

&
Pages 91-102 | Received 01 Jul 2013, Accepted 22 Aug 2013, Published online: 24 Oct 2013

References

  • Coffman RL, Lebman DA, Rothman P. Mechanism and regulation of immunoglobulin isotype switching. Adv Immunol 1993;54:229–70
  • Conrad K, Roggenbuck D, Reinhold D, et al. Autoantibody diagnostics in clinical practice. Autoimmun Rev 2012;11:207–11
  • Belousov PV, Kuprash DV, Nedospasov SA, et al. Autoantibodies to tumor-associated antigens as cancer biomarkers. Curr Mol Med 2010;10:115–22
  • Stiehm RE. The four most common pediatric immunodeficiencies. Adv Exp Med Biol 2007;601:15–26
  • Maguire GA, Kumararatne DS, Joyce HJ. Are there any clinical indications for measuring IgG subclasses? Ann Clin Biochem 2002;39:374–7
  • Cabiedes J, Nunez-Alvarez CA. [Antinuclear antibodies]. Reumatologia Clinica 2010;6:224–30
  • Rollins G. Challenges and controversies in anti-nuclear antibody testing. Clin Lab News 2009;34:15
  • Alexander WR, Bremner JM, Duthie JJ. Incidence of the anti-nuclear factor in human sera. Ann Rheum Dis 1960;19:338–50
  • Mariz HA, Sato EI, Barbosa SH, et al. Pattern on the antinuclear antibody-HEp-2 test is a critical parameter for discriminating antinuclear antibody-positive healthy individuals and patients with autoimmune rheumatic diseases. Arthrit Rheumat 2011;63:191–200
  • Damoiseaux JGMC, Cohen Tervaert JW. From ANA to ENA: how to proceed? Autoimmun Rev 2006;5:10–17
  • Desplat-Jego S, Bardin N, Larida B, et al. Evaluation of the BioPlex 2200 ANA screen for the detection of antinuclear antibodies and comparison with conventional methods. Ann N Y Acad Sci 2007;1109:245–55
  • Kroshinsky D, Stone JH, Bloch DB, et al. Case records of the Massachusetts General Hospital. Case 5-2009. A 47-year-old woman with a rash and numbness and pain in the legs. New Engl J Med 2009;360:711–20
  • Tan EM, Smolen JS, McDougal JS, et al. A critical evaluation of enzyme immunoassays for detection of antinuclear autoantibodies of defined specificities. I. Precision, sensitivity, and specificity. Arthritis Rheumat 1999;42:455–64
  • Beck A, Wagner-Rousset E, Ayoub D, et al. Characterization of therapeutic antibodies and related products. Anal Chem 2013;85:715–36
  • Fenn JB, Mann M, Meng CK, et al. Electrospray ionization for mass spectrometry of large biomolecules. Science 1989;246:64–71
  • Karas M, Hillenkamp F. Laser desorption ionization of proteins with molecular masses exceeding 10 000 daltons. Anal Chem 1988;60:2299–301
  • Wilm M. Principles of electrospray ionization. Mol Cell Prot MCP 2011;10:M111 009407
  • Kafka AP, Kleffmann T, Rades T, et al. The application of MALDI TOF MS in biopharmaceutical research. Int J Pharmaceut 2011;417:70–82
  • Zhang Z, Pan H, Chen X. Mass spectrometry for structural characterization of therapeutic antibodies. Mass Spectrometr Rev 2009;28:147–76
  • Iida R, Yasuda T, Nadano D, et al. Kappa marker typing with high-performance liquid chromatography: identification of kappa marker specific tryptic peptide from the kappa light chain of immunoglobulin G. J Chromatogr 1993;622:9–12
  • Nebija D, Kopelent-Frank H, Urban E, et al. Comparison of two-dimensional gel electrophoresis patterns and MALDI-TOF MS analysis of therapeutic recombinant monoclonal antibodies trastuzumab and rituximab. J Pharmaceut Biomed Anal 2011;56:684–91
  • Bublitz R, Kreusch S, Ditze G, et al. Robust protein quantitation in chromatographic fractions using MALDI-MS of tryptic peptides. Proteomics 2006;6:3909–17
  • Zhang X, Luo Q, Apostol I, et al. Assessment of stable isotope incorporation into recombinant proteins. Anal Biochem 2013;433:137–49
  • Barr JR, Maggio VL, Patterson DG, et al. Isotope dilution – mass spectrometric quantification of specific proteins: model application with apolipoprotein A-I. Clin Chem 1996;42:1676–82
  • Barnidge DR, Goodmanson MK, Klee GG, et al. Absolute quantification of the model biomarker prostate-specific antigen in serum by LC-MS/MS using protein cleavage and isotope dilution mass spectrometry. J Prot Res 2004;3:644–52
