69
Views
7
CrossRef citations to date
0
Altmetric
Research Article

2,3-Diphosphoglycerate: Its Role in Health and Disease

&
Pages 113-146 | Published online: 27 Sep 2008

References

  • Greenwald I. A new type of phosphoric acid compound isolated from blood, with some remarks on the effect of substitution on the rotation of 1-glyceric acid. J. Biol. Chem. 1925; 63: 339
  • Rapoport S., Guest G. M. Distribution of acid-soluble phosphorus in the blood cells of various vertebrates. J. Biol. Chem. 1941; 138: 269
  • Harkness D. R., Ponce J., Grayson V. A comparative study of the PGA cycle in mammalian erythrocytes. Comp. Biochem. Physiol. 1969; 28: 129
  • Bunn H. F., Seal U. S., Scott A. F. The role of 2,3-diphosphoglycerate in mediating hemoglobin function of mammalian red cells. Ann. N. Y. Acad. Sci. 1974; 241: 498
  • Torrance J. D. Clinical implications of the interaction between 2,3-diphosphoglycerate and hemoglobin. S. Afr. J. Med. Sci. 1974; 39: 33
  • Sugita Y., Chanutin A. Electrophoretic studies of red cell hemolysates supplemented with phosphorylated carbohydrate intermediates. Proc. Soc. Exp. Biol. Med. 1963; 112: 72
  • Chanutin A., Curnish R. R. Factors influencing the electrophoretic pattern of red cell hemolysates analyzed in cacodylate buffers. Arch. Biochem. 1964; 106: 433
  • Chanutin A., Curnish R. R. Effect of inorganic and organic phosphates on formation of hemoglobin-phosphate complexes as determined by electrophoresis. Proc. Soc. Exp. Biol. Med. 1965; 120: 291
  • Paniker N. V., Beutler E. Effect of normal metabolites on the oxygen hemoglobin equilibrium. Proc. Soc. Exp. Biol. Med. 1970; 135: 389
  • Chanutin A., Curnish R. R. Effect of organic and inorganic phosphates on the oxygen equilibrium of human erythrocytes. Arch. Biochem. Biophys. 1967; 121: 96
  • Benesch R., Benesch R. E. The effect of organic phosphates from the human erythrocyte on the allosteric properties of hemoglobin. Biochem. Biophys. Res. Commun. 1967; 26: 162
  • Perutz M. F., Muirhead H., Cox J. M., Goaman L. C. G. Three-dimensional Fourier synthesis of horse oxyhaemoglobin at 2.8 A resolution. II. The atomic model. Nature (London) 1968; 219: 131
  • Perutz M. F., Muirhead H., Mazzarella L., Crowther R. A., Greer J., Kilmartin J. V. Identification of residues responsible for the alkaline Bohr effect in haemoglobin. Nature (London) 1969; 222: 1240
  • Muirhead H., Greer J. Three-dimensional Fourier synthesis of human deoxyhaemoglobin at 3.5 Å resolution. Nature (London) 1970; 228: 516
  • Bolton W., Perutz M. F. Three-dimensional Fourier synthesis of horse deoxyhemoglobin at 2.8 Å resolution. Narure (London) 1970; 228: 551
  • Bohr C. Theoretische Behandlung der Quantitativen Verhaltnisse bei der Sauerstoffaufnahme des Hamoglobins. Zentralbl. Physiol. 1904; 17: 682
  • Muirhead H., Cox J. M., Mazzarella L., Perutz M. F. Structure and function of hemoglobin. III. A three-dimensional Fourier synthesis of human deoxyhemoglobin at 5.5 Å resolution. J. Mol. Biol. 1967; 28: 117
  • Perutz M. F. Stereochemistry of cooperative effects in haemoglobin. Nature (London) 1970; 228: 726
  • Winterhalter K. H. Does hemoglobin breathe, and if yes, how? The T and R state of hemoglobin. N. Engl. J. Med. 1973; 289: 41
  • Gibson Q. H. The reaction of oxygen with hemoglobin and the kinetic basis of the effect of salt on binding of oxygen. J. Biol. Chem. 1970; 245: 3285
  • Tyuma I., Imai K., Schimizu K. Organic phosphates and the oxygen equilibrium function of some human hemoglobin. Oxygen Affinity of Hemoglobin and Red Cell Acid-Base Status, M. Rorth, P. Astrup. Munksgaard, Copenhagen 1972; 131
  • Caldwell P. R. B., Nagel R. L. The binding of 2,3-diphosphoglycerate as a conformational probe of human hemoglobins. J. Mol. Biol. 1973; 74: 605
  • Benesch R., Benesch R. E., Yu C. I. Reciprocal binding of oxygen and diphosphoglycerate by human hemoglobin. Proc. Natl. Acad. Sci. U.S.A. 1968; 59: 526
  • Chanutin E., Hermann E. The interaction of organic and inorganic phosphates with hemoglobin. Arch. Biochem. Biophys. 1969; 131: 180
  • Garby L., de Verdier C.-H. Affinity of human hemoglobin A to 2,3-diphosphoglycerate. Effect of hemoglobin concentration and pH. Scand. J. Clin. Lab. Invest. 1971; 27: 345
  • Garby L., de Verdier C.-H. Binding of organic phosphates to hemoglobin A and F. Red Cell Metabolism and Function, G. Brewer. Plenum Press, New York 1970; 37
  • de Verdier C.-H., Garby L. Low binding of 2,3-diphosphoglycerate to hemoglobin F. Scand. J. Clin. Lab. Invest. 1969; 23: 149
  • Chanutin A., Curnish R. R. Effect of organic phosphates on the oxygen equilibrium of carbox-ypeptidase digests of human hemoglobin. Arch. Biochem. 1968; 123: 163
  • Bunn H. F., Briehl R. W. The interaction of 2,3-diphosphoglycerate with various human hemoglobins. J. Clin. Invest. 1970; 49: 1088
  • Bauer C. Reduction of the carbon dioxide affinity of human haemoglobin solutions by 2,3-diphosphoglycerate. Respir. Physiol. 1970; 10: 10
