776
Views
14
CrossRef citations to date
0
Altmetric
Review Article

Biomarker development, from bench to bedside

Pages 69-86 | Received 26 Mar 2014, Accepted 07 Jun 2015, Published online: 18 Aug 2015

References

  • Krupey J, Gold P, Freedman SO. Purification and characterization of carcinoembryonic antigens of the human digestive system. Nature 1967;215:67–8
  • Stenman UH, Huhtala ML, Koistinen R, Seppala M. Immunochemical demonstration of an ovarian cancer-associated urinary peptide. Int J Cancer 1982;30:53–7
  • Huhtala ML, Pesonen K, Kalkkinen N, Stenman UH. Purification and characterization of a tumor-associated trypsin inhibitor from the urine of a patient with ovarian cancer. J Biol Chem 1982;257:13713–6
  • Eddeland A, Ohlsson K. Purification and immunochemical quantitation of human pancreatic secretory trypsin inhibitor. Scand J Clin Lab Invest 1978;38:261–7
  • Rinderknecht H. Activation of pancreatic zymogens. Normal activation, premature intrapancreatic activation, protective mechanisms against inappropriate activation. Dig Dis Sci 1986;31:314–21
  • Ogawa M, Kitahara T, Fujimoto K, et al. Serum pancreatic secretory trypsin inhibitor in acute pancreatitis. Lancet 1980;2:205
  • Balldin G, Borgstrom A, Marks WH, Ohlsson K. On the role of the pancreatic secretory trypsin inhibitor as an inactivator of trypsin-alpha 2-macroglobulin complexes in acute pancreatitis. Hoppe Seylers Z Physiol Chem 1984;365:751–6
  • Paju A, Stenman UH. Biochemistry and clinical role of trypsinogens and pancreatic secretory trypsin inhibitor. Crit Rev Clin Lab Sci 2006;43:103–42
  • Itkonen O, Stenman UH. Tati as a biomarker. Clin Chim Acta 2014;431:260–9
  • Huhtala ML, Kahanpaa K, Seppala M, et al. Excretion of a tumor-associated trypsin inhibitor (tati) in urine of patients with gynecological malignancy. Int J Cancer 1983;31:711–14
  • Vartiainen J, Lehtovirta P, Finne P, et al. Preoperative serum concentration of hCGβ as a prognostic factor in ovarian cancer. Int J Cancer 2001;95:313–16
  • Kelloniemi E, Rintala E, Finne P, Stenman UH. Tumor-associated trypsin inhibitor as a prognostic factor during follow-up of bladder cancer. Urology 2003;62:249–53
  • Patschan O, Shariat SF, Chade DC, et al. Association of tumor-associated trypsin inhibitor (tati) expression with molecular markers, pathologic features and clinical outcomes of urothelial carcinoma of the urinary bladder. World J Urol 2012;30:785–94
  • Lyytinen I, Lempinen M, Nordin A, et al. Prognostic significance of tumor-associated trypsin inhibitor (tati) and human chorionic gonadotropin-beta (hCGβ) in patients with hepatocellular carcinoma. Scand J Gastroenterol 2013;48:1066–73
  • Witt H, Luck W, Hennies HC, et al. Mutations in the gene encoding the serine protease inhibitor, kazal type 1 are associated with chronic pancreatitis. Nat Genet 2000;25:213–16
  • Pfutzer RH, Barmada MM, Brunskill AP, et al. Spink1/psti polymorphisms act as disease modifiers in familial and idiopathic chronic pancreatitis. Gastroenterology 2000;119:615–23
  • Halila H, Huhtala ML, Haglund C, et al. Tumour-associated trypsin inhibitor (tati) in human ovarian cyst fluid. Comparison with ca 125 and cea. Br J Cancer 1987;56:153–6
  • Koivunen E, Huhtala ML, Stenman UH. Human ovarian tumor-associated trypsin. Its purification and characterization from mucinous cyst fluid and identification as an activator of pro-urokinase. J Biol Chem 1989;264:14095–9
  • Itkonen O, Koivunen E, Hurme M, et al. Time-resolved immunofluorometric assays for trypsinogen-1 and 2 in serum reveal preferential elevation of trypsinogen-2 in pancreatitis. J Lab Clin Med 1990;115:712–8
  • Itkonen O, Helin J, Saarinen J, et al. Mass spectrometric detection of tyrosine sulfation in human pancreatic trypsinogens, but not in tumor-associated trypsinogen. FEBS J 2008;275:289–301
  • Koivunen E, Saksela O, Itkonen O, et al. Human colon carcinoma, fibrosarcoma and leukemia cell lines produce tumor-associated trypsinogen. Int J Cancer 1991;47:592–6
  • Lukkonen A, Sorsa T, Salo T, et al. Down-regulation of trypsinogen-2 expression by chemically modified tetracyclines: association with reduced cancer cell migration. Int J Cancer 2000;86:577–81
  • Koivunen E, Ristimaki A, Itkonen O, et al. Tumor-associated trypsin participates in cancer cell-mediated degradation of extracellular matrix. Cancer Res 1991;51:2107–12
  • Koivunen E, Itkonen O, Halila H, Stenman UH. Cyst fluid of ovarian cancer patients contains high concentrations of trypsinogen-2. Cancer Res 1990;50:2375–8
  • Sorsa T, Salo T, Koivunen E, et al. Activation of type IV procollagenases by human tumor-associated trypsin-2. J Biol Chem 1997;272:21067–74
  • Paju A, Sorsa T, Tervahartiala T, et al. The levels of trypsinogen isoenzymes in ovarian tumour cyst fluids are associated with promatrix metalloproteinase-9 but not promatrix metalloproteinase-2 activation. Br J Cancer 2001;84:1363–71
