261
Views
38
CrossRef citations to date
0
Altmetric
Research Article

The Structure and Function of Central Nervous System Myelin

, &
Pages 29-64 | Published online: 27 Sep 2008

References

  • Raine C. S. The neuropathology of myelin diseases. Myelin, P. Morell. Plenum Press, New York 1984; 259–310
  • Cook S. D. Handbook of multiple sclerosis. McAlpine's multiple sclerosis2nd ed. Marcel Dekker, New York 1990
  • Matthews W. B., Compston A., Allen I. V., et al. Churchill Livingstone, New York 1991
  • Adams CWM. The onset and progression of the lesion in multiple sclerosis. J Neurol Sci 1975; 25: 165–82
  • Ebers G. C., Vinuela F. V., Feasby T., et al. Multifocal CT enhancement in MS. Neurology 1984; 34: 341–6
  • Koopmans R. A., Li DKB, Oger JJF, et al. Chronic progressive multiple sclerosis: serial magnetic resonance brain imaging over six months. Ann Neurol 1989; 26: 248–56
  • Paty D. W. Neuroimaging in multiple sclerosis. Handbook of multiple sclerosis, S. D. Cook. Marcel Dekker, New York 1990; 291–316
  • Hauser S. L., Bhan A. K., Gille F., et al. Immunohistochemical analysis of the cellular infiltrate in multiple sclerosis lesions. Ann Neurol 1986; 19: 578–87
  • Traugott U., Scheinberg L. C., Raine C. S. On the presence of la-positive endothelial cells and astrocytes in multiple sclerosis lesions and its relevance to antigen presentation. J Neuro immunol 1985; 8: 1–14
  • Prineas J. W., Kwon E. E., Cho E-S, et al. The distribution of myelin associated glycoprotein and myelin basic protein in actively demyelinating multiple sclerosis lesions. JNeuroimmunol. 1984; 6: 251–64
  • Moller J. R., Yanagisawa K., Brady R. O., et al. Myelin-associated glycoprotein in multiple sclerosis lesions: a quantitative and qualitative analysis. Ann Neurol 1987; 22: 469–74
  • Prineas J. W., Kwon E. E., Stemberger N. H., et al. Remyelination in multiple sclerosis. Ann NY Acad Sci 1984; 436: 11–32
  • Dubois-Dalcq M., Armstrong R. The molecular and cellular events of central nervous system remyelination. Bioessays 1990; 12: 569–76
  • Silberberg D. H. Pathogenesis of demyelination. Multiple sclerosis, W. I. McDonald, D. H. Silberberg. Butterworths, Boston 1986; 99–111
  • Gonzalez-Scarano F., Spielman R. S., Nathanson N. Epidemiology. Multiple sclerosis, W. I. McDonald, D. H. Silberberg. Butterworths, Boston 1986; 37–55
  • Dean G., Kurtzke J. F. On the risk of multiple sclerosis according to age at immigration to South Africa. BMJ. 1971; 3: 725–9
  • Kurtzke J. F., Hyllested K. Multiple sclerosis: an epidemic disease in the Faroes. Trans Am Neurol Assoc 1975; 100: 213–5
  • Kurtzke J. F., Gudmundsson K. R., Bergman S. Multiple sclerosis in Iceland. I. Evidence of post war epidemic. Neurology 1982; 32: 143–50
  • Poskanzer D. C., Prenney L. B., Seridan J. L., et al. Multiple sclerosis in the Orkney and Shetland Islands. I. Epidemiology, clinical factors, and methodology. J Epidemiol Community Health 1980; 34: 229–39
  • Cook S. D., Cromanty J. I., Tapp W., et al. Declining incidence of multiple sclerosis in the Orkney Islands. Neurology 1985; 35: 545–51
  • Pryse-Phillips W. The epidemiology of multiple sclerosis. Handbook of multiple sclerosis, S. D. Cook. Marcel Dekker, New York 1990; 1–24
  • Martin R., McFarland H. F., McFarlin D. E. Immunological aspects of demyelinating diseases. Annu Rev Immunol 1991; 10: 153–87
  • Raine C. S. Multiple sclerosis: a pivotal role for the T cell in lesion development. Neuropathol Appl Neurobiol 1991; 17: 265–74
  • Doniach D., Bottazzo G. F., Khoury E. L. Prospects in human autoimmune thyroiditis. Autoimmune aspects of endocrine disorders, A. Pinchera, D. Doniach, G. F. Fenzi, L. Bascheri. Academic Press, London 1980; 25–38
  • Burman K. D., Baker JR, Jr. Immune mechanisms in Grave's disease. Endocrinol Rev 1985; 6: 183–201
  • Hohlfeld R., Toyka K. V., Tzartos S. J., et al. Human T-helper lymphocytes in myasthenia gravis recognize the nicotinic receptor a subunit. Proc Natl Acad Sci USA 1987; 84: 5379–83
  • Cook S. D., Dowling P. C. Multiple sclerosis and viruses: an overview. Neurology 1980; 30: 80–91
  • Johnson R. T., McArthur J. C. Myelopathies and retroviral infections. Ann Neurol 1987; 21: 113–6
  • Stowring L., Haase A. T., Petursson G., et al. Detection of visna virus antigens and RNA in glial cells in foci of demyelination. Virology 1985; 141: 311–8
  • Booss J., Kim J. H. Handbook of multiple sclerosis, S. D. Cook. Marcel Dekker, New York 1990; 41–61
  • Vandvik B., Degre M. Measles virus antibodies in serum and cerbrospinal fluid in patients with multiple sclerosis and other neurological disorders, with special reference to measles antibody synthesis within the central nervous system. J Neurol Sci 1975; 24: 201–19
  • Burks J. S., De Vald B. L., Jankovsky L. D., et al. Two coronaviruses isolated from central nervous system tissue of two multiple sclerosis patients. Science 1980; 209: 993–4
  • Rodriguez M., Leibowitz J. L., Lampert P. W. Persistent infection of oligodendrocytes in Theiler's virus-induced encephalomyelitis. Ann Neurol 1983; 13: 426–33
  • Koprowski H., DeFrietas E. C., Harper M. E., et al. Multiple sclerosis and human T-cell lym-photropic retroviruses. Nature 1985; 318: 154–60
  • Johnson R. T., McArthur J. C. AIDS and the brain. Trends Neurol Sci. 1986; 9: 91–4
  • Cosby S. L., McQuaid S., Taylor M. J., et al. Examination of eight cases of multiple sclerosis and 56 neurological and non-neurological controls for genomic sequences of measles virus, canine distemper virus, simian virus 5 and rubella virus. J Gen Virol 1989; 70: 2027–36
  • Waksman B. H. Immunity and the nervous system: basic tenets. Ann Neurol 1983; 13: 587–91
  • Oldstone MBA. Molecular mimicry and autoimmune disease. Cell 1987; 50: 819–20
  • Jahnke U., Fischer E. H., Alvord EC, Jr. Sequence homology between certain viral proteins and proteins related to encephalomyelitis and neuritis. Science 1985; 229: 282–4
  • Fujinami R. S., Oldstone MBA. Amino acid homology between the encephalitogenic site of myelin basic protein and virus: mechanism for autoimmunity. Science 1985; 230: 1043–5
  • Jouvenne P., Mounir S., Stewart J. N., et al. Sequence analysis of human coronavirus 229E mRNAs 4 and 5: evidence for polymorphism and homology with myelin basic protein. Virus Res 1992; 22: 125–41
  • Maugh T. H. The EAE model: a tentative connection to multiple sclerosis. Science 1977; 195: 969–71
  • Shaw S-Y, Laursen R. A., Lees M. B. Analogous amino acid sequences in myelin proteolipid and viral proteins. FEBS Lett 1986; 207: 266–70
  • Kasai N., Pachner A. R., Yu R. K. Anti-glycoiipid antibodies and their immune complexes in multiple sclerosis. J Neurol Sci 1986; 75: 33–42