  • Arnone A. X-Ray diffraction study of binding of 2,3-diphosphoglycerate to human deoxyhaemoglobin. Nature (London) 1972; 237: 146
  • Perutz M. The Bohr effect and combination with organic phosphate. Nature, (London) 1970; 228: 734
  • Rapoport S., Luebering J. The formation of 2,3-diphosphoglycerate in rabbit erythrocytes: the existence of a diphosphoglycerate mutase. J. Biol. Chem. 1950; 183: 507
  • Schroter W. Regulation des 2,3-Diphosphoglyceratl-Zyklus in den roten Blutzellen des Menschen. Metabolism and Membrane Permeability of Erythrocytes and Thrombocytes, E. Deutsch, E. Gerlach, K. Moser. George Thieme, Stuttgart 1968; 50
  • Duhm J. Metabolism of 2,3-diphosphoglycerate and glycolysis in human red blood cells under the influence of dipyridamole and inorganic sulfur compounds. Biochim. Biophys. Acta 1968; 170: 452
  • Duhm J., Deuticke B., Gerlach E. Abhangigkejt der 2,3-Diphosphoglycerinsaure-Synthese in Menschen-Erythrocyten von der ADP-Konzentration. Pfluegers Arch. 1969; 306: 329
  • Thomas H. M., Lefrak S. S., Irwin R. S., Fritts H. W., Jr., Caldwell P. R. B. The oxyhemoglobin dissociation curve in health and disease: role of 2,3-diphosphoglycerate. Am. J. Med. 1974; 57: 331
  • Rapoport S., Guest G. M. The decomposition of diphosphoglycerate in acidified blood: its relationship to reactions of the glycolytic cycle. J. Biol. Chem. 1939; 128: 781
  • Rapoport S., Maretzki D., Schuve C., Jacobasch G. Control of glycolysis in the erythrocyte on the level of 1,3-DPG. Oxygen Affinity of Hemoglobin and Red Cell Acid-Base Status, M. Rorth, P. Strup. Munksgaard, Copenhagen 1972; 527
  • Chapman R. G., Hennessey M. A., Waltersdorph A. M., Huennekens F. M., Gabrio B. W. Erythrocyte metabolism. V. Levels of glycolytic enzymes and regulation of glycolysis. J. Clin. Invest. 1962; 41: 1249
  • Minakami S., Yoshikawa H. Studies on erythrocyte glycolysis. III. The effects of active cation transport, pH, and inorganic glycolysis. J. Biochem. 1966; 59: 145
  • Tsuboi K. K., Funkunaga K. Inorganic phosphate and enhanced glucose degradation by the intact erythrocyte. J. Biol. Chem. 1965; 240: 2806
  • Lichtman M. A., Miller D. R. Erythrocyte glycolysis, 2,3-diphosphoglycerate and adenosine triphosphate concentration in uremic subjects: relationship to extracellular phosphate concentration. J. Lab. Clin. Med. 1970; 76: 267
  • Asakura T., Sato Y., Minakami S., Yoshikama H. pH dependency of 2,3-diphosphoglycerate content in red blood cells. Clin. Chim. Acta 1966; 14: 840
  • Duhm J., Gerlach E. On the mechanisms of the hypoxia induced increase of 2,3-diphosphoglycerate in erythrocytes. Studies on rat erythrocytes in vivo and on human erythrocytes in vitro. Pfluegers Arch. 1971; 326: 254
  • Astrup P. Red-cell pH and oxygen affinity of hemoglobin. N. Engl. J. Med. 1970; 283: 202
  • Rapoport S., Luebering J. An optical study of diphosphoglycerate mutase. J. Biol. Chem. 1952; 196: 583
  • Rose Z. B. The purification and properties of diphosphoglycerate mutase from human erythrocytes. J. Biol. Chem. 1968; 243: 4810
  • Gerlach E., Duhm J. 2,3-DPG metabolism of red cells: regulation and adaptive changes during hypoxia. Oxygen Affinity of Hemoglobin and Red Cell Acid-Base Status, M. Rorth, P. Astrup. Munksgaard, Copenhagen 1972; 552
  • Harkness D. R., Ponce J. Purification and properties of 3-phosphoglycerate acid mutase purified from human erythrocytes. Arch. Biochem. Biophys. 1969; 134: 113
  • Rose Z. B., Whalen R. G. The phosphorylation of diphosphoglycerate mutase. J. Biol. Chem. 1973; 248: 1513
  • Kappel W. K., Shiebley R. H., Miller K. B., Hass L. F. The isolation and characterization of the phosphoglycerate mutases of human erythrocytes. Fed. Proc. Fed. Am. Soc. Exp. Biol. 1975; 34: 576
  • Hass L. F., Miller K. B. A reassessment of the phosphoglycerate bypass enzymes in human erythrocytes. Biochem. Biophys. Res. Commun. 1975; 66: 970
  • Bohr C. Die Sauerstoffaufnahme des genuinen Blutfarbstoffes und des aus dem Blute dargestellen Hamoglobins. Zentralbl. Physiol. 1903; 17: 688
  • Naerraa N., Strange Petersen E., Boye E., Severinghaus J. W. pH and molecular CO2 components of the Bohr effect in human blood. Scand. J. Clin. Lab. Invest. 1966; 18: 96
  • Siggaard-Andersen O., Sailing N., Norgaard-Pedersen B., Rorth M. Oxygen-linked hydrogen ion binding of human hemoglobin. Effects of carbon dioxide and 2,3-diphosphoglycerate. III. Comparison of the Bohr effect and the Haldane effect. Scand. J. Clin. Lab. Invest. 1972; 29: 185
  • Lenfant C., Bellingham A. J., Detter J. C. Physiological factors influencing the hemoglobin affinity for oxygen. Oxygen Affinity of Hemoglobin and Red Cell Acid-Base Status, M. Rorth, P. Astrup. Munksgaard, Copenhagen 1972; 736
  • Wranne B., Woodson R. D., Detter J. C. Bohr effect: interaction between H+, CO2 and 2,3-DPG in fresh and stored blood. J. Appl. Physiol. 1972; 32: 749
  • Meier U., Boning D., Rubenstein H. J. Oxygenation dependent variations of the Bohr coefficient related to whole blood and erythrocyte pH. Effect of lactic and carbonic acid. Pfluegers Arch. 1974; 349: 203