  • Vilen ST, Nyberg P, Hukkanen M, et al. Intracellular co-localization of trypsin-2 and matrix metalloprotease-9: possible proteolytic cascade of trypsin-2, mmp-9 and enterokinase in carcinoma. Exp Cell Res 2008;314:914–26
  • Terada T, Nakanuma Y. Immunohistochemical demonstration of pancreatic alpha-amylase and trypsin in intrahepatic bile ducts and peribiliary glands. Hepatology 1991;14:1129–35
  • Hedstrom J, Haglund C, Leinonen J, et al. Trypsinogen-1, -2 and tumour-associated trypsin-inhibitor in bile and biliary tract tissues from patients with biliary tract diseases and pancreatic carcinomas. Scand J Clin Lab Invest 2001;61:111–18
  • Hedstrom J, Haglund C, Kemppainen E, et al. Time-resolved immunofluorometric assay of trypsin-1 complexed with alpha(1)-antitrypsin in serum: increased immunoreactivity in patients with biliary tract cancer. Clin Chem 1999;45:1768–73
  • Hedstrom J, Haglund C, Haapiainen R, Stenman UH. Serum trypsinogen-2 and trypsin-2-alpha(1)-antitrypsin complex in malignant and benign digestive-tract diseases. Preferential elevation in patients with cholangiocarcinomas. Int J Cancer 1996;66:326–31
  • Lempinen M, Isoniemi H, Makisalo H, et al. Enhanced detection of cholangiocarcinoma with serum trypsinogen-2 in patients with severe bile duct strictures. J Hepatol 2007;47:677–83
  • Bjartell A, Paju A, Zhang WM, et al. Expression of tumor-associated trypsinogens (TAT-1 and TAT-2) in prostate cancer. Prostate 2005;64:29–39
  • El-Mezayen HA, Metwally FM, Darwish H. A novel discriminant score based on tumor-associated trypsin inhibitor for accurate diagnosis of metastasis in patients with breast cancer. Tumour Biol 2014;35:2759–67
  • Hedstrom J, Kemppainen E, Andersen J, et al. A comparison of serum trypsinogen-2 and trypsin-2-alpha1-antitrypsin complex with lipase and amylase in the diagnosis and assessment of severity in the early phase of acute pancreatitis. Am J Gastroenterol 2001;96:424–30
  • Itkonen O, Stenman UH, Osman S, et al. Serum samples from pancreatectomized patients contain trypsinogen immunoreactivity. J Lab Clin Med 1996;128:98–102
  • Paju A, Bjartell A, Zhang WM, et al. Expression and characterization of trypsinogen produced in the human male genital tract. Am J Pathol 2000;157:2011–21
  • Bohe M, Borgstrom A, Lindstrom C, Ohlsson K. Pancreatic endoproteases and pancreatic secretory trypsin inhibitor immunoreactivity in human paneth cells. J Clin Pathol 1986;39:786–93
  • Ghosh D, Porter E, Shen B, et al. Paneth cell trypsin is the processing enzyme for human defensin-5. Nat Immunol 2002;3:583–90
  • Prikk K, Maisi P, Sepper R, et al. Association of trypsin-2 with activation of gelatinase b and collagenase-2 in human bronchoalveolar lavage fluid in vivo. Ann Med 2001;33:437–44
  • Cederqvist K, Haglund C, Heikkila P, et al. Pulmonary trypsin-2 in the development of bronchopulmonary dysplasia in preterm infants. Pediatrics 2003;112:570–7
  • Kimland M, Russick C, Marks WH, Borgstrom A. Immunoreactive anionic and cationic trypsin in human serum. Clin Chim Acta 1989;184:31–46
  • Eddeland A, Ohlsson K. Studies on the pancreatic secretory trypsin inhibitor in plasma and its complex with trypsin in vivo and in vitro. Scand J Clin Lab Invest 1978;38:507–15
  • Hedstrom J, Leinonen J, Sainio V, Stenman UH. Time-resolved immunofluorometric assay of trypsin-2 complexed with alpha 1-antitrypsin in serum. Clin Chem 1994;40:1761–5
  • Hedstrom J, Sainio V, Kemppainen E, et al. Serum complex of trypsin 2 and alpha 1 antitrypsin as diagnostic and prognostic marker of acute pancreatitis: Clinical study in consecutive patients. BMJ 1996;313:333–7
  • Hedstrom J, Sainio V, Kemppainen E, et al. Urine trypsinogen-2 as marker of acute pancreatitis. Clin Chem 1996;42:685–90
  • Hedstrom J, Korvuo A, Kenkimaki P, et al. Urinary trypsinogen-2 test strip for acute pancreatitis. Lancet 1996;347:729–30
  • Kemppainen EA, Hedstrom JI, Puolakkainen PA, et al. Rapid measurement of urinary trypsinogen-2 as a screening test for acute pancreatitis. N Engl J Med 1997;336:1788–93
  • Lempinen M, Kylanpaa-Back ML, Stenman UH, et al. Predicting the severity of acute pancreatitis by rapid measurement of trypsinogen-2 in urine. Clin Chem 2001;47:2103–7
  • Sainio V, Puolakkainen P, Kemppainen E, et al. Serum trypsinogen-2 in the prediction of outcome in acute necrotizing pancreatitis. Scand J Gastroenterol 1996;31:818–24
  • Kemppainen E, Hedstrom J, Puolakkainen P, et al. Urinary trypsinogen-2 test strip in detecting ercp-induced pancreatitis. Endoscopy 1997;29:247–51
  • Kemppainen E, Hietaranta A, Puolakkainen P, et al. Time course profile of serum trypsinogen-2 and trypsin-2-alpha1-antitrypsin in patients with acute pancreatitis. Scand J Gastroenterol 2000;35:1216–20