  • Compston A. Genetic factors in the aetiology of multiple sclerosis. Multiple sclerosis, W. I. McDonald, D. H. Silverberg. Butterworths, London 1986
  • Compston A., Ebers G. The genetics of multiple sclerosis. Handbook of multiple sclerosis, S. D. Cook. Marcel Dekker, New York 1990; 25–39
  • Seboun E., Robinson M. A., Doolittle T. H., et al. A susceptibility locus for MS is linked to the T cell receptor β chain complex. Cell 1989; 57: 1095–100
  • Morell P. Myelin. Plenum Press, New York 1984
  • Kahn D. W., Morrell P. Phosphatidic acid and phosphoinositide turnover in myelin and its stimulation by acetylcholine. J Neurochem 1988; 50: 1542–50
  • Larocca J. N., Golly F., Ledeen R. W. Detection of G proteins in purified bovine brain myelin. J Neurochem 1991; 57: 30–8
  • Raine C. S. Morphology of myelin and myelination. Myelin, P. Morell. Plenum Press, New York 1984; 1–65
  • Remahl S., Hilderbrand C. Relation between axons and oligodendroglial cells during initial myelination. I. The glial unit. J Neurocytol 1990; 19: 313–28
  • Blaurock A. E., Genter SCM, Graham D. G. Membrane flow within the myelin sheath in IDPN neuropathy. Neuropathol Appl Neurobiol 1991; 17: 309–21
  • Martenson R. E. Myelin: biology and chemistry. CRC Press, Boca Raton 1992
  • Raker E. Membranes of mitochondria and chloroplasts. American Chemical Society Monograph 165. Van Nostrand Reinhold, New York 1970
  • Palmer J. M., Hall D. O. The mitochondrial membrane system. Prog Biophys Biophys Chem 1972; 24: 125–76
  • Peters A. Observations on the connections between myelin sheaths and glial cells in the optic nerve of young rat. J Anat 1964; 98: 125–36
  • Sato S., Fujita N., Kurihara T., et al. cDNA cloning and amino acid sequence for human myelin-associated glycoprotein. Biochem Biophys Res Commun 1989; 163: 1473–80
  • Yoshida K., Kohsaka S., Nii S., et al. Subcultured astrocytes suppress the proliferation of neuroblasts in vitro. Neurosci Lett 1986; 70: 34–9
  • Liuzzi F. J., Lasak R. J. Astrocytes block axonal regeneration in mammals by activating the physiological stop pathway. Science 1987; 237: 642–5
  • Lim R., Miller J. F., Zaheer A. Purification and characterization of glia maturation factor beta. A growth regulator of neurons and glia. Proc Natl Acad Sci USA 1989; 86: 3901–5
  • Guilian D., Johnson B., Krebs J. F., et al. A growth factor from neuronal cell lines stimulates myelin protein synthesis in mammalian brain. J Neurosci 1991; 11: 327–36
  • McKinnon R. D., Matsui T., Dubois D. M., et al. FGF modulates the PDGF-driven pathway of oligodendrocyte development. Neuron 1991; 5: 603–14
  • McKinnon R. D., Matsui T., Aranda M., et al. A role for fibroblast growth factor in oligodendrocyte development. Ann NY Acad Sci 1991; 638: 378–86
  • Komoly S., Hudson L. D., Webster H. D., et al. Insulin-like growth factor I gene expression is induced in astrocytes during experimental demyelination. Proc Natl Acad Sci USA 1992; 89: 1894–8
  • Mozell R. L., McMorris F. A. Insulin-like growth factor I stimulates oligodendrocyte development and myelination in rat brain aggregate cultures. J Neurosci Res 1991; 30: 382–90
  • LeVine S. M., Macklin W. B. Iron-enriched oligodendrocytes: a reexamination of their spatial distribution. J Neurosci Res 1990; 26: 508–12
  • LeVine S. M. Oligodendrocytes and myelin sheaths in normal, quaking and shiverer brains are enriched in iron. J Neurosci Res 1991; 29: 413–9
  • Gillespie C. S., Wilson R., Davidson A., et al. Characterization of a cytoskeletal matrix associated with myelin from rat brain. Biochem J 1989; 260: 689–96
  • Rumsby M. G. Organization and structure in central-nerve myelin. Biochem Soc Trans. 1978; 6: 448–62
  • Boggs J. M., Moscarello M. A., Papahadjopoulos D. Structural organization of myelin – role of lipid-protein interactions determined in model systems. Lipid-protein interactions, P. Jost, O. H. Griffith. John Wiley & Sons, New York 1982; Vol. 2.: 1–51
  • Boggs JM, Moscarello M. A. Structural organization of the human myelin membrane. Biochim Biophys Acta 1978; 515: 1–21
  • Carnegie P. R., Moore W. J. Myelin basic protein. Proteins of the Nervous System, R. A. Bradshaw, D. M. Schneider. Raven Press, New York 1980; 199–43
  • Newman S., Kitamura K., Campagnoni A. T. Identification of a cDNA coding for a fifth form of myelin basic protein in mouse. Proc Natl Acad Sci USA 1987; 84: 886–90
  • Saavedra R. A., Fors L., Aebersold R. H., et al. The myelin proteins of the shark brain are similar to the myelin proteins of the mammalian peripheral nervous system. J Mol Evol 1989; 29: 149–56
  • Moscarello M. A., Pang H., Pace-Asciak C. R., et al. The N terminus of human myelin basic protein consists of C2, C4, C6, and C8 alkyl carboxylic acids. J Biol Chem 1992; 267: 9779–82
  • Chan K-FJ, Moscarello M. A., Stoner G. L., et al. A novel fragmentation of human myelin basic protein: identification of phosphorylated domains. Biochem Biophys Res Commun 1987; 144: 1287–95
  • Brostoff S., Eylar E. H. Localization of methylated arginine in the Al protein from myelin. Proc Natl Acad Sci USA 1971; 68: 765–9
  • Chou FC-H, Chou C-HJ, Shapira R., et al. Basis of microheterogeneity of myelin basic protein. J Biol Chem 1976; 251: 2671–9
  • Martenson R. E., Law J. M., Deibler G. E. Identification of multiple in vivo phosphorylation sites in rabbit myelin basic protein. J Biol Chem 1983; 254: 930–7
  • Deber C. M., Cheifetz S., Moscarello M. A. Microheterogeneity of bovine myelin basic protein studied by nuclear magnetic resonance spectroscopy. Biopolymers 1983; 22: 377–80
  • Caamano C. A., Zand R. Homologous sequences in cholera toxin A and B subunits to peptide domains in myelin basic protein. FEBS Lett 1989; 252: 88–90
  • Chan C. K., Ramwani J., Moscarello M. A. Myelin basic protein binds GTP at a single site in the N-terminus. Biochem Biophys Res Commun 1988; 152: 1468–73
  • Boulias C., Moscarello M. A. ADP-ribosylation of myelin basic proteins isolated from normal and mutant mouse brains. Neuroreport 1990; 1: 221–4
  • Abbott W. M., Mellor A., Edwards Y., et al. Soluble bovine galactose-binding lectin. cDNA cloning reveals the complete amino acid sequence and an antigenic relationship with the major encephalitogenic domain of myelin basic protein. Biochem J 1989; 259: 283–90
  • Martenson R. E., Deibler G. E., Kies M. W. Microheterogeneity of guinea pig myelin basic protein. J Biol Chem 1969; 244: 4261–3
  • Fannon A. M., Moscarello M. A. Characterization of myelin basic protein charge isomers from adult mouse brain. Neuroreport. 1991; 2: 135–8