  • Heudi O, Barteau S, Zimmer D, et al. Towards absolute quantification of therapeutic monoclonal antibody in serum by LC-MS/MS using isotope-labeled antibody standard and protein cleavage isotope dilution mass spectrometry. Anal Chem 2008;80:4200–7
  • Eng JK, McCormack AL, Yates Iii JR. An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J Am Soc Mass Spectrometry 1994;5:976–89
  • Perkins DN, Pappin DJ, Creasy DM, et al. Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 1999;20:3551–67
  • MacLean B, Eng JK, Beavis RC, et al. General framework for developing and evaluating database scoring algorithms using the TANDEM search engine. Bioinformatics 2006;22:2830–2
  • Ma B, Zhang K, Hendrie C, et al. PEAKS: powerful software for peptide de novo sequencing by tandem mass spectrometry. Rapid Commun Mass Spectrometry: RCM 2003;17:2337–42
  • Castellana NE, Pham V, Arnott D, et al. Template proteogenomics: sequencing whole proteins using an imperfect database. Mol Cell Prot 2010;9:1260–70
  • Sreedhara A, Cordoba A, Zhu Q, et al. Characterization of the isomerization products of aspartate residues at two different sites in a monoclonal antibody. Pharmaceut Res 2012;29:187–97
  • Qi P, Volkin DB, Zhao H, et al. Characterization of the photodegradation of a human IgG1 monoclonal antibody formulated as a high-concentration liquid dosage form. J Pharmaceut Sci 2009;98:3117–30
  • Boyd D, Kaschak T, Yan B. HIC resolution of an IgG1 with an oxidized Trp in a complementarity determining region. J Chromatogr B, Anal Technol Biomed Life Sci 2011;879:955–60
  • Beck A, Wagner-Rousset E, Bussat MC, et al. Trends in glycosylation, glycoanalysis and glycoengineering of therapeutic antibodies and Fc-fusion proteins. Curr Pharmaceut Biotechnol 2008;9:482–501
  • Jefferis R. Recombinant antibody therapeutics: the impact of glycosylation on mechanisms of action. Trends Pharmacol Sci 2009;30:356–62
  • Hodoniczky J, Zheng YZ, James DC. Control of recombinant monoclonal antibody effector functions by Fc N-glycan remodeling in vitro. Biotechnol Progr 2005;21:1644–52
  • Nimmerjahn F, Anthony RM, Ravetch JV. Agalactosylated IgG antibodies depend on cellular Fc receptors for in vivo activity. Proc Natl Acad Sci U S A 2007;104:8433–7
  • Marino K, Bones J, Kattla JJ, et al. A systematic approach to protein glycosylation analysis: a path through the maze. Nature Chem Biol 2010;6:713–23
  • Pabst M, Altmann F. Glycan analysis by modern instrumental methods. Proteomics 2011;11:631–43
  • Reusch D, Haberger M, Selman MH, et al. High-throughput work flow for IgG Fc-glycosylation analysis of biotechnological samples. Anal Biochem 2013;432:82–9
  • Gatlin CL, Eng JK, Cross ST, et al. Automated identification of amino acid sequence variations in proteins by HPLC/microspray tandem mass spectrometry. Anal Chem 2000;72:757–63
  • Yang Y, Strahan A, Li C, et al. Detecting low level sequence variants in recombinant monoclonal antibodies. MAbs 2010;2:285–98
  • Castellana NE, McCutcheon K, Pham VC, et al. Resurrection of a clinical antibody: template proteogenomic de novo proteomic sequencing and reverse engineering of an anti-lymphotoxin-α antibody. Proteomics 2011;11:395–405
  • Anderson L, Hunter CL. Quantitative mass spectrometric multiple reaction monitoring assays for major plasma proteins. Mol Cell Proteomics 2006;5:573–88
  • Duan X, Abuqayyas L, Dai L, et al. High-throughput method development for sensitive, accurate, and reproducible quantification of therapeutic monoclonal antibodies in tissues using orthogonal array optimization and nano liquid chromatography/selected reaction monitoring mass spectrometry. Anal Chem 2012;84:4373–82
  • Rose RJ, Damoc E, Denisov E, et al. High-sensitivity Orbitrap mass analysis of intact macromolecular assemblies. Nat Methods 2012;9:1084–6
  • Loo JA, Edmonds CG, Smith RD. Primary sequence information from intact proteins by electrospray ionization tandem mass spectrometry. Science 1990;248:201–4