  • Hlastala M. P., Woodson R. D. Saturation dependency of the Bohr effect: interactions among H+, CO, and DPG. J. Appl. Physiol. 1975; 38: 1126
  • Siggaard-Andersen O., Rorth M., Norgaard-Pedersen B., Sparre-Andersen O., Johansen E. Oxygen-linked hydrogen binding of human hemoglobin. Effects of carbon dioxide and 2,3-diphos-phoglycerate. IV. Thermodynamic relationship between the variables. Scand. J. Clin. Lab. Invest 1972; 29: 303
  • Siggaard-Andersen O., Garby L. The Bohr effect and the Haldane effect. Scand. J. Clin. Lab. Invest. 1973; 31: 1
  • Bauer C. Antagonistic influence of CO2 and 2,3-diphosphoglycerate on the Bohr effect of human hemoglobin. LifeSci. 1969; 8: 1041
  • Siggaard-Andersen O., Sailing N. Oxygen-linked hydrogen ion binding of human hemoglobin. Effect of carbon dioxide and 2,3-diphosphorate. II. Studies on whole blood. Scand. J. Clin. Lab. Invest. 1971; 27: 361
  • Duhm J. Dual effect of 2,3-diphosphoglycerate on the Bohr effects of human blood. Pfluegers Arch. 1976; 363: 55
  • Duhm J. Effects of 2,3-diphosphoglycerate and other organic phosphate compounds on the oxygen affinity and intracellular pH of human erythrocytes. Pfluegers Arch. 1971; 326: 341
  • Duhm J. The effect of 2,3-DPG and other organic phosphates on the Donnan equilibrium and the oxygen affinity of human blood. Oxygen Affinity of Hemoglobin and Red Cell Acid-Base Status, M. Rorth, P. Astrup. Munksgaard, Copenhagen 1972; 583
  • Barcroft J., King W. O. R. Respiratory Function of the Blood, J. Barcroft. University Press, Cambridge 1928; 174, (1909) as quoted in Part II
  • Shappell S. D., Murray J. A., Bellingham A. J., Woodson R. D., Detter J. C., Lenfant C. Adaptation to exercise: role of hemoglobin affinity for oxygen and 2,3-diphosphoglycerate. J. Appl. Physiol. 1971; 30: 827
  • Bellingham A. J., Detter J. C., Lenfant C. The role of hemoglobin affinity for oxygen and red cell 2,3-diphosphoglycerate in the management of diabetic ketoacidosis. Trans. Assoc. Am. Physicians 1971; 83: 113
  • Bellingham A. J., Detter J. C., Lenfant C. Regulatory mechanisms of hemoglobin oxygen affinity in acidosis and alkalosis. J. Clin. Invest. 1971; 50: 700
  • Keys A., Hall F. G., Barron E. S. The position of the oxygen dissociation curve of human blood at high altitude. Am. J. Physiol. 1936; 115: 292
  • Dill D. B., Talbott J. H., Consolazio W. V. Blood as a physiochemical system. XII. Man at high altitudes. J. Biol. Chem. 1937; 118: 649
  • Aste-Salazar H., Hurtado A. The affinity of hemoglobin for oxygen at sea level and at high altitudes. Am. J. Physiol. 1944; 142: 733
  • Lenfant C., Torrance J., English E., Finch C. A., Reynafarje C., Ramos J., Faura J. Effect of altitude on oxygen binding by hemoglobin and on organic phosphate levels. J. Clin. Invest. 1968; 47: 2652
  • Lenfant C., Torrance J., Reynafarje C. Shift of the O2-Hb dissociation curve at altitude: mechanism and effect. J. Appl. Physiol. 1971; 30: 625
  • Morse M., Cassels D. E., Holder M. The position of the oxygen dissociation curve in the blood in cyanotic congenital heart disease. J. Clin. Invest. 1950; 29: 1098
  • Oski F. A., Gottlieb A. J., Delivoria-Papadopoulos M., Miller W. W. Red cell 2,3-diphosphoglycerate levels in subjects with chronic hypoxemia. N. Engl. J. Med. 1969; 280: 1165
  • Edwards M. J., Novy M. J., Walters C. L., Metcalfe J. Improved oxygen release: an adaptation of mature red cells to hypoxia. J. Clin. Invest. 1968; 47: 1851
  • Lenfant C., Ways P., Ancutt C., Cruz J. Effect of chronic hypoxia on the O2-Hb dissociation curve and respiratory gas transport in man. Respir. Physiol. 1969; 7: 7
  • Versmold H. T., Linderkamp C., Dohlemann C., Riegel K. P. Oxygen transport in congenital heart disease: influence of fetal hemoglobin, red cell pH, and 2,3-diphosphoglycerate. Pediatr. Res. 1976; 10: 566
  • Edwards M. J., Novy M. J., Walters C. L., Metcalf J. Oxygen affinity of blood in erythrocytosis. Clin. Res. 1968; 16: 153
  • Keitt A. S., Hinkles C., Block A. J. Comparison of factors regulating red cell 2,3-diphosphoglycerate (2,3-DPG) in acute and chronic hypoxemia. J. Lab. Clin. Med. 1974; 84: 275
  • Orzalesi M. M., Motoyama E. K. Blood-oxygen affinity in children with cystic fibrosis. Am. Rev. Respir. Dis. 1973; 107: 928
  • Keitt A. S. Pyruvate kinase deficiency and related disorders of red cell glycolysis. Am. J. Med. 1966; 41: 762
  • Delivoria-Papadopoulos M., Oski F. A., Gottlieb A. J. Oxygen-hemoglobin dissociation curve: effect of inherited enzyme defects of the red cell. Science 1969; 165: 601
  • Oski F. A., Marshall B. E., Cohen P. J., Sugerman H. J., Miller L. D. Exercise with anemia. The role of the left-shifted or right-shifted oxygen-hemoglobin equilibrium curve. Ann. Intern. Med. 1971; 74: 44
  • Valentine W. N. Deficiencies associated with Embden-Meyerhof pathway and other metabolic pathways. Semin. Hemalol. 1971; 8: 348
  • Duke M., Abelman W. H. The hemodynamic response to chronic anemia. Circulation 1969; 39: 503