  • Diebler G. E., Martenson R. E., Kramer A. J., et al. The contribution of phosphorylation and loss of COOH-terminal arginine to the microheterogeneity of myelin basic protein. J. Biol Chem 1975; 250: 7931–8
  • Wood D. D., Moscarello M. A. The isolation, characterization, and lipid-aggregating properties of a citrulline containing myelin basic protein. J Biol Chem 1989; 264: 5121–7
  • Brady G. W., Fein D. B., Wood D. D., et al. The role of charge microheterogeneity of human myelin basic protein in the formation of phosphatidylglycerol multilayers. Biochem Biophys Res Commun 1985; 126: 1161–5
  • Tompkins T. A., Moscarello M. A. A 57-kDa phosphatidylinositol-specific phospholipase C from bovine brain. J Biol Chem 1991; 266: 4228–36
  • Fannon A. M., Moscarello M. A. Myelin basic protein is affected by reduced synthesis of myelin proteolipid protein in the jimpy mouse. Biochem J 1990; 268: 105–10
  • DeFerra F., Engh H., Hudson L., et al. Alternative splicing accounts for the four forms of myelin basic protein. Cell 1985; 43: 721–7
  • Takahashi N., Roach A., Teplow D. B., et al. Cloning and characterization of the myelin basic protein gene from mouse: one gene can encode both the 14 kDa and 18.5 kDa MBPs by the alternate use of exons. Cell 1985; 42: 139–48
  • Campagnoni A. T. Molecular biology of myelin proteins from the central nervous system. J Neurochem 1988; 51: 1–14
  • Mikoshiba K., Okano H., Tamura T., et al. Structure and function of myelin protein genes. Annu Rev Neurosci 1991; 14: 201–17
  • Kamholz J., de Ferra F., Puckett C., et al. Identification of three forms of human myelin basic protein by cDNA cloning. Proc Natl Acad Sci USA 1986; 83: 4962–6
  • Roth HJ, Kronquist K. E., de Kerlero K, Rosbo N., et al. Evidence for the expression of four myelin basic protein variants in the developing human spinal cord through cDNA cloning. J Neurosci Res 1987; 17: 321–8
  • Kitamura K., Newman S. L., Campagnoni C. W., et al. Expression of a novel transcript of the myelin basic protein gene. J Neurochem 1990; 54: 2032–41
  • Inoue T., Tamura T., Furuichi T., et al. Isolation of complementary DNAs encoding a cerebellum-enriched nuclear factor I family that activates transcription from the mouse myelin basic protein promoter. J Biol Chem 1990; 265: 19065–70
  • Devine B. K., Haas S., Khalili K. Analysis of the proximal transcriptional element of the myelin basic protein gene. Nucleic Acids Res 1992; 20: 545–50
  • Tamura T., Sumita K., Mikoshiba K. Sequences involved in brain-specific in vitro transcription from the core promoter of the mouse myelin basic protein gene. Biochim Biophys Acta 1991; 1129: 83–6
  • Verdi J. M., Campagnoni A. T. Translational regulation by steroids. Identification of a steroid modulatory element in the 5-untranslated region of the myelin basic protein messenger RNA. J Biol Chem. 1990; 265: 20314–20
  • Farsetti A., Mitsuhashi T., Desvergne B., et al. Molecular basis of thyroid hormone regulation of myelin basic protein gene expression in rodent brain. J Biol Chem 1991; 266: 23226–32
  • Goto K., Kurihara T., Takahashi Y., et al. Expression of genes for the myelin-specific proteins in oligodendrocytes in vivo demands the presence of axons. Neurosci Lett 1990; 117: 269–74
  • Kidd G. J., Hauer P. E., Trapp B. D. Axons modulate myelin protein messenger RNA levels during central nervous system myelination in vivo. J Neurosci Res 1990; 26: 409–18
  • McPhilemy K., Mitchell L. S., Griffiths I. R., et al. Effect of optic nerve transection upon myelin protein gene expression by oligodendrocytes: evidence for axonal influences on gene expression. JNeurocytol 1990; 19: 494–503
  • Shiota C., Miura M., Mikoshiba K. Developmental profile and differential localization of mRNAs of meylin proteins (MBP and PLP) in oligodendrocytes in the brain and in culture. Dev Brain Res 1989; 45: 83–94
  • Trapp B. D., Moench T., Pulley M, et al. Spatial segregation of mRNA encoding myelin-specific proteins. Proc Natl Acad Sci USA 1987; 84: 7773–7
  • Amur-Umarjee S. G., Hall L., Campagnoni A. T. Spatial distribution of mRNAs for myelin proteins in primary cultures of mouse brain. Dev Neurosci 1990; 12: 263–72
  • Ghandour M. S., Skoff R. P. Double-labeling in situ hybridization analysis of mRNAs for carbonic anhydrase II and myelin basic protein: expression in developing cultured glial cell. GUA. 1991; 4: 1–10
  • Barbarese E. Spatial distribution of myelin basic protein mRNA and polypeptide in quaking oligodendrocytes in culture. J Neurosci Res 1991; 29: 271–81
  • Kimura M. K., Sato M., Akatsuka A., et al. Restoration of myelin formation by a single type of myelin basic protein in transgenic shiverer mice. Proc Natl Acad Sci USA 1989; 86: 5661–5
  • Kerlero de Rosbo N., Tsang S., Bernard CCA. Comparative study of myelin basic protein isoforms in developing vertebrate central nervous system: absence of 21.5 and 20.2-kilodalton myelin basic proteins in chicken may point to their importance in mammalian myelinogenesis. DevNeurosci 1991; 13: 34–40
  • Staugaitis S. M., Smith P. R., Colman D. R. Expression of myelin basic protein isoforms in nonglial cells. J Cell Biol 1990; 110: 1719–27
  • Turner R. S., Chou C-HJ, Kibler R. F., et al. Basic protein in brain myelin is phosphorylated by endogenous phospholipid-sensitive Ca2+-dependent protein kinase. J Neurochem 1982; 39: 1397–404
  • Yang S-D, Liu J-S, Fong Y-L, et al. Endogenous brain protein phosphatases in the brain myelin. J Neurochem 1987; 48: 160–6
  • Vandenheede J. R., Van Lint J., Vanden Abeele C., et al. Interaction of myelin basic protein with the different. components of the ATP, Mg-dependent protein phosphatase system. FEBS Lett 1987; 211: 190–4
  • Ulmer J. B., Braun P. E. In vivo phosphorylation of myelin basic proteins in developing mouse brain: evidence that phosphorylation is an early event in myelin formation. Dev Neurosci 1984; 6: 345–55
  • Ulmer J. B., Braun P. E. In vivo phosphorylation of myelin basic proteins: age related differences in 32P incorporation. Dev Biol 1986; 117: 493–501
  • Schulz P., Cruz T. F., Moscarello M. A. Endogenous phosphorylation of basic protein of varying degrees of compaction. Biochemistry 1988; 27: 7793–9
  • Cheifetz S., Moscarello M. A. Effect of bovine basic protein charge microheterogeneity on protein-induced aggregation of unilamellar vesicles containing a mixture of acidic and neutral phospholipids. Biochemistry 1985; 24: 1909–14
  • Vartanian T., Szuchet S., Dawson G., et al. Oligodendrocyte adhesion activates protein kinase C-mediated phosphorylation of myelin basic protein. Science 1986; 234: 1395–8