  • Kemppainen EA, Hedstrom JI, Puolakkainen PA, et al. Advances in the laboratory diagnostics of acute pancreatitis. Ann Med 1998;30:169–75
  • Itkonen O, Kylanpaa L, Zhang WM, Stenman UH. Reference intervals for and validation of recalibrated immunoassays for trypsinogen-1 and trypsinogen-2. Clin Chem 2012;58:1494–6
  • Oiva J, Itkonen O, Koistinen R, et al. Specific immunoassay reveals increased serum trypsinogen 3 in acute pancreatitis. Clin Chem 2011;57:1506–13
  • Sahin-Toth M. Human mesotrypsin defies natural trypsin inhibitors: from passive resistance to active destruction. Protein Pept Lett 2005;12:457–64
  • Stenman UH. Tumor-associated trypsin inhibitor. Clin Chem 2002;48:1206–9
  • Paju A, Hotakainen K, Cao Y, et al. Increased expression of tumor-associated trypsin inhibitor, tati, in prostate cancer and in androgen-independent 22rv1 cells. Eur Urol 2007;52:1670–9
  • Tomlins SA, Rhodes DR, Yu J, et al. The role of spink1 in ets rearrangement-negative prostate cancers. Cancer Cell 2008;13:519–28
  • Ateeq B, Tomlins SA, Laxman B, et al. Therapeutic targeting of spink1-positive prostate cancer. Sci Transl Med 2011;3:72ra17
  • Ogawa M, Tsushima T, Ohba Y, et al. Stimulation of DNA synthesis in human fibroblasts by human pancreatic secretory trypsin inhibitor. Res Commun Chem Pathol Pharmacol 1985;50:155–8
  • McKeehan WL, Sakagami Y, Hoshi H, McKeehan KA. Two apparent human endothelial cell growth factors from human hepatoma cells are tumor-associated proteinase inhibitors. J Biol Chem 1986;261:5378–83
  • Marchbank T, Mahmood A, Fitzgerald AJ, et al. Human pancreatic secretory trypsin inhibitor stabilizes intestinal mucosa against noxious agents. Am J Pathol 2007;171:1462–73
  • Freeman TC, Curry BJ, Calam J, Woodburn JR. Pancreatic secretory trypsin inhibitor stimulates the growth of rat pancreatic carcinoma cells. Gastroenterology 1990;99:1414–20
  • Ozaki N, Ohmuraya M, Hirota M, et al. Serine protease inhibitor kazal type 1 promotes proliferation of pancreatic cancer cells through the epidermal growth factor receptor. Mol Cancer Res 2009;7:1572–81
  • Gouyer V, Fontaine D, Dumont P, et al. Autocrine induction of invasion and metastasis by tumor-associated trypsin inhibitor in human colon cancer cells. Oncogene 2008;27:4024–33
  • Marchbank T, Mahmood A, Playford RJ. Pancreatic secretory trypsin inhibitor causes autocrine-mediated migration and invasion in bladder cancer and phosphorylates the egf receptor, akt2 and akt3, and erk1 and erk2. Am J Physiol Renal Physiol 2013;305:F382–9
  • Ohmachi Y, Murata A, Matsuura N, et al. Specific expression of the pancreatic-secretory-trypsin-inhibitor (psti) gene in hepatocellular carcinoma. Int J Cancer 1993;55:728–34
  • Ogawa M, Yamaguchi N, Chung SM, et al. Secretion of pancreatic secretory trypsin inhibitor by cultured human carcinoma cells. J Med 1988;19:13–9
  • Stenman UH. Role of the tumor-associated trypsin inhibitor spink1 in cancer development. Asian J Androl 2011;13:628–9
  • Lamontagne J, Pinkerton M, Block TM, Lu X. Hepatitis b and hepatitis c virus replication upregulates serine protease inhibitor kazal, resulting in cellular resistance to serine protease-dependent apoptosis. J Virol 2010;84:907–17
  • Lu F, Lamontagne J, Sun A, et al. Role of the inflammatory protein serine protease inhibitor kazal in preventing cytolytic granule granzyme a-mediated apoptosis. Immunology 2011;134:398–408
  • Soon WW, Miller LD, Black MA, et al. Combined genomic and phenotype screening reveals secretory factor spink1 as an invasion and survival factor associated with patient prognosis in breast cancer. EMBO Mol Med 2011;3:451–64
  • Lee YC, Pan HW, Peng SY, et al. Overexpression of tumour-associated trypsin inhibitor (tati) enhances tumour growth and is associated with portal vein invasion, early recurrence and a stage-independent prognostic factor of hepatocellular carcinoma. Eur J Cancer 2007;43:736–44
  • Marshall A, Lukk M, Kutter C, et al. Global gene expression profiling reveals spink1 as a potential hepatocellular carcinoma marker. PLoS One 2013;8:e59459
  • Hotakainen K, Bjartell A, Sankila A, et al. Differential expression of trypsinogen and tumor-associated trypsin inhibitor (tati) in bladder cancer. Int J Oncol 2006;28:95–101
  • Wiksten JP, Lundin J, Nordling S, et al. High tissue expression of tumour-associated trypsin inhibitor (tati) associates with a more favourable prognosis in gastric cancer. Histopathology 2005;46:380–8
  • Stenman UH. Spink1: a new therapeutic target in cancer? Clin Chem 2011;57:1474–5
  • Diggle CP, Cruickshank S, Olsburgh JD, et al. Identification of genes up-regulated in urothelial tumors: the 67-kd laminin receptor and tumor-associated trypsin inhibitor. Am J Pathol 2003;163:493–504