  • Richards D. W., Jr., Strauss M. L. Oxyhemoglobin dissociation curves of whole blood in anemia. J. Clin. Invest. 1927; 4: 105
  • Isac C., Matthes K., Yamanaka T. Untersuchungen uber den Transport des Sauerstoffs im menschlichen Blut; der Sauerstofftransport im Blut bei verschiedenen Krankheiten. Arch. Exp. Pathol. Pharmakol. 1938; 189: 615
  • Kennedy A. C., Valtis D. J. The oxygen dissociation curve in anemia of various types. J. Clin. invest. 1954; 33: 1372
  • Mulhausen R., Astrup P., Kjeldsen K. Oxygen affinity of hemoglobin in patients with cardiovascular diseases, anemia, and cirrhosis of the liver. Scand. J. Clin. Lab. Invest. 1967; 19: 291
  • Eaton J. W., Brewer G. J. The relationship between red cell 2,3-diphosphoglycerate and levels of hemoglobin in the human. Proc. Nat. Acad. Sci. U.S.A. 1968; 61: 756
  • Heljm M. The content of 2,3-diphosphoglycerate and some other phosphocompounds in human erythrocytes from healthy adults and subjects with different types of anemia. Forsvarsmedicin 1969; 5: 219
  • Torrance J., Jacobs P., Restrepo A., Eschbach J., Lenfant C., Finch C. A. Intraerythrocytic adaptation to anemia. N. Engl. J. Med. 1970; 283: 165
  • Haidas S., Zannos-Mariolea L., Matsaniotis N. 2,3-Diphosphoglyerate levels in children with iron deficiency anemia and acute leukemia. Acta Paediatr. Scand. 1976; 65: 13
  • Guest G. M., Andres W. D. Chemical studies of blood in high intestinal obstruction: distribution of phosphorus and intracellular changes. J. Clin. Invest. 1932; 11: 455
  • Rapoport S. Uber Phosphorglycerinsaure als Transportsubstanz des Blutphosphors und ihr Verhalten bei experimenteller Ammonchloridazidose. Biochem. Z. 1937; 289: 411
  • Rorth M. Dependency on acid-base status of blood of oxyhemoglobin dissociation and 2,3-diphosphoglycerate level in human erythrocytes. I. In vitro studies on reduced and oxygenated blood. Scand. J. Clin. Invest. 1970; 26: 43
  • Astrup P., Rorth M., Thorshauge C. Dependency on acid-base status of oxyhemoglobin dissociation and 2,3-diphosphoglycerate level in human erythrocytes. II. In vitro studies. Scand. J. Clin. Lab. Invest. 1970; 26: 47
  • Guest G. M., Rapoport S. Role of acid-soluble phosphorus compounds in red blood cells. Am. J. Dis. Child. 1939; 58: 1072
  • Alberti K. G. M. M., Darley J. H., Emerson P. M. 2,3-Diphosphoglycerate and tissue oxygenation in uncontrolled diabetes mellitus. Lancet 1972; 1: 391
  • Ditzel J. Effect of plasma inorganic phosphate on tissue oxygenation during recovery from diabetic ketoacidosis. Adv. Exp. Med. Biol. 1973; A37: 163
  • Ditzel J. Importance of plasma inorganic phosphate on tissue oxygenation during recovery from diabetic ketoacidosis. Horm. Metabol. Res. 1973; 5: 471
  • Ditzel J., Standl E. The oxygen transport system of red blood cells during diabetic ketoacidosis and recovery. Diabetologia 1975; 11: 255
  • Rose Z. B. Effects of salts and pH on the rate of erythrocyte diphosphoglycerate mutase. Arch. Biochem. Biophys. 1973; 158: 903
  • Kuhn B., Jacobasch G., Gerth C., Rapoport S. M. Kinetic properties of phosphofructokinase from erythrocytes of rats and rabbits. I. The influence of potassium and ammonium ions and of inorganic phosphate. Eur. J. Biochem. 1974; 43: 437
  • Rapoport S. M., Maretzki D., Schewe C., Jacobasch G. Control of glycolysis in the erythrocyte on the level of 1,3-DPG. Oxygen Affinity of Hemoglobin and Red Cell Acid-Base Status, M. Rorth, P. Astrup. Munksgaard, Copenhagen 1972; 527
  • Kalofoutis A., Jullien G., Koutselinis A., Miras C. Erythrocyte 2,3-diphosphoglycerate as related to diabetes and obesity. Clin. Chem. 1975; 21: 1414
  • Standl E., Kolb H. J. 2,3-Diphosphoglycerate fluctuations in erythrocytes reflecting pronounced blood glucose variation. In-vivo and in-vitro studies in normal, diabetic and hypoglycemic subjects. Diabetologia 1973; 9: 461
  • Ditzel J., Standl E. The problem of tissue oxygenation in diabetes mellitus. II. Evidence of disordered oxygen release from the erythrocytes of diabetics in various conditions of metabolic control. Acta. Med. Scand. Suppl. 1975; 578: 59
  • Ditzel J., Standl E. Plasma P, and erythrocyte 2,3-diphosphoglycerate concentrations of non-acidotic diabetics in various degrees of metabolic control. Clin. Chem. 1976; 22: 550
  • Hurt G. A., Chanutin A. Organic phosphate compounds of erythrocytes from individuals with uremia. J. Clin. Lab. Med. 1964; 64: 675
  • Nathan D. G., Beck L. H., Hampers C. L., Merrill J. P. Erythrocyte production and metabolism in anephric and uremic man. Ann. N. Y. Acad. Sci. 1968; 149: 539
  • Muirhead E. F., Jones F. Lowered glucose utilization, phosphate uptake and reduced glutathione content of erythrocytes following bilateral nephrectomy. J. Lab. Clin. Med. 1958; 51: 49
  • Morgan J. M., Morgan R. E. Study of the effect of uremic metabolites on erythrocyte glycolysis. Metabolism 1964; 13: 629
  • Blumberg A., Marti H. R. Adaptation to anemia by decreased oxygen affinity of hemoglobin in patients on dialysis. Kidney Int. 1972; 1: 263