  • Su H. D., Kemp B. E., Turner R. S., et al. Synthetic myelin basic protein peptide analogs are specific inhibitors of phospholipid/calcium-dependent protein kinase (protein kinase C). Biochem Biophys Res Commun 1986; 134: 78–84
  • Desmukh D. S., Kuizon S., Brockerhoff H. Mutual stimulation by phosphatidylinositol-4-phosphate and myelin basic protein of their phosphorylation by the kinases solubilized from rat brain myelin. Life Sci 1984; 34: 259–64
  • Ulmer J. B., Braun P. E. Chloroform markedly stimulates the phosphorylation of myelin basic proteins. Biochem Biophys Res Commun 1987; 146: 1084–8
  • Miyano O., Kameshita I., Fujisawa H. Purification and characterization of a brain-specific multifunctional calmodulin-dependant protein kinase from rat cerebellum. J Biol Chem 1992; 267: 1198–203
  • Chanderkar L. P., Paik W. K., Kim S. Studies on myelin basic protein methylation during mouse brain development. Biochem J 1986; 240: 471–9
  • Young P. R., Vacante D. A., Waickus C. M. Mechanism of the interaction between myelin basic protein and the myelin membrane: the role of arginine methylation. Biochem Biophys Res Commun 1987; 145: 1112–8
  • Inouye H., Kirschner D. A. Folding and function of the myelin proteins from primary sequence data. J Neurosci Res 1991; 28: 1–17
  • Gow A., Smith R. The thermodynamically stable state of myelin basic protein in aqueous solution is a flexible coil. Biochem J 1989; 257: 535–40
  • Anthony J. S., Moscarello M. A. A conformation change induced in the basic encephalitogen by lipids. Biochem Biophys Acta 1971; 243: 429–33
  • Liebes L. F., Zand R., Phillips W. D. The solution behavior of the bovine myelin basic protein in the presence of anionic ligands. Binding behavior with the red component of trypan blue and sodium dodecyl sulfate. Biochem Biophys Res Commun 1975; 405: 27–39
  • Keniry M. A., Smith R. Circular dichroic analysis of the secondary structure of myelin basic protein and derived peptides bound to detergents and to lipid vesicles. Biochim Biophys Acta. 1979; 578: 381–91
  • Keniry M. A., Smith R. Dependence on lipid structure of the coil-to-helix transition of bovine myelin basic protein. Biochim Biophys Acta 1981; 668: 107–18
  • Ramwani J., Epand R. M., Moscarello M. A. Biochemistry 1989; 28: 6538–43
  • Eylar E. H., Thompson M. Allergic encephalomyelitis: the physiochemical properties of the basic protein encephalitogen from bovine spinal cord. Arch Biochem Biophys 1969; 129: 469–79
  • Chao I. P., Einstein E. R. Physical properties of bovine encephalitogenic protein: molecular weight and conformation. J Neurochem 1970; 17: 1121–32
  • Stone G. L. Predicted folding of B-structure in myelin basic protein. J Neurochem 1984; 43: 443–7
  • Surewicz W. K., Moscarello M. A., Mantsch H. H. Fourier transform infrared spectroscopic investigation of the interaction between myelin basic protein and dimyristoylphosphatidyl-glycerol bilayers. Biochemistry 1987; 26: 3881–6
  • Epand M. R., Moscarello MA, Zierenberg B., et al. The folded conformation of the encephalitogenic peptide of the human brain. Biochemistry 1974; 13: 1264–7
  • Krigbaum W. R., Hsu T. S. Molecular conformation of bovine Al basic protein, a coiling macromolecule in aqueous solution. Biochemistry 1975; 14: 2542–6
  • Sedzik J., Kirschner D. A. Is myelin basic protein crystallizable%. Neurochem Res 1992; 17: 157–66
  • Whitaker J. N., Chou C-HJ, Chou FC-H, et al. Molecular internalization of a region of myelin basic protein. J Exp Med 1977; 146: 317–31
  • Jones AJS, Epand R. M. Effect of microheterogeneity on the structure and function of the myelin basic protein. Biochim Biophys Acta 1980; 625: 165–78
  • Randall C. S., Zand R. Spectroscopic assessment of secondary and tertiary structure in myelin basic protein. Biochemistry 1985; 24: 1998–2004
  • Randall C. S., Zand R. Microcalorimetric studies of the heats of solution of bovine myelin basic protein. Biochim Biophys Acta 1985; 831: 242–8
  • Deber C. M., Moscarello M. A., Wood D. D. Conformational studies on C-enriched human and bovine myelin basic protein, in solution and incorporated into liposomes. Biochemistry 1978; 17: 898–903
  • Whitaker J. N., Kirk K. A., Herman P. K., et al. An immunochemical comparison of human myelin basic protein and its modified citrullinated form, C8. J Neuroimmunol 1992; 36: 135–46
  • Deibler G. E., Stone A. L., Kies M. W. Role of phosphorylation in conformational adaptability of bovine myelin basic protein. Proteins 1990; 7: 32–40
  • Berlet H. H., Ilzenhofer H., Gass P. Restricted endogenous proteolysis of myelin basic protein of zinc-treated myelin. Acta Neurol (Napoli) 1991; 13: 145–52
  • Liuzzi G. M., Ventola A., Rizzo T., et al. Zinc as an inhibitor of myelin basic protein proteolytic breakdown in the central nervous system. Acta Neurol (Napoli) 1991; 13: 153–61
  • Cavatorta P., Giovanelli S., Bobba A., et al. Interaction of cations with lipid-free myelin basic protein. A spectroscopy study. Acta Neurol (Napoli) 1991; 13: 162–9
  • Nowak M. W., Berman H. A. Fluorescence studies on the interactions of myelin basic protein in electrolyte solutions. Biochemistry 1991; 30: 7642–51
  • Kronquist K. E., Crandall B. F., Macklin W. B., et al. Expression of myelin proteins in the developing human spinal cord: cloning and sequencing of human proteolipid protein cDNA. JNeurosciRes 1987; 18: 395–401
  • Kirschner D. A., Ganser A. L. Compact myelin exists in the absence of basic protein in the shiverer mutant mouse. Nature 1980; 283: 207–10
  • Readhead C., Popko B., Takahashi N., et al. Expression of a myelin basic protein gene in transgenic shiverer mice: correction of the dysmyelinating phenotype. Cell 1987; 48: 703–12
  • Shine H. D., Readhead C., Popko B., et al. Morphometric analysis of normal, mutant, and transgenic CNS: correlation of myelin basic protein expression to myelinogenesis. J Neu-rochem 1992; 58: 342–9
  • Dupouey P., Jacque C., Bourre J. M., et al. Immunochemical studies of myelin basic protein in shiverer mouse devoid of major dense line of myelin. Neurosci Lett 1979; 12: 113–8
  • Zeller N. K., Behar T. N., Dubois-Dalcq M. E., et al. The timely expression of myelin basic protein gene in cultured rat brain oligodendrocytes is independent of continuous neuronal influences. J Neurosci 1985; 5: 2955–62
  • Kristensson K., Holmes K. V., Duchala C. S., et al. Increased levels of myelin basic protein transcripts gene in virus-induced demyelination. Nature 1986; 322: 544–7
  • Lampe P. D., Nelsestuen G. L. Myelin basic protein-enhanced fusion of membranes. Biochim Biophys Acta 1982; 693: 320–5
  • Boggs J. M., Moscarello M. A., Papahadjopoulos D. Phase separation of acidic and neutral phospholipids induced by human myelin basic protein. Biochemistry 1977; 16: 5420–6