  • Wide L, Gemzell CA. An immunological pregnancy test. Acta Endocrinol (Copenh) 1960;35:261–7
  • Vaitukaitis JL, Braunstein GD, Ross GT. A radioimmunoassay which specifically measures human chorionic gonadotropin in the presence of human luteinizing hormone. Am J Obstet Gynecol 1972;113:751–8
  • Seppala M, Rutanen EM, Jalanko H, et al. Pregnancy-specific beta 1-glycoprotein and chorionic gonadotropin-like immunoreactivity during the latter half of the cycle in women using intrauterine contraception. J Clin Endocrinol Metab 1978;47:1216–9
  • Alfthan H, Bjorses UM, Tiitinen A, Stenman UH. Specificity and detection limit of ten pregnancy tests. Scand J Clin Lab Invest Suppl 1993;216:105–13
  • Seppala M, Tontti K, Ranta T, et al. Use of a rapid hCGβ-subunit radioimmunoassay in acute gynaecological emergencies. Lancet 1980;1:165–6
  • Braunstein GD, Vogel CL, Vaitukaitis JL, Ross GT. Ectopic production of human chorionic gonadotropin in ugandan patients with hepatocellular carcinoma. Cancer 1973;32:223–6
  • Miles LE, Hales CN. Immunoradiometric assay of human growth hormone. Lancet 1968;2:492–3
  • Engvall E. The elisa, enzyme-linked immunosorbent assay. Clin Chem 2010;56:319–20
  • Stenman UH, Tanner P, Ranta T, et al. Monoclonal antibodies to chorionic gonadotropin: use in a rapid radioimmunoassay for gynecologic emergencies. Obstet Gynecol 1982;59:375–7
  • Stenman UH, Alfthan H, Myllynen L, Seppala M. Ultrarapid and highly sensitive time-resolved fluoroimmunometric assay for chorionic gonadotropin. Lancet 1983;2:647–9
  • Wilcox AJ, Weinberg CR, O'Connor JF, et al. Incidence of early loss of pregnancy. N Engl J Med 1988;319:189–94
  • Cacciatore B, Stenman UH, Ylostalo P. Early screening for ectopic pregnancy in high-risk symptom-free women. Lancet 1994;343:517–8
  • Korhonen J, Stenman UH, Ylostalo P. Serum human chorionic gonadotropin dynamics during spontaneous resolution of ectopic pregnancy. Fertil Steril 1994;61:632–6
  • Korhonen J, Alfthan H, Ylostalo P, et al. Disappearance of human chorionic gonadotropin and its alpha- and beta-subunits after term pregnancy. Clin Chem 1997;43:2155–63
  • Wehmann RE, Nisula BC. Metabolic and renal clearance rates of purified human chorionic gonadotropin. J Clin Invest 1981;68:184–94
  • Korhonen J, Tiitinen A, Alfthan H, et al. Ectopic pregnancy after in-vitro fertilization is characterized by delayed implantation but a normal increase of serum human chorionic gonadotrophin and its subunits. Hum Reprod 1996;11:2750–7
  • Poikkeus P, Hiilesmaa V, Tiitinen A. Serum hCG 12 days after embryo transfer in predicting pregnancy outcome. Hum Reprod 2002;17:1901–5
  • Pettersson K, Siitari H, Hemmila I, et al. Time-resolved fluoroimmunoassay of human choriogonadotropin. Clin Chem 1983;29:60–4
  • Chen HC, Hodgen GD, Matsuura S, et al. Evidence for a gonadotropin from nonpregnant subjects that has physical, immunological, and biological similarities to human chorionic gonadotropin. Proc Natl Acad Sci USA 1976;73:2885–9
  • Borkowski A, Muquardt C. Human chorionic gonadotropin in the plasma of normal, nonpregnant subjects. N Engl J Med 1979;301:298–302
  • Stenman UH, Alfthan H, Ranta T, et al. Serum levels of human chorionic gonadotropin in nonpregnant women and men are modulated by gonadotropin-releasing hormone and sex steroids. J Clin Endocrinol Metab 1987;64:730–6
  • Odell WD, Griffin J. Pulsatile secretion of human chorionic gonadotropin in normal adults. N Engl J Med 1987;317:1688–91
  • Birken S, Maydelman Y, Gawinowicz MA, et al. Isolation and characterization of human pituitary chorionic gonadotropin. Endocrinology 1996;137:1402–11
  • Cole LA, Kroll TG, Ruddon RW, Hussa RO. Differential occurrence of free beta and free alpha subunits of human chorionic gonadotropin (hCG) in pregnancy sera. J Clin Endocrinol Metab 1984;58:1200–2
  • Norman RJ, Poulton T, Gard T, Chard T. Monoclonal antibodies to human chorionic gonadotropin: implications for antigenic mapping, immunoradiometric assays, and clinical applications. J Clin Endocrinol Metab 1985;61:1031–8
  • Alfthan H, Schroder J, Fraser R, et al. Choriogonadotropin and its beta subunit separated by hydrophobic-interaction chromatography and quantified in serum during pregnancy by time-resolved immunofluorometric assays. Clin Chem 1988;34:1758–62
  • Alfthan H, Haglund C, Dabek J, Stenman UH. Concentrations of human choriogonadotropin, its beta-subunit, and the core fragment of the beta-subunit in serum and urine of men and nonpregnant women. Clin Chem 1992;38:1981–7
  • Papapetrou PD, Sakarelou NP, Braouzi H, Fessas P. Ectopic production of human chorionic gonadotropin (hCG) by neoplasms: the value of measurements of immunoreactive hCG in the urine as a screening procedure. Cancer 1980;45:2583–92
  • Stenman UH, Alfthan H, Hotakainen K. Human chorionic gonadotropin in cancer. Clin Biochem 2004;37:549–61