  • Lichtman M. A., Miller D. R., Freeman R. B. Erythrocyte adenosine triphosphate depletion during hypophosphatemia in a uremic subject. N. Engl. J. Med. 1969; 280: 240
  • Travis S. F., Sugerman H. J., Ruberg R. L., Dudrick S. J., Delivoria-Papadopoulous M., Miller L. D., Oski F. A. Alterations of red cell glycolytic intermediates and oxygen transport as a consequence of hypophosphatemia in patients receiving intravenous hyperalimentation. N. Engl. J. Med. 1971; 285: 763
  • Lichtman M. A., Miller D. R., Cohen J., Waterhouse C. Reduced red cell glycolysis, 2,3-diphosphoglycerate and adenosine triphosphate concentration, and increased hemoglobin-oxygen affinity caused by hypophosphatemia. Ann. Intern. Med. 1971; 74: 562
  • Sheldon G. F. Hyperphosphatemia, hypophosphatemia, and the oxyhemoglobin dissociation curve. J. Surg. Res. 1972; 14: 367
  • Lotz M., Zisman E., Bartter F. C. Evidence for a phosphorus-depletion syndrome in man. N. Engl. J. Med. 1968; 278: 409
  • Boelens P. A., Norwood W., Kjellstrand C., Brown D. M. Hypophosphatemia with muscle weakness due to antacids and hemodialysis. Am. J. Dis. Child. 1970; 120: 350
  • Bromberg P. A., Alben J. O., Bare G. H., Balcerzak S. P., Jones R. T., Brimhall B., Padilla F. High oxygen affinity variant of hemoglobin Little Rock with unique properties. Nature New Biol., (London) 1973; 243: 177
  • Jensen M., Oski F. A., Nathan D. G., Bunn H. F. Hemoglobin Syracuse (α2 β2143[H21] His-Pro), a new high affinity variant, observations on the auto-oxidation of normal and variant hemoglobins. J. Clin. Invest. 1975; 55: 469
  • Lorkin P. A., Stephens A. D., Beard M. E. J., Wrigley P. F. M., Adams L., Lehmann H. Hemoglobin Rahere (β82 Lys → Thr): a new high-affinity haemoglobin associated with decreased 2,3-diphosphoglycerate binding and relative polycythemia. Br. Med. J. 1975; 4: 200
  • Ikkala E., Koskela J., Pikkarainen P., Rahiala E.-L., El-Hazmi M. A. F., Nagai K., Lang A., Lehmann H. Hb Helsinki: a variant with a high oxygen affinity and a substitution at a 2,3-DPG binding site (β82 [EF6] Lys → Met). Acta Haematol. 1976; 56: 257
  • Charache S., Weatherall D. J., Clegg J. B. Polycythemia associated with a hemoglobinopathy. J. Clin. Invest. 1966; 45: 813
  • Botha M. C., Beale D., Isaacs W. A., Lehmann H. Hemoglobin J Cape Town—β292 arginine → glutamine β2. Nature (London) 1966; 212: 792
  • Lines J. G., McIntosh R. Oxygen binding by haemoglobin J-Cape Town (α292 arg → gin). Nature (London) 1967; 215: 297
  • Jones R. T., Osgood E. E., Brimhall B., Koler R. T. Hemoglobin Yakima. I. Clinical and biochemical studies. J. Clin. Invest. 1967; 46: 1840
  • Reed C. S., Hampson R., Gordon S., Jones R. T., Novy M. J., Brimhall B., Edwards M. J., Koler R. D. Erythrocytes secondary to increased oxygen affinity of a mutant hemoglobin, hemoglobin Kempsey. Blood 1968; 31: 623
  • Harkness D. R. The regulation of hemoglobin oxygenation. Adv. Intern. Med. 1973; 17: 189
  • Hayashi A., Stamatoyannopoulos G. Role of the penultimate tyrosine in haemoglobin subunit. Nature New Biol. (London) 1972; 235: 70
  • Bunn H. F., Bradley J. B., Davis W. E., Drysdale J. W., Burtle J. F., Beck W. S., Layer M. B. Structural and functional studies on hemoglobin Bethesda (α2 β2, 145 His), a variant associated with compensatory erythrocytosis. J. Clin. Invest. 1972; 51: 2299
  • Adamson J. W., Parer J. T., Stamatoyannopoulos G. Erythrocytosis associated with hemoglobin Rainier: oxygen equilibria and marrow regulation. J. Clin. Invest. 1969; 48: 1376
  • Perutz M. F., Lehmann H. Molecular pathology of human hemoglobin. Nature (London) 1968; 219: 902
  • Wintrobe M. M., Lee G. R., Boggs D. R., Bithell T. C., Athens J. W., Foerster J. Clinical Hematology7th ed. Lea & Febiger, Philadelphia 1974; 816
  • Charache S., Grisolia S., Fiedler A. J., Hellegers A. E. Effect of 2,3-diphosphoglycerate on oxygen affinity of blood in sickle cell anemia. J. Clin. Invest. 1970; 49: 806
  • Gahienbeck H., Bartles H. Veranderung der Sauerstoffbindungskurven des Blutes bei Hyper-thyreosen und nach Gabe von Trijodthyronin bei Gesunden und bei Ratten. Klin. Wochenschr. 1968; 46: 547
  • Brewer G. J., Oelshlegel F. J., Eaton J. W. Biochemical, physiological and genetic factors in the regulation of mammalian erythrocyte metabolism and DPG levels. Oxygen Affinity of Hemoglobin and Red Cell Acid-Base Status, M. Rorth, P. Astrup. Munksgaard, Copenhagen 1972; 539
  • Snyder L. M., Reddy W. J. Mechanism of action of thyroid hormones on erythrocyte 2,3-diphosphoglyceric acid synthesis. J. Clin. Invest. 1970; 49: 1993
  • Miller W. W., Delivoria-Papadopoulos M., Miller L., Oski F. A. Oxygen releasing factor in hyperthyroidism. JAMA 1970; 211: 1824
  • Snyder L. M., Reddy W. J. Thyroid hormone control of erythrocyte 2,3-diphosphoglyceric acid concentrations. Science 1970; 169: 879
  • Torrance J. D. Diphosphoglycerate mutase assay: the effect of pyruvate, lactate dehydrogenase, and thyroid hormone. Clin. Chim. Acta 1974; 50: 103
  • Parker J. P., Beirne G. J., Desai J. N., Raich P. C., Shahidi N. T. Androgen-induced increase in red-cell 2,3-diphosphoglycerate. N. Engl. J. Med. 1972; 287: 381