  • Smith RD, Loo JA, Edmonds CG, et al. New developments in biochemical mass spectrometry: electrospray ionization. Anal Chem 1990;62:882–99
  • Kellie JF, Tran JC, Lee JE, et al. The emerging process of Top Down mass spectrometry for protein analysis: biomarkers, protein-therapeutics, and achieving high throughput. Mol Biosyst 2010;6:1532–9
  • Mortz E, O'Connor PB, Roepstorff P, et al. Sequence tag identification of intact proteins by matching tanden mass spectral data against sequence data bases. Proc Natl Acad Sci USA 1996;93:8264–7
  • Ashton DS, Beddell CR, Cooper DJ, et al. Mass spectrometry of the humanized monoclonal antibody CAMPATH 1H. Anal Chem 1995;67:835–42
  • Kukrer B, Filipe V, van Duijn E, et al. Mass spectrometric analysis of intact human monoclonal antibody aggregates fractionated by size-exclusion chromatography. Pharm Res 2010;27:2197–204
  • Labrijn AF, Rispens T, Meesters J, et al. Species-specific determinants in the IgG CH3 domain enable Fab-arm exchange by affecting the noncovalent CH3–CH3 interaction strength. J Immunol 2011;187:3238–46
  • Bondarenko PV, Second TP, Zabrouskov V, et al. Mass measurement and top-down HPLC/MS analysis of intact monoclonal antibodies on a hybrid linear quadrupole ion trap-Orbitrap mass spectrometer. J Am Soc Mass Spectrom 2009;20:1415–24
  • Prater BD, Connelly HM, Qin Q, et al. High-throughput immunoglobulin G N-glycan characterization using rapid resolution reverse-phase chromatography tandem mass spectrometry. Anal Biochem 2009;385:69–79
  • Zamani L, Lindholm J, Ilag LL, et al. Discrimination among IgG1-kappa monoclonal antibodies produced by two cell lines using charge state distributions in nanoESI-TOF mass spectra. J Am Soc Mass Spectrom 2009;20:1030–6
  • Chelius D, Ruf P, Gruber P, et al. Structural and functional characterization of the trifunctional antibody catumaxomab. MAbs 2010;2:309–19
  • Sundaram S, Matathia A, Qian J, et al. An innovative approach for the characterization of the isoforms of a monoclonal antibody product. MAbs 2011;3:505–12
  • Reid CQ, Tait A, Baldascini H, et al. Rapid whole monoclonal antibody analysis by mass spectrometry: an ultra scale-down study of the effect of harvesting by centrifugation on the post-translational modification profile. Biotechnol Bioeng 2010;107:85–95
  • Tsybin YO, Fornelli L, Stoermer C, et al. Structural analysis of intact monoclonal antibodies by electron transfer dissociation mass spectrometry. Anal Chem 2011;83:8919–27
  • Ren D, Pipes GD, Hambly D, et al. Top-down N-terminal sequencing of Immunoglobulin subunits with electrospray ionization time of flight mass spectrometry. Anal Biochem 2009;384:42–8
  • Resemann A, Wunderlich D, Rothbauer U, et al. Top-down de Novo protein sequencing of a 13.6 kDa camelid single heavy chain antibody by matrix-assisted laser desorption ionization-time-of-flight/time-of-flight mass spectrometry. Anal Chem 2010;82:3283–92
  • Nemeth-Cawley JF, Tangarone BS, Rouse JC. “Top Down” characterization is a complementary technique to peptide sequencing for identifying protein species in complex mixtures. J Proteome Res 2003;2:495–505
  • Yan B, Valliere-Douglass J, Brady L, et al. Analysis of post-translational modifications in recombinant monoclonal antibody IgG1 by reversed-phase liquid chromatography/mass spectrometry. J Chromatogr A 2007;1164:153–61
  • Gadgil HS, Bondarenko PV, Pipes GD, et al. The LC/MS analysis of glycation of IgG molecules in sucrose containing formulations. J Pharmaceut Sci 2007;96:2607–21
  • Gadgil HS, Bondarenko PV, Pipes GD, et al. Identification of cysteinylation of a free cysteine in the Fab region of a recombinant monoclonal IgG1 antibody using Lys-C limited proteolysis coupled with LC/MS analysis. Anal Biochem 2006;355:165–74
  • Ryan MH, Petrone D, Nemeth JF, et al. Proteolysis of purified IgGs by human and bacterial enzymes in vitro and the detection of specific proteolytic fragments of endogenous IgG in rheumatoid synovial fluid. Mol Immunol 2008;45:1837–46