  • Sankaram M. B., Brophy P. J., Marsh D. Lipid-protein and protein-protein interactions in double recombinants of myelin proteolipid apoprotein and myelin basic protein with dimyristoyl-phosphatidylglycerol. Biochemistry 1991; 30: 5866–73
  • Gow A., Auton W., Smith R. Interactions between bovine myelin basic protein and zwitterionic lysophospholipids. Biochemistry 1990; 29: 1142–7
  • Mendz G. L., Brown L. R., Martenson R. E. Interactions of myelin basic protein with mixed dodecylphosphocholine/palmitoyllysophosphatidic acid micelles. Biochemistry 1990; 29: 2304–11
  • Mendz G. L., Miller D. J., Jamie I. M., et al. Physicochemical characterization of dodecylphos-phocholine/palmitoyllysophosphatidic acid/myelin basic protein complexes. Biochemistry 1991; 30: 6509–16
  • Stollery J. G., Boggs J. M., Moscarello M. A., et al. Direct observation by carbon-13 nuclear magnetic resonance of membrane-bound human myelin basic protein. Biochemistry 1980; 19: 2391–6
  • Hughes D. W., Stollery J. G., Moscarello M. A., et al. Binding of myelin basic protein to phospholipid micelles. J Biol Chem 1982; 257: 4698–700
  • Smith R. 'H-nuclear magnetic resonance study of the association of the basic protein of central nervous system myelin with lysophosphatidylcholine. Biophys Chem 1982; 16: 347–54
  • Smith R., Cornell B. A., Keniry M. A., et al. 31P Nuclear magnetic resonance studies of the association of basic proteins with multilayers of diacyl phosphatidyl serine. Biochim Biophys Acta 1983; 732: 492–8
  • Boggs J. M., Stollery J. G., Moscarello M. A. Effect of lipid environment on the motion of a spin-label covalently bound to myelin basic protein. Biochemistry 1980; 19: 1226–33
  • Boggs J. M., Wood D. D., Moscarello M. S. Hydrophobic and electrostatic interactions of myelin basic protein with lipid. Participation of N-terminal and C-termina) portions. Biochemistry 1981; 20: 1065–73
  • Boggs J. M., Stamp D., Moscarello M. A. Interaction of myelin basic protein with dipalmi-toylphosphatidylglycerol: dependence on the lipid phase and investigation of a metastable state. Biochemistry 1981; 20: 6066–72
  • Vadas E. B., Melancon P., Braun P. E., et al. Phosphorescence studies of the interaction of myelin basic protein with phosphatidylserine vesicles. Biochemistry 1981; 20: 3110–6
  • Harris R., Findlay JBC. Investigation of the organisation of the major proteins in bovine myelin membranes. Use of chemical probes and bifunctional crosslinking reagents. Biochim Biophys Acta 1983; 732: 75–82
  • Gould R. M., London Y. Specific interaction of central nervous system myelin basic protein with lipids. Biochim Biophys Acta 1972; 290: 200–18
  • MacNaughtan W., Snook K. A., Caspi E., et al. An X-ray diffraction analysis of oriented lipid multilayers containing basic proteins. Biochim Biophys Acta 1985; 818: 132–48
  • Deber C. M., Hughes D. W., Fraser P. E., et al. Binding of normal and multiple sclerosis-derived myelin basic protein to phospholipid vesicles: effects of membrane head group and bilayer regions. Arch Biochem Biophys 1986; 245: 455–63
  • Menon N. K., Williams R. E., Kampf K., et al. An analysis of the regions of the myelin basic protein that bind to phosphatidylcholine. Neurochem Res 1990; IS: 777–83
  • Smith R. Self-association of myelin basic protein: enhancement by detergents and lipids. Biochemistry 1982; 21: 2697–701
  • Smith R. Noncovalent cross-linking of lipid bilayers by myelin basic protein – a possible role in myelin formation. Biochim Biophys Acta 1977; 470: 170–84
  • Mendz G. L., Moore W. J., Brown L. R., et al. Interaction of myelin basic protein with micelles of dodecylphosphocholine. Biochemistry 1984; 23: 6041–6
  • Mendz G. L., Moore W. J., Kaplin L. I., et al. Characterization of dodecylphosphocholine/myelin basic protein complexes. Biochemistry 1988; 27: 379–86
  • Moscarello M. A., Brady G. W., Fein D. B., et al. The role of charge microheterogeneity of basic protein in the formation and maintenance of the multilayered structure of myelin: a possible role in multiple sclerosis. J Neurosci Res 1986; 15: 87–99
  • Cheifetz S., Boggs J. M., Moscarello M. A. Increase in vesicle permeability mediated by myelin basic protein: effect of phosphorylation of basic protein. Biochemistry 1985; 24: 5170–5
  • Norton W. T., Brosnan C. F., Cammer W., et al. Mechanisms and suppression of inflammatory demyelination. Acta Neurobiol Exp (Warsz) 1990; 50: 225–35
  • Day M. J., Tse A. G., Puklavec A. G., et al. Targeting autoantigen to B cells prevents the induction of a cell-mediated autoimmune disease in rats. J Exp Med. 1991; 175: 655–9
  • Avrilionis K., Boggs J. M. Suppression of experimental allergic encephalomyelitis by the encaphalitogenic peptide, in solution or bound to liposomes. J Neuroimmunol 1991; 35: 201
  • Racke M. K., Martin R., McFarland H., et al. Copolymer-1-induced inhibition of antigen-specific T cell activation: interfemece with antigen presentation. J Neuroimmunol. 1992; 37: 75–84
  • Teitelbaum D., Milo R., Amon R., et al. Synthetic copolymer 1 inhibits human T-cell lines specific for myelin basic protein. Proc Natl. Acad Sci USA 1992; 89: 137–41
  • Gautam A. M., Pearson C. I., Sinha A. A., et al. Inhibition of experimental autoimmune encephalomyelitis by a nonimmunogenic non-self peptide that binds to I-Au. J Immunol 1992; 148: 3049–54
  • Yednock T. A., Cannon C., Fritz L. C., et al. Prevention of experimental autoimmune encephalomyelitis by antibodies against alpha 4 beta 1 integrin. Nature 1992; 356: 63–6
  • Zamvil S., Nelson P., Trotter J., et al. T-cell clones specific for myelin basic protein induced chronic relapsing paralysis and demyelination. Nature 1985; 317: 355–8
  • Pettinelli C. B., McFarlin D. E. Adoptive transfer of experimental allergic encephalomyelitis in SJL/J mice after in vitro activation of lymph node cells by myelin basic protein: requirement for Lyt 1+2- T lymphocytes. J Immunol 1981; 127: 1420–3
  • Swanborg R. Autoimmune effector cells. V. A monoclonal antibody specific for rat helper T lymphocytes inhibits adoptive transfer of autoimmune encaphalomyelitis. J Immunol 1983; 130: 1503–5
  • Ellerman K. E., Powers J. M., Brostoff S. W. A suppressor T-lymphocyte cell line for autoimmune encaphalomyelitis. Nature 1988; 331: 265–7
  • Liblau R., Roumier-Lasserve E., Maciazek J., et al. T cell response to myelin basic protein epitopes in multiple sclerosis patients and healthy subjects. Eur J Immunol 1991; 21: 1391–5