  • Marcillac I, Troalen F, Bidart JM, et al. Free human chorionic gonadotropin beta subunit in gonadal and nongonadal neoplasms. Cancer Res 1992;52:3901–7
  • Alfthan H, Haglund C, Roberts P, Stenman UH. Elevation of free beta subunit of human choriogonadotropin and core beta fragment of human choriogonadotropin in the serum and urine of patients with malignant pancreatic and biliary disease. Cancer Res 1992;52:4628–33
  • Carpelan-Holmstrom M, Haglund C, Lundin J, et al. Independent prognostic value of preoperative serum markers ca 242, specific tissue polypeptide antigen and human chorionic gonadotrophin beta, but not of carcinoembryonic antigen or tissue polypeptide antigen in colorectal cancer. Br J Cancer 1996;74:925–9
  • Lundin M, Nordling S, Carpelan-Holmstrom M, et al. A comparison of serum and tissue hCGβ as prognostic markers in colorectal cancer. Anticancer Res 2000;20:4949–51
  • Louhimo J, Nordling S, Alfthan H, et al. Specific staining of human chorionic gonadotropin beta in benign and malignant gastrointestinal tissues with monoclonal antibodies. Histopathology 2001;38:418–24
  • Birgisson H, Jirstrom K, Stenman UH. Serum concentrations of human chorionic gonadotropin beta and its association with survival in patients with colorectal cancer. Cancer Biomark 2012;11:173–81
  • Hedstrom J, Grenman R, Ramsay H, et al. Concentration of free hCGβ subunit in serum as a prognostic marker for squamous-cell carcinoma of the oral cavity and oropharynx. Int J Cancer 1999;84:525–8
  • Lehtovirta P, Alfthan H, Vartiainen J, Stenman U. Skin metastases of gynecologic adenocarcinomas affect serum levels of hCGβ but not those of scc antigen. Tumour Biol 1999;20:251–5
  • Vartiainen J, Lassus H, Lehtovirta P, et al. Combination of serum hCGβ and p53 tissue expression defines distinct subgroups of serous ovarian carcinoma. Int J Cancer 2008;122:2125–9
  • Sjostrom J, Alfthan H, Joensuu H, et al. Serum tumour markers ca 15-3, tpa, tps, hCGβ and tati in the monitoring of chemotherapy response in metastatic breast cancer. Scand J Clin Lab Invest 2001;61:431–41
  • Hotakainen K, Haglund C, Paju A, et al. Chorionic gonadotropin beta-subunit and core fragment in bladder cancer: Mrna and protein expression in urine, serum and tissue. Eur Urol 2002;41:677–85
  • Shariat SF, Herman MP, Casella R, et al. Urinary levels of tumor-associated trypsin inhibitor (tati) in the detection of transitional cell carcinoma of the urinary bladder. Eur Urol 2005;48:424–31
  • Hotakainen K, Ljungberg B, Haglund C, et al. Expression of the free beta-subunit of human chorionic gonadotropin in renal cell carcinoma: prognostic study on tissue and serum. Int J Cancer 2003;104:631–5
  • Hotakainen K, Lintula S, Ljungberg B, et al. Expression of human chorionic gonadotropin beta-subunit type i genes predicts adverse outcome in renal cell carcinoma. J Mol Diagn 2006;8:598–603
  • Louhimo J, Kokkola A, Alfthan H, et al. Preoperative hCGβ and ca 72-4 are prognostic factors in gastric cancer. Int J Cancer 2004;111:929–33
  • Riska A, Alfthan H, Finne P, et al. Preoperative serum hCGβ as a prognostic marker in primary fallopian tube carcinoma. Tumour Biol 2006;27:43–9
  • Elliott MM, Kardana A, Lustbader JW, Cole LA. Carbohydrate and peptide structure of the alpha- and beta-subunits of human chorionic gonadotropin from normal and aberrant pregnancy and choriocarcinoma. Endocrine 1997;7:15–32
  • Birken S, Krichevsky A, O'Connor J, et al. Development and characterization of antibodies to a nicked and hyperglycosylated form of hCG from a choriocarcinoma patient: generation of antibodies that differentiate between pregnancy hCG and choriocarcinoma hCG. Endocrine 1999;10:137–44
  • Birken S, Yershova O, Myers RV, et al. Analysis of human choriogonadotropin core 2 o-glycan isoforms. Mol Cell Endocrinol 2003;204:21–30
  • Valmu L, Alfthan H, Hotakainen K, et al. Site-specific glycan analysis of human chorionic gonadotropin beta-subunit from malignancies and pregnancy by liquid chromatography–electrospray mass spectrometry. Glycobiology 2006;16:1207–18
  • Kovalevskaya G, Birken S, Kakuma T, et al. Differential expression of human chorionic gonadotropin (hCG) glycosylation isoforms in failing and continuing pregnancies: preliminary characterization of the hyperglycosylated hCG epitope. J Endocrinol 2002;172:497–506
  • Stenman UH, Birken S, Lempiainen A, et al. Elimination of complement interference in immunoassay of hyperglycosylated human chorionic gonadotropin. Clin Chem 2011;57:1075–7
  • Lempiainen A, Hotakainen K, Blomqvist C, et al. Hyperglycosylated human chorionic gonadotropin in serum of testicular cancer patients. Clin Chem 2012;58:1123–9
  • Cole LA, Khanlian SA, Riley JM, Butler SA. Hyperglycosylated hCG in gestational implantation and in choriocarcinoma and testicular germ cell malignancy tumorigenesis. J Reprod Med 2006;51:919–29