  • Pipes GD, Campbell P, Bondarenko PV, et al. Middle-down fragmentation for the identification and quantitation of site-specific methionine oxidation in an IgG1 molecule. J Pharm Sci 2010;99:4469–76
  • Zhang J, Liu H, Katta V. Structural characterization of intact antibodies by high-resolution LTQ Orbitrap mass spectrometry. J Mass Spectrom 2010;45:112–20
  • Goetze AM, Zhang Z, Liu L, et al. Rapid LC-MS screening for IgG Fc modifications and allelic variants in blood. Mol Immunol 2011;49:338–52
  • Beck A, Bussat MC, Zorn N, et al. Characterization by liquid chromatography combined with mass spectrometry of monoclonal anti-IGF-1 receptor antibodies produced in CHO and NS0 cells. J Chromatogr B Analyt Technol Biomed Life Sci 2005;819:203–18
  • Kindt TJ, Capra CJ. The antibody enigma. New York: Plenum Press; 1984
  • Yancopoulos GD, Desiderio SV, Paskind M, et al. Preferential utilization of the most JH-proximal VH gene segments in pre-B-cell lines. Nature 1984;311:727–33
  • Berman JE, Nickerson KG, Pollock RR, et al. VH gene usage in humans: biased usage of the VH6 gene in immature B lymphoid cells. Eur J Immunol 1991;21:1311–4
  • Timmers E, Kenter M, Thompson A, et al. Diversity of immunoglobulin heavy chain gene segment rearrangement in B lymphoblastoid cell lines from X-linked agammaglobulinemia patients. Eur J Immunol 1991;21:2355–63
  • Jiang N, Weinstein JA, Penland L, et al. Determinism and stochasticity during maturation of the zebrafish antibody repertoire. Proc Natl Acad Sci USA 2011;108:5348–53
  • Weinstein JA, Jiang N, White RA, et al. High-throughput sequencing of the zebrafish antibody repertoire. Science 2009;324:807–10
  • Jiang N, He J, Weinstein JA, et al. Lineage structure of the human antibody repertoire in response to influenza vaccination. Sci Transl Med 2013;5:171ra19
  • Sehlin D, Hedlund M, Lord A, et al. Heavy-chain complementarity-determining regions determine conformation selectivity of anti-abeta antibodies. Neurodegener Dis 2011;8:117–23
  • VanDuijn MM, Dekker LJ, Zeneyedpour L, et al. Immune responses are characterized by specific shared immunoglobulin peptides that can be detected by proteomic techniques. J Biol Chem 2010;285:29247–53
  • de Costa D, Broodman I, Vanduijn MM, et al. Sequencing and quantifying IgG fragments and antigen-binding regions by mass spectrometry. J Proteome Res 2010;9:2937–45
  • Dekker LJ, Zeneyedpour L, Brouwer E, et al. An antibody-based biomarker discovery method by mass spectrometry sequencing of complementarity determining regions. Anal Bioanal Chem 2011;399:1081–91
  • Barnidge DR, Graham RP, Theis JD, et al. Monitoring plasma cell specific heavy chain variable region tryptic peptides in patients with multiple myeloma using LC-MS/MS. Data submitted for publication
  • Dunn GP, Bruce AT, Ikeda H, et al. Cancer immunoediting: from immunosurveillance to tumor escape. Nature Immunol 2002;3:991–8
  • Dunn GP, Old LJ, Schreiber RD. The immunobiology of cancer immunosurveillance and immunoediting. Immunity 2004;21:137–48
  • Coronella-Wood JA, Hersh EM. Naturally occurring B-cell responses to breast cancer. Cancer Immunol, Immunotherapy: CII 2003;52:715–38
  • Solassol J, Maudelonde T, Mange A, et al. Clinical relevance of autoantibody detection in lung cancer. J Thorac Oncol 2011;6:955–62
  • Murray PV, Soussi T, O'Brien ME, et al. Serum p53 antibodies: predictors of survival in small-cell lung cancer? Br J Cancer 2000;83:1418–24
  • Lubin R, Zalcman G, Bouchet L, et al. Serum p53 antibodies as early markers of lung cancer. Nature Med 1995;1:701–2
  • Cheung WC, Beausoleil SA, Zhang X, et al. A proteomics approach for the identification and cloning of monoclonal antibodies from serum. Nat Biotechnol 2012;30:447–52
  • Hedlund M, Padler-Karavani V, Varki NM, et al. Evidence for a human-specific mechanism for diet and antibody-mediated inflammation in carcinoma progression. Proc Natl Acad Sci USA 2008;105:18936–41