  • Bums J., Littlefield K., Gomez C., et al. Assessment of antigenic determinants for the human T cell response against myelin basic protein using overlapping synthetic peptides. J Neuroimmunol 1991; 31: 105–13
  • Binder T. A., Clark R. B., Goldschneider I. Relative susceptibility of SJL/J and B10.S mice to experimental allergic encephalomyelitis is correlated with high and low responsiveness to myelin basic protein. J Neuroimmunol 1991; 35: 31–43
  • Villarroya H., Dalix A. M., Paraut M., et al. Differential susceptibility to experimental allergic encephalomyelitis (EAE) in genetically defined A+ and A– rabbits. Autoimmunity 1990; 6: 47–60
  • Ben N. A., Liblau R. S., Cohen L., et al. Restricted T-cell receptor V beta gene usage by myelin basic protein-specific T-cell clones in multiple sclerosis: predominant genes vary in individulas. Proc Natl Acad Sci USA 1991; 88: 2466–70
  • Price W. S., Mendz G. L., Martenson R. E. Conformation of a heptadecapeptide comprising the segment encephalitogenic in rhesus monkey. Biochemistry 1988; 27: 8990–9
  • Diaz R. S., Monreal J., Lucas M. Calcium movements mediated by proteolipid protein and nucleotides in liposomes prepared with the endogenous lipids from brain white matter. J Neurochem 1990; 55: 1304–9
  • Nave K. A., Lai C., Bloom F. E., et al. Jimpy mutant mouse: a 74-base deletion in the mRNA for myelin proteolipid protein and evidence for a primary defect in RNA splicing. Proc Natl Acad Sci USA 1986; 83: 9264–8
  • Hudson L. D., Berndt J. A., Puckett C., et al. Aberrant splicing of proteolipid protein mRNA in the dysmyelinating jimpy mutant mouse. Proc Natl Acad Sci USA 1987; 84: 1454–8
  • Dautigny A., Mattei M-G, Morello D., et al. The structural gene coding for myelin-associated proteolipid protein is mutated in jimpymice. Nature 1986; 321: 867–75
  • Morello D., Dautigny A., Pham-Dinh D., et al. Myelin proteolipid protein (PLP and DM-20) transcripts are deleted in. jimpy mutant mice. EMBO J. 1986; 5: 3489–93
  • Nave K. A., Bloom F. E., Milner R. J. A single nucleotide difference in the gene for myelin proteolipid protein defines the jimpy mutation in mouse. J Neurochem 1987; 49: 1873–7
  • Macklin W. B., Gardinier M. V., Obeso Z. O., et al. Mutations in the myelin proteolipid protein gene alter oligodendrocyte gene expression in jimpy and jimpy1 mice. J Neurochem. 1991; 56: 163–71
  • Gencic S., Hudson L. D. Conservative amino acid substitution in the myelin proteolipid protein in jimpy mice. J Neurosci 1990; 10: 117–24
  • Griffiths I. R., Scott I., McCulloch M. C., et al. Rumpshaker mouse: a new X-linked mutation affecting myelination: evidence for a defect in PLP expression. J Neurocytol 1990; 19: 273–83
  • Fanarraga M. L., Griffiths I. R., McCulloch M. C., et al. Rumpshaker: an X-linked mutation causing hypomyelination: developmental differences in myelination and glial cells between the optic nerve and spinal cord. GLIA 1992; 5: 161–70
  • Simons R., Riordan J. R. The myelin-deficient rat has a single base substitution in the third exon of the myelin proteolipid protein gene. J Neurochem 1990; 54: 1079–81
  • Kumar S., Macklin W. B., Gordon M. N., et al. Transcriptional regulation studies of myelin-associated genes in myelin-deficient mutant rats. Dev Neurosci 1990; 12: 316–25
  • Duncan E. D., Hammang J. P., Trapp B. D. Abnormal compact myelin in the myelin-deficient rat: absence of proteolipid protein correlates with a defect in the intraperiod line. Proc Natl Acad Sci USA 1987; 84: 6287–91
  • Willard H. F., Riordan J. R. Assignment of the gene for myelin proteolipid protein to the X chromosome: implications for X-linked myelin disorders. Science 1985; 230: 940–2
  • Hudson L. D., Puckett C., Berndt J., et al. Mutation of the proteolipid protein gene PLP in a human X chromosome-linked myelin disorder. Proc Natl Acad Sci USA 1989; 86: 8128–31
  • Gencic S., Abuelo D., Ambler M., et al. Pelizaeus-Merzbacher disease: an X-linked neurologic disorder of myelin metabolism with a novel mutation in the gene encoding proteolipid protein. Am J Hum Genet 1989; 45: 435–42
  • Trofatter J. A., Dlouhy S. R., DeMyer W., et al. Pelizaeus-Merzbacher disease: tight linkage to proteolipid protein gene exon-variant. Proc Natl Acad Sci USA 1989; 86: 9427–30
  • Pratt V. M., Trofatter J. A., Schinzel A., et al. A new mutation in the proteolipid protein (PLP) gene in a German family with Pelizaeus-Merzbacher disease. Am J Med Genet 1991; 38: 136–9
  • Weimbs T., Dick T., Stoffel W., et al. A point mutation at the X-chromosomal proteolipid protein locus in Pelizaeus-Merzbacher disease leads to disruption of myelinogenesis. Biol Chem Hoppe Seyler. 1990; 371: 1175–83
  • Pham-Dinh D., Popot J-L, Boespflug-Tanguy O., et al. Pelizaeus-Merzbacher disease: a valine to phenylalanine point mutation in a putative extracellular loop of myelin proteolipid. Proc Natl Acad Sci USA 1991; 88: 7562–6
  • Raskind W. H., Williams C. A., Hudson L. D., et al. Complete deletion of the proteolipid gene (PLP) in a family with X-linked Pelizaeus-Merzbacher disease. Am J Hum Genet 1991; 49: 1355–60
  • Yamamura T., Namikawa T., Endoh M., et al. Passive transfer of experimental allergic encephalomyelitis induced by proteolipid apoprotein. J Neurol Sci 1986; 76: 269–75
  • Trotter J. L., Clark H. B., Collins K. G., et al. Myelin proteolipid protein induces demyelinating disease in mice. J Neurol Sci 1987; 79: 173–88
  • Folch J., Lees M. Proteolipids, a new type of tissue lipoproteins. J Biol Chem 1951; 191: 807–17
  • Milner R. J., Lai C., Nave K-A, et al. Nucleotide sequences of two mRNAs for rat brain myelin proteolipid protein. Cell 1985; 42: 931–9
  • Naismith A. L., Hoffman-Chudzik E., Tsui L-C, et al. Study of the expression of myelin proteolipid protein (lipophilin) using a cloned complementary DNA. Nucleic Acids Res 1985; 13: 7413–25
  • Linington C., Waehneldt T. V. Conservation of the carboxyl terminal epitope of myelin proteolipid protein in the tetrapods and lobe-finned fish. J Neurochem 1990; 54: 1354–9
  • LeVine S. M., Wong D., Macklin W. B. Developmental expression of proteolipid protein and DM20 mRNAs and proteins in the rat brain. Dev Neurosci 1990; 12: 235–50
  • Nave K. A., Lemke G. Induction of the myelin proteolipid protein (PLP) gene in C6 glioblastoma cells: functional analysis of the PLP promoter. J Neurosci 1991; 11: 3060–9
  • Timsit S. G., Bally-Cuif L., Colman D. R., et al. DM-20 mRNA is expressed during the embryonic development of the nervous system of the mouse. J Neurochem 1992; 58: 1172–5
  • Nadon N. L., Duncan I. D., Hudson L. D. A point mutation in the proteolipid protein gene of the 'shaking pup' interrupts oligodendrocyte development. Development 1990; 110: 529–37