  • Lempiainen A, Stenman UH, Blomqvist C, Hotakainen K. Free beta-subunit of human chorionic gonadotropin in serum is a diagnostically sensitive marker of seminomatous testicular cancer. Clin Chem 2008;54:1840–3
  • Lempiainen A, Sankila A, Hotakainen K, et al. Expression of human chorionic gonadotropin in testicular germ cell tumors. Urol Oncol 2014;32:727–34
  • Lempiainen A, Hotakainen K, Blomqvist C, et al. Increased human chorionic gonadotropin due to hypogonadism after treatment of a testicular seminoma. Clin Chem 2007;53:1560–1
  • Zygmunt M, Herr F, Munstedt K, et al. Angiogenesis and vasculogenesis in pregnancy. Eur J Obstet Gynecol Reprod Biol 2003;110 Suppl 1:S10–8
  • Berndt S, Perrier d'Hauterive S, Blacher S, et al. Angiogenic activity of human chorionic gonadotropin through lh receptor activation on endothelial and epithelial cells of the endometrium. FASEB J 2006;20:2630–2
  • Guibourdenche J, Handschuh K, Tsatsaris V, et al. Hyperglycosylated hCG is a marker of early human trophoblast invasion. J Clin Endocrinol Metab 2010;95:E240–4
  • Berndt S, Blacher S, Munaut C, et al. Hyperglycosylated human chorionic gonadotropin stimulates angiogenesis through tgf-beta receptor activation. FASEB J 2013;27:1309–21
  • Wu W, Walker AM. Human chorionic gonadotropin beta (hCGβ) down-regulates e-cadherin and promotes human prostate carcinoma cell migration and invasion. Cancer 2006;106:68–78
  • Cole LA, Butler S. Hyperglycosylated hCG, hCGβ and hyperglycosylated hCGβ: interchangeable cancer promoters. Mol Cell Endocrinol 2012;349:232–8
  • Lee CL, Chiu PC, Hautala L, et al. Human chorionic gonadotropin and its free beta-subunit stimulate trophoblast invasion independent of lh/hCG receptor. Mol Cell Endocrinol 2013;375:43–52
  • Keikkala E, Vuorela P, Laivuori H, et al. First trimester hyperglycosylated human chorionic gonadotrophin in serum – a marker of early-onset preeclampsia. Placenta 2013;34:1059–65
  • Keikkala E, Ranta JK, Vuorela P, et al. Serum hyperglycosylated human chorionic gonadotrophin at 14-17 weeks of gestation does not predict preeclampsia. Prenat Diagn 2014;34:699–705
  • Bahado-Singh R, Oz U, Shahabi S, et al. Urine hyperglycosylated hCG plus ultrasound biometry for detection of down syndrome in the second trimester in a high-risk population. Obstet Gynecol 2000;95:889–94
  • Stenman UH, Bidart JM, Birken S, et al. Standardization of protein immunoprocedures. Choriogonadotropin (cg). Scand J Clin Lab Invest Suppl 1993;216:42–78
  • Stenman UH. Quality specifications for determinations of hCG and related substances. Ups J Med Sci 1993;98:283–91
  • Birken S, Berger P, Bidart JM, et al. Preparation and characterization of new who reference reagents for human chorionic gonadotropin and metabolites. Clin Chem 2003;49:144–54
  • Cole LA, Kardana A, Andrade-Gordon P, et al. The heterogeneity of human chorionic gonadotropin (hCG). Iii. The occurrence and biological and immunological activities of nicked hCG. Endocrinology 1991;129:1559–67
  • Hoermann R, Berger P, Spoettl G, et al. Immunological recognition and clinical significance of nicked human chorionic gonadotropin in testicular cancer. Clin Chem 1994;40:2306–12
  • Masure HR, Jaffee WL, Sickel MA, et al. Characterization of a small molecular size urinary immunoreactive human chorionic gonadotropin (hCG)-like substance produced by normal placenta and by hCG-secreting neoplasms. J Clin Endocrinol Metab 1981;53:1014–20
  • Wehmann RE, Blithe DL, Akar AH, Nisula BC. Disparity between beta-core levels in pregnancy urine and serum: Implications for the origin of urinary beta-core. J Clin Endocrinol Metab 1990;70:371–8
  • Gronowski AM, Cervinski M, Stenman UH, et al. False-negative results in point-of-care qualitative human chorionic gonadotropin (hCG) devices due to excess hCGβ core fragment. Clin Chem 2009;55:1389–94
  • Bristow A, Berger P, Bidart JM, et al. Establishment, value assignment, and characterization of new who reference reagents for six molecular forms of human chorionic gonadotropin. Clin Chem 2005;51:177–82
  • Sturgeon CM, Berger P, Bidart JM, et al. Differences in recognition of the 1st who international reference reagents for hCG-related isoforms by diagnostic immunoassays for human chorionic gonadotropin. Clin Chem 2009;55:1484–91
  • Whittington J, Fantz CR, Gronowski AM, et al. The analytical specificity of human chorionic gonadotropin assays determined using who international reference reagents. Clin Chim Acta 2010;411:81–5
  • Harvey RA, Mitchell HD, Stenman UH, et al. Differences in total human chorionic gonadotropin immunoassay analytical specificity and ability to measure human chorionic gonadotropin in gestational trophoblastic disease and germ cell tumors. J Reprod Med 2010;55:285–95
