32
Views
29
CrossRef citations to date
0
Altmetric
Research Article

Clinical Aspects of Glycoprotein Biosynthesis

&
Pages 65-151 | Published online: 27 Sep 2008

References

  • Komfeld R., Kornfeld S. Assembly of asparagine-linked oligosaccharides. Annu Rev Biochem 1985; 54: 631–64
  • Beyer T. A., Sadler J. E., Rearick J. I., et al. Glycosyltransferases and their use in assessing oligosaccharide structure and structure-function relationships. Advances in enzymology, Meister. Wiley and Sons, New York 1981; Vol. 52: 23–175
  • Snider M. D. Biosynthesis of glycoproteins: formation of N-iinked oligosaccharides. Biology of carbohydrates, V. Ginsburg, P. W. Robbins. Wiley and Sons, New York 1984; Pp. 163–99
  • Sadler J. E. Biosynthesis of glycoproteins: formation of O-linked oligosaccharides. Biology of carbohydrates, V. Ginsburg, P. W. Robbins. Wiley and Sons, New York 1984; Pp. 199–288
  • Schachter H. Biosynthetic controls that determine the branching and microheterogeneity of protein-bound oligosaccharides. Biochem Cell Biol 1986; 64: 163–81
  • Schachter H. Enzymes associated with glycosylation. Curr Opin Structural Biol. 1991; 1: 755–65
  • Schachter H., Brockhausen I. Hull E. High performance liquid chromatography assays for. N-acetylglucosaminyltransferases involved in N-glycan and O-glycan synthesis. Methods Enzymol. 1989; 179: 351–96
  • Schachter H., Brockhausen I. The biosynthesis of serine (Threonine)-N-acetylgalactosamine-linked carbohydrate moieties. Glycoconjugates. Composition, structure and function, H. J. Allen, EC Kisailus. Marcel Dekker, New York 1992; Pp. 263–332
  • Cummings R. D. Synthesis of asparagine-linked oligosaccharides: pathways genetics and metabolic regulation. Glycoconjugates. Composition, structure, and function, H. J. Allen, E. C. Kisailus. Marcel Dekker, New York 1992; Pp. 333–60
  • Kobata A., Furukawa K. Methods of carbohydrate analysis and structural determination: chemical and enzymatic methods. Glycoconjugates. Composition, structure and function, H. J. Allen, E. C. Kisailus. Marcel Dekker, New York 1992; Pp. 33–69
  • Serianni A. S. Nuclear magnetic resonance approaches to oligosaccharide structure elucidation. Glycoconjugates. Composition, structure and function, H. J. Allen, E. C. Kisailus. Marcel Dekker, New York 1992; Pp. 71–102
  • Laine R. Mass spectrometry of carbohydrates. Glycoconjugates. Composition, structure and function, H. J. Allen, E. C. Kisailus. Marcel Dekker, New York 1992; Pp. 103–20
  • Abeijon C., Hirschberg C. B. Topography of glycosylation reactions. Trends Biochem Sci 1992; 17: 32–6
  • Rine J., Hansen W., Hardeman E., et al. Targeted selection of recombinant clones through gene dosage effects. Proc Natl Acad Sci USA 1983; 80: 6750–4
  • Zhu X., Lehrman M. A. Cloning, sequence and expression of a cDNA encoding hamster UDP-GlcNAc: dolichol phosphate AT-acetylglucosamine-1 -phosphotransferase. J Biol Chem 1990; 265: 14250–5
  • Scocca J. R., Krag S. S. Sequence of a cDNA that specifies the Uridine diphosphate N-acetyl-D-glucosamine: dolichol phosphate N-acetylglucosamine-1-phosphotransferase from Chinese hamster ovary cells. J Biol Chem 1990; 265: 20621–6
  • Orlean P., Albright C, Robbins P. W. Cloning and sequencing of the yeast gene for dolicholphosphate mannose synthase, an essential protein. J Biol Chem 1988; 263: 17499–507
  • Albright C. F., Robbins P. W. The sequence and transcript heterogeneity of the yeast gene ALG1, an essential mannosyltransferase involved in. N-glycosylation. J Biol Chem. 1990; 265: 7041–9
  • Couto J. R., Huffaker TC, Robbins P. W. Cloning and expression in Escherichia coli of a yeast mannosyltransferase from the asparagine-linked glycosylation pathway. J Biol Chem 1983; 259: 378–82
  • Bause E. Structural requirements of. N-glycosylation of proteins. Studies which proline peptides as conformational probes. Biochem J. 1983; 209: 331–6
  • Bischoff J., Moremen K, Lodish H. F. Isolation, characterization, and expression of cDNA encoding a rat liver endoplasmic reticulum alpha-mannosidase. J Biol Chem. 1990; 265: 17110–7
  • Brockhausen I., Carver JP, Schachter H. Control of glycoprotein synthesis. The use of oligosaccharide substrates and HPLC to study the sequential pathway for. N-acetylglucosaminyltransferases I, II, III, IV, V and VI in the biosynthesis of highly branched N-glycans by hen oviduct membranes. Biochem Cell Biol. 1988; 66: 1134–51