  • Schliess F., Stofel W. Evolution of the myelin integral membrane proteins of the central nervous system. Biol Chem Hoppe Seyler. 1991; 372: 865–74
  • Cook J. L., Irias-Donaghey S., Deininger P. L. Regulation of rodent myelin proteolipid protein gene expression. Neurosci Lett. 1992; 137: 56–60
  • McPhilemy K., Griffiths I. R., Mitchell L. S., et al. Loss of axonal contact causes down-regulation of the PLP gene in oligodendrocytes: evidence from partial lesions of the optic nerve. Neuropathol Appl Neurobiol 1991; 17: 275–87
  • Kahan I., Moscarello M. A. Identification of membrane-embedded domains of lipophilin from human myelin. Biochemistry 1985; 24: 538–44
  • Laursen R. A., Samiullah M., Lees M. B. The structure of bovine brain myelin proteolipid and its organization in myelin. Proc Natl Acad Sci USA 1984; 81: 2912–6
  • Stoffel W., Hillen H., Giersiefen H. Structure and molecular arrangement of proteolipid protein of central nervous system myelin. Proc Natl Acad Sci USA 1984; 81: 5012–6
  • Weise M. J. Hydrophobic regions in myelin proteins characterized through analysis of “hydropathic” profiles. J Neurochem 1985; 44: 163–70
  • Stoffel W., Subkowski T., Jander S. Topology of proteolipid protein in the myelin membrane of central nervous system. Hoppe Seyler's Z Physiol Chem 1989; 370: 165–76
  • Hudson L. D., Friedrich V. L., Behar T., et al. The initial events in myelin synthesis: orientation of proteolipid protein in the plasma membrane of cultured oligodendrocytes. J. Cell Biol 1989; 109: 717–27
  • Popot J-L, Pham-Dinh D., Dautigny A. Major myelin proteolipid: the 4-α-helix topology. J Membr Biol 1991; 120: 233–46
  • Konola J. T., Yamamura T., Tyler B., et al. Orientation of the myelin proteolipid protein C-terminus in oligodendroglial membranes. GLIA 1992; 5: 112–21
  • Deisenhofer J., Epp O., Miki K., et al. Structure of the protein subunits in the photosynthetic reaction centre of. Rhodopseudomonas viridis at 3 A resolution. Nature 1985; 318: 618–24
  • Reithmeier RAF, Deber C. M. Intrinsic membrane protein structure: principles and prediction. The structure of biological membranes, P. Yeagle. CRC Press, Boca Raton 1991; 337–93
  • Surewicz W. K., Moscarello M. A., Mantsch H. H. Secondary structure of the hydrophobic myelin protein in a lipid environment as determined by Fourier-transform infrared spectrometry. J Biol Chem 1987; 262: 8398–402
  • Cockle S. A., Epand R. M., Stollery J. G., et al. Nature of cysteinyl residues in lipophilin from human myelin. J Biol Chem. 1980; 255: 9182–8
  • Papahadjopoulos D., Vail W. J., Moscarello M. A. Interaction of a purified hydrophobic protein from myelin with phospholipid membranes: studies on ultrastructure, phase transitions and permeability. Biochim Biophys Acta 1975; 135: 624–38
  • Boggs J. M., Vail W. J., Moscarello M. A. Preparation and properties of vesicles of a purified hydrophobic myelin protein and phospholipid: a spin label study. Biochim Biophys Acta. 1976; 448: 517–30
  • Meier P., Sachse J-H, Brophy P. J., et al. Integral membrane proteins significantly decrease the molecular motion in lipid bilayers: a deuterium NMR relaxation study of membranes containing myelin proteolipid apoprotein. Proc Natl Acad Sci USA 1987; 84: 3704–8
  • Horvath L. I., Brophy P. J., Marsh D. Influence of polar residue deletions on lipid-protein interactions with the myelin proteolipid protein. Biochemistry 1990; 29: 2635–8
  • Houbre D., Schindler P., Trifilieff E., et al. Selectivity of lipid-protein interaction with myelin proteolipids PLP and DM-20. A fluorescence anisotropy study. Biochim Biophys Acta 1990; 1029: 136–42
  • Braun P. E., Radin N. S. Interaction of lipids with a membrane structural protein from myelin. Biochemistry 1969; 8: 4310–8
  • Stoffyn P., Folch-Pi J. On the type of linkage binding fatty acids present in brain white matter proteolipid apoprotein. Biochem Biophys Res Commun 1971; 44: 157–61
  • Townsend L. E., Agrawal D., Benjamins J. A., et al. In vitro acylation of rat brain myelin proteolipid protein. J Biol Chem 1982; 257: 9745–50
  • Yoshimura T., Agrawal D., Agrawal H. C. Cell-free acylation of rat brain myelin proteolipid protein and DM-20. Biochem J 1987; 246: 611–7
  • Stoffel W., Hillen H., Schroeder W., et al. The primary structure of bovine brain myelin lipophilin (proteolipid apoprotein). Hoppe Seyler's Z Physiol Chem 1983; 364: 1455–66
  • Bizzozero O. A., Good L. K. Rapid metabolism of fatty acids covalently bound to myelin proteolipid protein. J Biol Chem 1991; 266: 17092–8
  • Bizzozero O. A., Good L. K., Evans J. E. Cysteine-108 is an acylation site in myelin proteolipid protein. Biochem Biophys Res Commun 1990; 170: 375–82
  • Bizzozero O. A., McGarry J. G., Lees M. B. Autoacylation of myelin proteolipid protein with acyl coenzyme A. J Biol Chem 1987; 262: 13550–7
  • O'Brien P. J., St Jules R. S., Reedy T. S., et al. Acylation of disc membrane rhodopsin may be nonenzymatic. J Biol Chem 1987; 262: 5210–5
  • Edwards A. M., Ross N. W., Ulmer J. B., et al. Interaction of myelin basic protein and proteolipid protein. J Neurosci Res 1989; 22: 97–102
  • Brophy P. J., Horvath L. I., Marsh D. Stoichiometry and specificity of lipid-protein interaction with myelin proteolipid protein studied by spin-label electron spin resonance. Biochemistry 1984; 23: 860–5
  • Hashim G. A., Wood D. D., Moscarello M. A. Myelin-lipophilin induced experimental allergic encephalomyelitis. Neurochem Res 1980; 5: 1137–45
  • Cambi F., Lees M. B., Williams R. M., et al. Chronic experimental allergic encephalomyelitis produced by bovine proteolipid apoprotein: immunological studies in rabbits. Ann Neurol 1983; 13: 303–8
  • Kuchroo V. K., Sober R. A., Laning J. C., et al. Experimental allergic encephalomyelitis mediated by cloned T cells specific for a synthetic peptide of myelin proteolipid protein. Fine specificity and T cell receptor V beta usage. J Immunol 1992; 148: 3776–82
  • McRae B. L., Kennedy M. K., Tan L. I., et al. Induction of active and adoptive relapsing experimental autoimmune encephalomyelitis (EAE) using an encephalitogenic epitope of proteolipid protein. J Neuroimmunol 1992; 38: 229–40
  • Kuchroo V. K., Sobel R. A., Yamamura T., et al. Induction of experimental allergic encephalomyelitis by myelin proteolipid-protein-specific T cell clones and synthetic peptides. Patho-biology 1991; 59: 305–12
  • Frail D. E., Braun PE. Two developmentally regulated messenger RNAs differing in their coding region may exist for the myelin-associated glycoprotein. J Biol Chem 1984; 259: 14857–62
  • Nakano R., Fujita N., Sato S., et al. Structure of mouse myelin-associated glycoprotein gene. Biochem Biophys Res Commun 1991; 178: 282–90