  • Molinari P. F., Chung S. K., Snyder L. M. Variations of erythrocyte glycolysis following androgen. J. Lab. Clin. Med. 1973; 81: 443
  • Rorth M. Hemoglobin interactions and red cell metabolism. Semin. Haematol. 1972; 5: 1
  • Bauer C., Rothschlag-Schaefer A. M. The influence of aldosterone and cortisol on oxygen affinity and cation concentration of the blood. Respir. Physiol. 1968; 5: 360
  • Rodriguez J. M., Shahidi N. T. Erythrocyte 2,3-diphosphoglycerate in adaptive red-cell-volume deficiency. N. Engl. J. Med. 1971; 285: 479
  • Loutit J. F., Mollison P. L., Young I. M. Citric acid-sodium citrate-glucose mixtures for blood storage. Q. J. Exp. Physiol. 1943; 32: 183
  • Rapoport S. Dimentional, osmotic, and chemical changes of erythrocytes in stored blood. I. Blood preserved in sodium citrate, neutral and acid citrate glucose (ACD) mixtures. J. Clin. Invest. 1947; 26: 591
  • Nakao K., Wada T., Kamiyama T. A direct relationship between adenosine triphosphate level and in vivo viability of erythrocytes. Nature (London) 1962; 194: 877
  • Gibson J. G., Jr., Murphy W. P., Jr., Scheitlin W. A., Rees S. B. The influence of extracellular factors involved in the collection of blood in ACD on maintenance of red cell viability during refrigerated storage. Am. J. Clin. Pathol. 1956; 26: 855
  • Gibson J. G., Jr., Rees S. B., McManus T. J., Scheitlin W. A. A citrate-phosphate-dextrose solution for the preservation of human blood. Am. J. Clin. Pathol. 1957; 28: 569
  • Bowman H. S. Red cell preservation in citrate-phosphate-dextrose solution and in acid-citrate-dextrose, comparison of erythrocyte viability after 28 days of refrigerated storage. Transfusion 1963; 3: 364
  • Kevy S. V., Gibson J. G., II, Button L. A clinical evaluation of the use of citrate-phosphate-dextrose solution in children. Transfusion 1965; 5: 427
  • Shields C. E. Comparison studies of whole blood stored in ACD and CPD and with adenine. Transfusion 1968; 8: 1
  • Orlina A. R., Josephson A. M. Comparative viability of blood stored in ACD and CPD. Transfusion 1969; 9: 62
  • Strumia M. M., Strumia P. V. Conditions affecting the maintenance of adenosine triphosphate, 2,3-diphosphoglycerate and oxygen dissociation by addition of adenine and inosine to blood stored at 1°C. Transfusion 1972; 12: 68
  • Valtis D. J., Kennedy A. C. The causes and prevention of defective function of stored red blood cells after transfusion. Glasgow Med. J. 1953; 34: 521
  • Valtis D. J., Kennedy A. C. Defective gas-transport function of stored red blood cells. Lancet 1954; 1: 119
  • Gullbring B., Strom G. Changes in oxygen-carrying function of human hemoglobin during storage in cold acid-citrate-dextrose solution. Acta Med. Scand. 1956; 155: 413
  • Bunn H. F., May M. H., Kocholaty W. F., Shields C. R. Hemoglobin function in stored blood. J. Clin. Invest. 1969; 48: 311
  • Akerblora O., de Verdier C.-H., Garby L., Hogman C. Restoration of defective oxygen-transport function of stored red blood cells by addition of inosine. Scand. J. Clin. Lab. Invest. 1968; 21: 245
  • Sugerman H. J., Davidson D. T., Vibul S., Delivoria-Papadopoulos M., Miller L. D., Oski F. A. The basis of defective oxygen delivery from stored blood. Surg. Cynecol. Obslet. 1970; 131: 733
  • Miller R. D. The oxygen dissociation curve and multiple transfusions of ACD blood. Clin. Anesth. 1972; 9: 43
  • Chanutin A. The effect of the addition of adenine and nucleosides at the beginning of storage on the concentrations of phosphates of human erythrocytes during storage in acid-citrate-dextrose and citrate-phosphate-dextrose. Transfusion 1967; 7: 120
  • Beutler E., Meul A., Wood L. A. Depletion and regeneration of 2,3-diphosphoglyceric acid in stored red blood cells. Transfusion 1969; 9: 109
  • Dawson R. B., Jr., Kocholoty W. F., Gray J. L. Hemoglobin function and 2,3-DPG levels of blood stored at 4°C in ACD and CPD: pH effect. Transfusion 1970; 10: 299
  • Simon E. R., Chapman R. G., Finch C. A. Adenine in red cell preservation. J. Clin. Invest. 1962; 41: 351
  • de Verdier C.-H., Garby L., Hjelm M., Hogman C. Adenine in blood preservation: post-transfusion viability and biochemical changes. Transfusion 1964; 4: 331
  • Beutler E., Wood L. A. Preservation of red cell 2,3-diphosphoglycerate in modified ACD solution and in experimental artificial media. Vox Sang. 1971; 20: 403
  • Akerblom O., Kreuger A. Studies on citrate-phosphate-dextrose (CPD) blood supplemented with adenine. Vox Sang. 1975; 29: 90
  • Simon E. R. Adenine and purine nucleosides in human red cell preservation: a review. Transfusion 1967; 7: 395
  • Shields C. E., Lopas H., Birndorf N. I. Investigation of nephrotoxic effects of adenine and its metabolic product, 2,8 dioxyadenine, on primates (Macaca irus). J. Clin. Pharmacol. 1970; 10: 316
  • Falk J. S., Lindblad G. T. O., Westman B. J. M. Histopathological studies on kidneys from patients treated with large amounts of blood preserved with ACD-adenine. Transfusion 1972; 12: 376