  • Berger P, Sturgeon C, Bidart JM, et al. The isobm td-7 workshop on hCG and related molecules. Towards user-oriented standardization of pregnancy and tumor diagnosis: assignment of epitopes to the three-dimensional structure of diagnostically and commercially relevant monoclonal antibodies directed against human chorionic gonadotropin and derivatives. Tumour Biol 2002;23:1–38
  • Berger P, Paus E, Hemken PM, et al. Candidate epitopes for measurement of hCG and related molecules: the second isobm td-7 workshop. Tumour Biol 2013;34:4033–57
  • Alfthan H, Stenman UH. Falsely low results obtained with the hybritech tandem-r psa assay. Clin Chem 1988;34:2152
  • Stenman UH, Leinonen J, Alfthan H, et al. A complex between prostate-specific antigen and alpha 1-antichymotrypsin is the major form of prostate-specific antigen in serum of patients with prostatic cancer: assay of the complex improves clinical sensitivity for cancer. Cancer Res 1991;51:222–6
  • Lilja H, Christensson A, Dahlen U, et al. Prostate-specific antigen in serum occurs predominantly in complex with alpha 1-antichymotrypsin. Clin Chem 1991;37:1618–25
  • Christensson A, Laurell CB, Lilja H. Enzymatic activity of prostate-specific antigen and its reactions with extracellular serine proteinase inhibitors. Eur J Biochem 1990;194:755–63
  • Zhu L, Jaamaa S, Af Hallstrom TM, et al. Psa forms complexes with alpha1-antichymotrypsin in prostate. Prostate 2013;73:219–26
  • Leinonen J, Lovgren T, Vornanen T, Stenman UH. Double-label time-resolved immunofluorometric assay of prostate-specific antigen and of its complex with alpha 1-antichymotrypsin. Clin Chem 1993;39:2098–103
  • Zhu L, Leinonen J, Zhang WM, et al. Dual-label immunoassay for simultaneous measurement of prostate-specific antigen (psa)-alpha1-antichymotrypsin complex together with free or total psa. Clin Chem 2003;49:97–103
  • Mitrunen K, Pettersson K, Piironen T, et al. Dual-label one-step immunoassay for simultaneous measurement of free and total prostate-specific antigen concentrations and ratios in serum. Clin Chem 1995;41:1115–20
  • Oesterling JE, Jacobsen SJ, Klee GG, et al. Free, complexed and total serum prostate specific antigen: the establishment of appropriate reference ranges for their concentrations and ratios. J Urol 1995;154:1090–5
  • Zhang WM, Finne P, Leinonen J, Stenman UH. Characterization and determination of the complex between prostate-specific antigen and alpha 1-protease inhibitor in benign and malignant prostatic diseases. Scand J Clin Lab Invest Suppl 2000;233:51–8
  • Zhu L, Koistinen H, Landegren U, Stenman UH. Proximity ligation measurement of the complex between prostate specific antigen and alpha1-protease inhibitor. Clin Chem 2009;55:1665–71
  • Zhang WM, Finne P, Leinonen J, et al. Determination of prostate-specific antigen complexed to alpha(2)-macroglobulin in serum increases the specificity of free to total psa for prostate cancer. Urology 2000;56:267–72
  • Zhang WM, Finne P, Leinonen J, et al. Characterization and immunological determination of the complex between prostate-specific antigen and alpha2-macroglobulin. Clin Chem 1998;44:2471–9
  • Virtanen A, Gomari M, Kranse R, Stenman UH. Estimation of prostate cancer probability by logistic regression: free and total prostate-specific antigen, digital rectal examination, and heredity are significant variables. Clin Chem 1999;45:987–94
  • Finne P, Finne R, Auvinen A, et al. Predicting the outcome of prostate biopsy in screen-positive men by a multilayer perceptron network. Urology 2000;56:418–22
  • Finne P, Auvinen A, Aro J, et al. Estimation of prostate cancer risk on the basis of total and free prostate-specific antigen, prostate volume and digital rectal examination. Eur Urol 2002;41:619–26; discussion 26–7
  • Stephan C, Xu C, Cammann H, et al. Assay-specific artificial neural networks for five different psa assays and populations with psa 2-10 ng/ml in 4,480 men. World J Urol 2007;25:95–103
  • Stephan C, Xu C, Finne P, et al. Comparison of two different artificial neural networks for prostate biopsy indication in two different patient populations. Urology 2007;70:596–601
  • Zlotta AR, Remzi M, Snow PB, et al. An artificial neural network for prostate cancer staging when serum prostate specific antigen is 10 ng./ml. Or less. J Urol 2003;169:1724–8
  • Stephan C, Siemssen K, Cammann H, et al. Between-method differences in prostate-specific antigen assays affect prostate cancer risk prediction by nomograms. Clin Chem 2011;57:995–1004
  • Roobol MJ, Schroder FH. The rate of overdiagnosis inextricably linked to prostate-specific antigen-based screening for prostate cancer can be quantified in several ways, but what is the practicable message? Eur Urol 2014;65:1056–7
  • Graves HC. Issues on standardization of immunoassays for prostate-specific antigen: a review. Clin Invest Med 1993;16:415–24