  • Ishiguro H., Sato S., Fujita N., et al. Immunohistochemical localization of myelin-associated glycoprotein isoforms during the development in the mouse brain. Brain Res. 1991; 563: 288–92
  • Lai C., Watson J. B., Bloom F. E., et al. Neural protein lB236/myelin-associated glycoprotein (MAG) defines a subgroup of the immunoglobulin superfamily. Immunol Rev 1987; 100: 129–51
  • Burger D., Perruisseau G., Simon M., et al. Comparison of the N-linked oligosaccharide structures of the two major human myelin glycoproteins MAG and P0: assessment and relative occurrence of oligosaccharide structures by serial lectin affinity chromatography of 14C-glycopeptides. J Neurochem 1992; 58: 845–53
  • Edwards A. M., Arquint M., Braun P. E., et al. Myelin-associated glycoprotein, a cell adhesion molecule of oligodendrocytes is phosphorylated in brain. Mol Cell Biol 1988; 8: 2655–8
  • Edwards A. M., Braun P. E., Bell J. C. Phosphorylation of myelin-associated glycoprotein in vivo and in vitro occurs only in the cytoplasmic domain of the large isoform. J Neurochem 1989; 52: 317–20
  • Afar D. E., Salzer J. L., Roder J., et al. Differential phosphorylation of myelin-associated glycoprotein isoforms in cell culture. J Neurochem 1990; 55: 1418–26
  • Bambrick L. L., Braun P. E. Phosphorylation of myelin-associated glycoprotein in cultured oligodendrocytes. Dev Neurosci 1991; 13: 412–6
  • Trapp B. D., Andrews S. B., Cootauco C., et al. The myelin-associated glycoprotein is enriched in multivesicular bodies and periaxonal membranes of actively myelinating oligodendrocytes. J Cell Biol 1989; 109: 2417–26
  • Afar D. E., Marius R. M., Salzer J. L., et al. Cell adhesion properties of myelin-associated glycoprotein in L cell fibroblasts. J Neurosci Res 1991; 29: 429–36
  • Probstmeier R., Fahrig T., Spiess E., et al. Interactions of the neural cell adhesion molecule and the myelin-associated glycoprotein with collagen type I: involvement in fibrillogenesis. J Cell Biol 1992; 116: 1063–70
  • Baig S., Olsson T., Yu P. J., et al. Multiple sclerosis: cells secreting antibodies against myelin-associated glycoprotein are present in cerebrospinal fluid. Scand J Immunol 1991; 33: 73–9
  • Amiguet P., Omlin F. X., Gardinier M. V., et al. Developmental expression, purification and partial sequencing of myelin/oligodendrocyte glycoprotein. Schweiz Arch Neurol Psychiatr 1991; 142: 116–20
  • Matthieu J. M., Amiguet P. Myelin/oligodendrocyte glycoprotein expression during development in normal and myelin-deficient mice. Dev Neurosci 1990; 12: 293–302
  • Kerlero DRN, Honegger P, Lassmann H., et al. Demyelination induced in aggregating brain cell cultures by a monoclonal antibody against myelin/oligodendrocyte glycoprotein. J Neurochem 1990; 55: 583–7
  • Kirschner D. A., Ganser A. L., Caspar DLD. Diffraction studies of molecular organization and membrane interactions in myelin. Myelin, P. Morell. Plenum Press, New York 1984; 51–95
  • Wilson R., Tocher D. R. Lipid and fatty acid composition is altered in plaque tissue from multiple sclerosis brain compared with normal brain white matter. Lipids 1991; 26: 9–15
  • Horrocks L. A. The alk-1-enyl group content of mammalian myelin phosphoglycerides by quantitative twcdimensional thin layer chromatography. J. Lipid Res 1968; 9: 469–74
  • Sun G. Y., Samorajski T. Age differences in the acyl group composition of phosphoglycerides in myelin isolated from the brain of the rhesus monkey. Biochim Biophys Acta 1973; 316: 19–24
  • Curatolo W. Thermal behavior of fractionated and unfractionated bovine brain cerebrosides. Biochemistry 1982; 21: 1761–4
  • Ledeen R. W., Cochran F. B., Yu R. K., et al. Gangliosides of the CNS myelin membrane. Adv Exp Med Biol. 1980; 125: 167–76
  • Hauser G., Eichberg J. The subcellular distribution of polyphosphoinositides in myelinated and unmyelinated rat brain. Biochim Biophys Acta 1973; 326: 210–7
  • Denisova N. A., Gorbunov N. V., Avronva N. F. Fatty acid composition of phospholipids of myelin and synaptosomal proteolipid complexes from vertebrate brain. Int J Biochem 1991; 23: 811–8
  • Svennerholm L., Vanier M. T., Jungbjer B. Changes in fatty acid composition of human brain myelin lipids during maturation. J Neurochem 1978; 30: 1383–90
  • Svennerholm L., Vanier M. T. Lipid and fatty acid composition of human cerebral myelin during development. Adv Exp Biol Med. 1979; 100: 27–41
  • Boggs J. M., Rangaraj G. Changes in the composition of two molecular species of ethanolamine plasmalogen in normal human myelin during development. Biochim Biophys Acta 1984; 793: 313–6
  • Hosein Z. Z., Gilbert J. J., Strejan G. H. The role of myelin lipids in experimental allergic encephalomyelitis. Experimental allergic encephalomyelitis: A Useful Model for Multiple Sclerosis. Alan R. Liss, New York 1984; 49–54
  • Carroll W. M., Jennings A. R., Mastaglia F. L. Experimental demyelinating optic neuropathy induced by intraneural injection of galactocerebroside antiserum. J Neurol Sci 1984; 65: 125–35
  • ArigaT KohriyamaT, Freddo L., et al. Characterization of sulfated glucuronic acid containing glycolipids reacting with IgM M-proteins in patients with neuropathy. J Biol Chem 1987; 262: 848–53
  • Wood D. D., Moscarello M. A. Is the myelin membrane abnormal in multiple sclerosis%. J Membr Biol 1984; 79: 195–201
  • Sourander P. Pathology of the central nervous system with special reference to the lipids. Ups J Med Sci Suppl 1990; 48: 145–72
  • Davison A. W., Wajda M. Cerebral lipids in multiple sclerosis. J Neurochem 1962; 9: 427–32
  • Wender M., Filipek-Wender H., Stanislawska J. Cholesteryl esters of the brain in demyelinating diseases. Clin Chim Acta 1974; 54: 269–75
  • Shah S. N., Johnson R. C. Activity levels of cholesterol ester metabolizing enzymes in brain in multiple sclerosis: correlation with cholesterol ester concentrations. Exp Neurol 1980; 68: 601–4
  • Sappey M. D. High-resolution NMR spectroscopy of cerebral white matter in multiple sclerosis. Magn Reson Med 1990; 15: 229–39
  • Denisova N. A. Phospholipid composition of myelin and synaptosomal proteolipid from vertebrate brain. Int J Biochem 1990; 22: 439–42
  • Yu R. K., Ledeen R. W., Eng L. F. Ganglioside abnormalities in multiple sclerosis. J Neurochem 1974; 23: 169–74
  • Weiner H. L., Hauser S. L. Neuroimmunology. II. Antigenic specificity of the nervous system. Ann Neurol 1982; 12: 499–509
  • Beraud E., Golstein M. M., Vaillet F., et al. Multiple sclerosis: cell-mediated immunity to human brain gangliosides. Autoimmunity 1990; 6: 13–21

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.