  • Kreuger A. Adenine metabolism during and after exchange transfusion in newborn infants with CPD-adenine blood. Transfusion 1976; 16: 249
  • Peck C. C., Bailey F. J., Moore G. L., Zuck T. F. Urinary supersaturation by 2,8-dihydroxyadenine (DOA). Transfusions 1975; 15: 518
  • Roth G. J., Moore G. L., Kline W. E., Poskitt T. R. The renal effect of intravenous adenine in humans. Transfusion 1975; 15: 116
  • Dawson R. B. Blood storage. XXV. ascorbic acid (vitamin C) and dihydroxyacetone (DHA) maintenance of 2,3-DPG for six weeks in CPD-adenine. Transfusion 1977; 17: 248
  • Dawson R. B. Hemoglobin function in stored blood. XIX. Inosine maintenance of 2,3-DPG for 35 days in a CPD-adenine preservative. Transfusion 1977; 17: 525
  • Fitzsche W., Siedentopf H. G., Spielmann W., Ferber E., Fischer H. Untersuchungen zur verbesserten Zellkonservierung. IV. Uberlebenszeitbestimmungen and Klinische Erfahrungen mit IAG-konserviertem. Blut Klin. Wochenschr. 1965; 43: 881
  • Seidl S., Spielmann W. Comparative studies on the effect of different nucleosides in red cell preservation. Modern Problems of Blood Preservation, W. Spielmann, S. Seidl. Gustav Fischer Verlag, Stuttgart 1970; 72
  • de Verdier C.-H., Akerblom O., Garby L., Hogman C. Methods to preserve the concentration of 2,3-diphosphoglycerate and ATP in stored blood. Modern Problems in Blood Preservation, W. Spielmann, S. Siedl. Gustav Fischer Verlag, Stuttgart 1970; 93
  • Akerblom O., Ericson A. Effects of inosine, pyruvate, and inorganic phosphate on the 2,3-DPG level in fresh and stored erythrocytes. 6th Int. Symp. Structure and Function of Erythrocytes. Akademie Verlag, Berlin 1972; 401
  • Strumia M. M., Strumia P. V. Transfusion of long stored whole blood or washed red blood cells incubated with adenine and inosine. Transfusion 1971; 11: 258
  • Dawson R. B., Edinger M. C., Ellis T. J. Hemoglobin function in stored blood. J. Lab. Clin. Med. 1971; 77: 46
  • Duhm J., Deuticke B., Gerlach E. Complete restoration of oxygen transport function and 2,3-diphosphoglycerate concentration in stored blood. Transfusion 1971; 11: 147
  • Paniker N. V., Beutler E. Pyruvate effect in maintenance of ATP and 2,3-DPG of stored blood. J. Lab. Clin. Med. 1971; 78: 472
  • Wood L., Beutler E. The effect of ascorbate on the maintenance of 2,3-diphosphoglycerate (2,3-DPG) in stored red cells. Br. J. Haematol. 1973; 25: 611
  • Brake J. M., Diendoerfer F. H. Preservation of red blood cell 2,3-diphosphoglycerate in stored blood containing dihydroxyacetone. Transfusion 1973; 13: 84
  • Wood L. A., Beutler E. The effect of periodic mixing on the preservation of 2,3-diphosphoglycerate (2,3-DPG) in stored blood. Blood 1973; 42: 17
  • Wood L. A., Beutler E. The effect of ascorbate and dihydroxyacetone on the 2,3-diphosphoglycerate and ATP levels of stored human red cells. Transfusion 1974; 14: 272
  • Wood L., Beutler E. Storage of erythrocytes in artificial media. Transfusion 1971; 11: 123
  • Beutler E., Duron O. Effect of pH on preservation of red cell ATP. Transfusion 1965; 5: 17
  • Chanutin A. Effect of storage of blood in ACD-adenine-inorganic phosphate plus nucleosides on metabolic intermediates of human red cells. Transfusion 1967; 7: 409
  • Beutler E., Wood L. A. Preservation of red cell 2,3-DPG and viability in bicarbonate-containing medium: the effect of blood-bag permeability. J. Lab. Clin, Med. 1972; 80: 723
  • Bensinger T. A., Chillar R. K., Beutler E. Prolonged maintenance of 2,3-DPG in liquid blood storage: use of an internal CO2 trap to stabilize pH. J. Lab. Clin. Med. 1977; 89: 498
  • Valeri C. R. Recent advances in techniques for freezing red cells. Clin. Lab. Sci. 1970; 1: 381
  • Valeri C. R. Viability and function of preserved red cells. N. Engl. J. Med. 1971; 284: 81
  • Valeri C. R. Blood Banking and the Use of Frozen Blood Products. CRC Press, Cleveland 1976; 58
  • Bartlett G. R., Shafer A. W. Phosphorylated carbohydrate intermediates of human erythrocytes during storage in acid-citrate-dextrose. II. Effect of the addition of inosine late in storage. J. Clin. Invest. 1961; 40: 1185
  • Oski F. A., Travis S. F., Miller L. D., Delivoria-Papadopoulos M., Cannon E. The in vitro restoration of red cell 2,3-diphosphoglycerate levels in banked blood. Blood 1971; 37: 52
  • Zachara B. The effect of inosine, pyruvate, and inorganic phosphate on 2,3-disphophoglycerate, adenine, and hypoxanthine nucleotide synthesis in outdated human erythrocytes. J. Lab. Clin. Med. 1975; 85: 436
  • Valeri C. R., Zaroulis C. G. Rejuvenation and freezing of outdated stored human red cells. N. Engl. J. Med. 1972; 287: 1307
  • Valeri C. R. Oxygen transport function of preserved red cells. Clin. Haematol. 1974; 3: 649
  • Valeri C. R., Hirsch N. M. Restoration in vivo of erythrocyte adenosine triphosphate 2,3-diphosphoglycerate, potassium ion, and sodium ion concentrations following the transfusion of acid-citrate-dextrose-stored human red blood cells. J. Lab. Clin. Med. 1969; 73: 722