  • Stenman UH, Leinonen J, Zhang WM. Standardization of psa determinations. Scand J Clin Lab Invest Suppl 1995;221:45–51
  • Stenman UH, Paus E, Allard WJ, et al. Summary report of the td-3 workshop: characterization of 83 antibodies against prostate-specific antigen. Tumour Biol 1999;20 Suppl 1:1–12
  • Rafferty B, Rigsby P, Rose M, et al. Reference reagents for prostate-specific antigen (psa): establishment of the first international standards for free psa and psa (90:10). Clin Chem 2000;46:1310–7
  • Catalona WJ, Smith DS, Ratliff TL, et al. Measurement of prostate-specific antigen in serum as a screening test for prostate cancer. N Engl J Med 1991;324:1156–61
  • Schroder FH. Prostate cancer: to screen or not to screen? BMJ 1993;306:407–8
  • Stenman UH, Hakama M, Knekt P, et al. Serum concentrations of prostate specific antigen and its complex with alpha 1-antichymotrypsin before diagnosis of prostate cancer. Lancet 1994;344:1594–8
  • Schmid HP, McNeal JE, Stamey TA. Observations on the doubling time of prostate cancer. The use of serial prostate-specific antigen in patients with untreated disease as a measure of increasing cancer volume. Cancer 1993;71:2031–40
  • Bill-Axelson A, Holmberg L, Ruutu M, et al. Radical prostatectomy versus watchful waiting in early prostate cancer. N Engl J Med 2011;364:1708–17
  • Schroder FH, Hugosson J, Roobol MJ, et al. Prostate-cancer mortality at 11 years of follow-up. N Engl J Med 2012;366:981–90
  • Moyer VA, Force USPST. Screening for prostate cancer: U.S. Preventive services task force recommendation statement. Ann Intern Med 2012;157:120–34
  • Etzioni R, Gulati R, Cooperberg MR, et al. Limitations of basing screening policies on screening trials: the US preventive services task force and prostate cancer screening. Med Care 2013;51:295–300
  • Klotz L. Active surveillance not only reduces morbidity, it saves lives. Oncology (Williston Park) 2013;27:522, 93
  • Chan SW, Nguyen PN, Violette P, et al. Early detection of clinically significant prostate cancer at diagnosis: a prospective study using a novel panel of tmprss2:Ets fusion gene markers. Cancer Med 2013;2:63–75
  • Borgono CA, Diamandis EP. The emerging roles of human tissue kallikreins in cancer. Nat Rev Cancer 2004;4:876–90
  • Koistinen H, Stenman U-H. Psa (prostate-specific antigen) and other kallikrein-related peptidases in prostate cancer. In: Magdolen V, Sommerhoff CP, Fritz H, Schmitt M, eds. Novel cancer-related biomarkers. Vol. 2. Berlin: DeGruyter; 2012:61–81
  • Lopez-Otin C, Matrisian LM. Emerging roles of proteases in tumour suppression. Nat Rev Cancer 2007;7:800–8
  • Hekim C, Leinonen J, Narvanen A, et al. Novel peptide inhibitors of human kallikrein 2. J Biol Chem 2006;281:12555–60
  • Wu P, Leinonen J, Koivunen E, et al. Identification of novel prostate-specific antigen-binding peptides modulating its enzyme activity. Eur J Biochem 2000;267:6212–20
  • Fortier AH, Holaday JW, Liang H, et al. Recombinant prostate specific antigen inhibits angiogenesis in vitro and in vivo. Prostate 2003;56:212–9
  • Fortier AH, Nelson BJ, Grella DK, Holaday JW. Antiangiogenic activity of prostate-specific antigen. J Natl Cancer Inst 1999;91:1635–40
  • Koistinen H, Wohlfahrt G, Mattsson JM, et al. Novel small molecule inhibitors for prostate-specific antigen. Prostate 2008;68:1143–51
  • Mattsson JM, Laakkonen P, Kilpinen S, et al. Gene expression changes associated with the anti-angiogenic activity of kallikrein-related peptidase 3 (klk3) on human umbilical vein endothelial cells. Biol Chem 2008;389:765–71
  • Mattsson JM, Laakkonen P, Stenman UH, Koistinen H. Antiangiogenic properties of prostate-specific antigen (psa). Scand J Clin Lab Invest 2009;69:447–51
  • Meinander K, Weisell J, Pakkala M, et al. Pseudopeptides with a centrally positioned alkene based disulphide bridge mimetic stimulate kallikrein-related peptidase 3 activity. Med Chem Commun 2013;4:549–53
  • Meinander K, Pakkala M, Weisell J, et al. Replacement of the disulfide bridge in a klk3-stimulating peptide using orthogonally protected building blocks. ACS Med Chem Lett 2014;5:162–5
  • Harkonen HH, Mattsson JM, Maatta JA, et al. The discovery of compounds that stimulate the activity of kallikrein-related peptidase 3 (klk3). ChemMedChem 2011;6:2170–8
  • Wu P, Zhu L, Stenman UH, Leinonen J. Immunopeptidometric assay for enzymatically active prostate-specific antigen. Clin Chem 2004;50:125–9
  • Zhu L, Koistinen H, Wu P, et al. A sensitive proximity ligation assay for active psa. Biol Chem 2006;387:769–72
  • Stenman UH, Tiitinen A, Alfthan H, Valmu L. The classification, functions and clinical use of different isoforms of hCG. Hum Reprod Update 2006;12:769–84

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.