  • Padler-Karavani V, Hurtado-Ziola N, Pu M, et al. Human xeno-autoantibodies against a non-human sialic acid serve as novel serum biomarkers and immunotherapeutics in cancer. Cancer Res 2011;71:3352–63
  • Lu Q, Padler-Karavani V, Yu H, et al. LC-MS analysis of polyclonal human anti-Neu5Gc xeno-autoantibodies immunoglobulin G Subclass and partial sequence using multistep intravenous immunoglobulin affinity purification and multienzymatic digestion. Anal Chem 2012;84:2761–8
  • Broodman I, de Costa D, Stingl C, et al. Mass spectrometry analyses of kappa and lambda fractions result in increased number of complementarity-determining region identifications. Proteomics 2012;12:183–91
  • Gozzard P, Maddison P. Which antibody and which cancer in which paraneoplastic syndromes? Practical Neurol 2010;10:260–70
  • Maat P, VanDuijn M, Brouwer E, et al. Mass spectrometric detection of antigen-specific immunoglobulin peptides in paraneoplastic patient sera. J Autoimmun 2012;38:354–60
  • Daha MR. Role of complement in innate immunity and infections. Crit Rev Immunol 2010;30:47–52
  • Ruhaak LR, Uh HW, Beekman M, et al. Decreased levels of bisecting GlcNAc glycoforms of IgG are associated with human longevity. PloS one 2010;5:e12566
  • Ercan A, Cui J, Chatterton DE, et al. Aberrant IgG galactosylation precedes disease onset, correlates with disease activity, and is prevalent in autoantibodies in rheumatoid arthritis. Arthrit Rheumat 2010;62:2239–48
  • Alavi A, Arden N, Spector TD, et al. Immunoglobulin G glycosylation and clinical outcome in rheumatoid arthritis during pregnancy. J Rheumatol 2000;27:1379–85
  • Holland M, Takada K, Okumoto T, et al. Hypogalactosylation of serum IgG in patients with ANCA-associated systemic vasculitis. Clin Exp Immunol 2002;129:183–90
  • Wuhrer M, Porcelijn L, Kapur R, et al. Regulated glycosylation patterns of IgG during alloimmune responses against human platelet antigens. J Proteome Res 2009;8:450–6
  • Allhorn M, Briceno JG, Baudino L, et al. The IgG-specific endoglycosidase EndoS inhibits both cellular and complement-mediated autoimmune hemolysis. Blood 2010;115:5080–8
  • van Berkel PH, Gerritsen J, Perdok G, et al. N-linked glycosylation is an important parameter for optimal selection of cell lines producing biopharmaceutical human IgG. Biotechnol Progr 2009;25:244–51
  • Perdivara I, Peddada SD, Miller FW, et al. Mass spectrometric determination of IgG subclass-specific glycosylation profiles in siblings discordant for myositis syndromes. J Proteome Res 2011;10:2969–78
  • Selman MH, Niks EH, Titulaer MJ, et al. IgG fc N-glycosylation changes in Lambert-Eaton myasthenic syndrome and myasthenia gravis. J Proteome Res 2011;10:143–52
  • Julian BA, Waldo FB, Rifai A, et al. IgA nephropathy, the most common glomerulonephritis worldwide. A neglected disease in the United States? Am J Med 1988;84:129–32
  • Odani H, Yamamoto K, Iwayama S, et al. Evaluation of the specific structures of IgA1 hinge glycopeptide in 30 IgA nephropathy patients by mass spectrometry. J Nephrol 2010;23:70–6
  • Motyckova G, Murali M. Laboratory testing for cryoglobulins. Am J Hematol 2011;86:500–2
  • Damoc E, Youhnovski N, Crettaz D, et al. High resolution proteome analysis of cryoglobulins using Fourier transform-ion cyclotron resonance mass spectrometry. Proteomics 2003;3:1425–33
  • Ohyama K, Ueki Y, Kawakami A, et al. Immune complexome analysis of serum and its application in screening for immune complex antigens in rheumatoid arthritis. Clin Chem 2011;57:905–9
  • Vrana JA, Gamez JD, Madden BJ, et al. Classification of amyloidosis by laser microdissection and mass spectrometry-based proteomic analysis in clinical biopsy specimens. Blood 2009;114:4957–9
  • Bergen HR, Abraham RS, Johnson KL, et al. Characterization of amyloidogenic immunoglobulin light chains directly from serum by on-line immunoaffinity isolation. Biomed Chromatogr BMC 2004;18:191–201

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.