  • Beutler E., Wood L. The in vivo regeneration of red cell 2,3-diphoglyceric acid (DPG) after transfusion of stored blood. J. Lab. Clin. Med. 1969; 74: 300
  • Valeri C. R. Viability and function of preserved red cells. Wadley Med. Bull. 1975; 5: 205
  • Broennle A. M., Tung C. K., Buchman B., Laver M. B. Oxyhemoglobin dissociation following massive transfusion in man. Fed. Proc. Fed. Am. Soc. Exp. Biol. 1970; 29: 329
  • Valeri C. R., Collins F. B. Physiologic effects of 2,3-DPG-depleted red cells with high affinity for oxygen. J. Appl. Physiol. 1971; 31: 823
  • McConn R., Derrick J. B. The respiratory function of blood: transfusion and blood storage. Anesthesiology 1972; 36: 119
  • Bordiuk J. M., McKenna P. J., Giannelli S., Ayres S. M. Alterations in 2,3-diphosphoglycerate and O2 hemoglobin affinity in patients undergoing open heart surgery. Circulation 1971; 43(Suppl. 1)141
  • Young J. A., Lichtman M. A., Cohen J. Reduced red cell 2,3-diphosphoglycerate and adenosine triphosphate, hypophosphatemia, and increased hemoglobin-oxygen affinity after cardiac surgery. Circulation 1973; 47: 1313
  • Glynn M. F. X., Cornhill F. Studies on the relationship between the equilibrium curve of oxyhemoglobin and 2,3-diphosphoglycerate in open-heart surgery. Can. J. Surg. 1975; 18: 73
  • Miller L. D., Oski F. A., Diaco J. F., Sugerman H. J., Gottlieb A. J., Davidson D., Delivoria-Papadopoulos M. The affinity of hemoglobin for oxygen: its control and in vivo significance. Surgery 1970; 68: 187
  • Sugerman H., Miller L. D., Oski F. A., Diaco J., Delivoria-Papadopoulos M., Davidson D. Decreased 2,3-diphosphoglycerate and reduced oxygen consumption in septic shock. Clin. Res. 1970; 18: 418
  • Chillar R. K., Slawsky P., Desforges J. F. Red cell 2,3-diphosphoglycerate and adenosine triphosphate changes in patients with shock. Br. J. Haematol. 1971; 21: 183
  • Valeri C. R. Blood Banking and the Use of Frozen Blood Products. CRC Press, Cleveland 1976; 159
  • Dennis R. C., Vito L., Weisel R. D., Valeri C. R., Berger R. L., Hechtman H. B. Improved myocardial performance following high 2,3-diphosphoglycerate red cell transfusions. Surgery 1975; 77: 741
  • Delivoria-Papadopoulos M., Morrow G., Oski F. A. Exchange transfusion in the newborn infant with fresh and old blood: the role of storage on 2,3-diphosphoglycerate, hemoglobin-oxygen affinity and oxygen release. Pediatrics 1971; 79: 898
  • Bartlett G. R. Human red cell glycolytic intermediates. J. Biol. Chem. 1959; 234: 449
  • Bartlett G. R. Methods for isolation of glycolytic intermediates by column chromatography with ion exchange resins. J. Biol. Chem. 1959; 234: 459
  • Bartlett G. R. Phosphorus assay in column chromatography. J. Biol. Chem. 1959; 234: 466
  • Bartlett G. R. Colorimetric assay methods for free and phosphorylated glyceric acid. J. Biol. Chem. 1959; 234: 469
  • Dyce B. J., Bessman S. P. A rapid nonenzymatic assay for 2,3-DPG in multiple specimens of blood. Arch. Environ. Health 1973; 27: 112
  • Sutherland E. W., Posternak T., Cori C. F. The mechanism of action of phosphoglucomutase and phosphoglyceric acid mutase. J. Biol. Chem. 1949; 181: 153
  • Joyce B. K., Grisolia S. Studies on glycerate 2,3-diphosphatase. J. Biol. Chem. 1958; 233: 350
  • Towne J. C., Rodwell V. W., Grisolia S. The microestimation, distribution, and biosynthesis of 2,3-diphosphoglyceric acid. J. Biol. Chem. 1957; 226: 777
  • Krimsky I. D-2,3-diphosphoglycerate. Methods of Enzymatic Analysis, H. U. Bergmeyer. Academic Press, New York 1965; 238
  • Grisolia S., Moore K., Luque J., Grady H. Automatic procedure for the microestimation of 2,3-diphosphoglycerate. Anal. Biochem. 1969; 31: 235
  • Atkinson K. F. Modified automated determination of 2,3-diphosphoglycerate in whole blood. Clin. Chem. 1972; 18: 1001
  • Lappin T. R., Elder G. E., Coulter C. D. Automated colorimetric determination of 2,3-diphosphoglycerate. Clin. Chim. Acta 1973; 44: 349
  • Purcell Y., Brozovic B. An improved automated method for the measurement of red cell 2,3-diphosphoglycerate. J. Clin. Pathol. 1976; 29: 1064
  • Nygaard S. F., Rorth M. An enzymatic assay of 2,3-diphosphoglycerate in blood. Scand. J. Clin. Invest. 1969; 24: 399
  • Loos J. A., Prins H. K. A mechanized system for the determination of ATP, ADP, 2,3-diphosphoglycerate, glucose-1,6-diphosphate and lactate in small amounts of blood cells. Biochem. Biophys. Acta 1970; 201: 185
  • Rose Z. B., Liebowitz J. Direct determination of 2,3-diphosphoglycerate. Anal. Biochem. 1970; 35: 177
  • Keitt A. S. Reduced nicotinamide adenine dinucleotide-linked analysis of 2,3-diphosphoglyceric acid: spectrophotometric and fluorometric procedures. J. Lab. Clin. Med. 1971; 77: 470
  • Hedelin H., Lundberg P. A. A simple automated fluorometric method for the determination of 2,3-diphosphoglycerate in blood. Scand. J. Clin. Lab. Invest. 1973; 32: 35
  • Ericson A., de Verdier C.-H. A modified method for the determination of 2,3-diphosphoglycerate in erythrocytes. Scand. J. Clin. Lab. Invest. 1972; 29: 85

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.