  • Moremen K. W., Robbins P. W. Isolation, characterization and expression of cDNAs encoding murine alpha-mannosidase II, a Golgi enzyme that controls conversion of high mannose to complex N-glyc'ans. J Cell Biol 1991; 115: 1521–33
  • Nishikawa Y., Pegg W., Paulsen H., et al. Control of glycoprotein synthesis. XV. Purification and characterization of rabbit liver UDP-N-acetylglucosamine: α-3-D-mannoside β-1,2-N-acetylglucosaminyltransferase. I. J Biol Chem 1988; 263: 8270–81
  • Oppenheimer C. L., Hill R. L. Purification and characterization of a rabbit liver al-3 mannoside β1–2. N-acetylglucosaminyltransferase. J Biol Chem. 1981; 256: 799–804
  • Oppenheimer C. L., Eckhardt AE, Hill R. L. The nonidentity of porcine. N-acetylglucos-aminyltransferases I and II. J Biol Chem. 1981; 356: 11477–82
  • Möller G., Reck F., Paulsen H., et al. Control of glycoprotein synthesis: properties and substrate specificity of UDP-GlcNAc: Manα3R β2-N-acetyIglucosaminyI-transferase I from rat liver. Glycoconjugate J 1992; 9: 180–90
  • Kumar R., Yang J., Larsen R. D., et al. Cloning and expression of N-acetylglucosaminyltransferase I, the medial Golgi transferase that initiates complex N-linked carbohydrate formation. Proc Natl Acad Sci USA 1990; 87: 9948–52
  • Sarkar M., Hull E., Nishikawa Y., et al. Molecular cloning and expression of cDNA encoding the enzyme that controls conversion of high mannose to hybrid and complex N-glycans: UDP-N-acetylglucosamine:α-3-D-mannoside β-1,2-N-acetylglucosaminyltransferase I. Proc Natl Acad Sci USA 1991; 88: 234–8
  • Pownall S., Kozak C. A., Schappert K., et al. Molecular cloning and characterization of the mouse UDP-N-acetylglucosamine: alpha-3-D-mannoside beta-1,2-N-acetylglucosaminyltransferase I gene. Genomics 1992; 12: 699–704
  • Hull E., Sarkar M., Spruijy MPN, et al. Organization and localization to chromosome 5 of the human UDP-N-acetylglucosamine:α-3-D-mannoside β-1,2-N-acetylglucosaminyltransferase I gene. Biochem Biophys Res Commun 1991; 176: 608–15
  • Bendiak B., Schachter H. Control of glycoprotein synthesis. Purification of UDP-N-acetylglucosamine:α-D-mannoside β1–2 N-acetylglucosaminyltransferase II from rat liver. J Biol Chem 1987; 262: 5775–83
  • Narasimhan S. Control of glycoprotein synthesis VII UDP-GlcNAc:glycopeptide β4-N-acetylglucosaminyltransferase III, an enzyme from hen oviduct which adds GlcNAc in β1–4 linkage to the β-linked mannose of the trimannosyl core of N-glycosyl oligosaccharides. J Biol Chem. 1982; 257: 10235–42
  • Nishikawa A., Diara Y., Hatakeyama M., et al. Purification, cDNA cloning, and expression of UDP-N-acetylglucosamine:β-D-mannoside β-1,4N-acetylglucosaminyltransferase IH from rat kidney. J Biol Chem 1992; 267: 18199–204
  • Gleeson P. A., Schachter H. Control of glycoprotein synthesis. Vm. UDP-GlcNAc:GnGn (GlcNAc to Manα1–3) β4-N-acetylglucosaminyltransferase IV, an enzyme in hen oviduct which adds GlcNAc in β1–4 linkage to the α1–3-linked Man residue of the trimannosyl core of N-glycosyl oligosaccharides to form a triantennary structure. J Biol Chem 1983; 258: 6162–73
  • Shoreibah M. G., Hindsgaul 0, Pierce M. Purification and characterization of rat kidney UDP-N-acetylglucosamine: α-6-D-mannoside β-l,6-N-acetylglucosaminyltransferase. J Biol Chem 1992; 267: 2920–7
  • Brockhausen I., Hull E., Hindsgaul O., et al. Control of glycoprotein synthesis XTV. Detection and characterization of hen oviduct UDP-N-acetylglucosamine: α6-D-mannoside β4-N-acetylglucosaminyltransferase VI. J Biol Chem 1989; 264: 11211–21
  • Brockhausen I., Yang J., Möller G., et al. Control of biosynthesis: characterization of β4-N-acetylglucosaminyl transferases acting on the α3- and α6-arm of N-linked oligosaccharides. CarbohydrRes. 1992; 236: 281–99
  • Komfeld S. Lysosomal enzyme targeting. Biochem Soc Trans 1990; 18: 367–74
  • Jadot M., Canfield W. M., Gregory W., et al. Characterization of the signal for rapid internalization of the bovine mannose-6-phosphate/insulin-like growth factor-II receptor. J Biol Chem. 1992; 267: 11069–77
  • Ketcham C. M., Komfeld S. Characterization of UDP-N-acetyIglucosamine: glycoprotein N-acetylglucosamine-1 -phosphotransferase from Acanthamoeba castellanii. J Biol Chem. 1992; 267: 11654–9
  • Baranski T. J., Koelsch G., Hartsuck J. A., et al. Mapping and molecular modeling of a recognition domain for lysosomal enzyme targeting. J Biol Chem. 1991; 266: 23365–72
  • Reitman M. L., Varki A, Komfeld S. Fibroblasts from patients with I-cell disease and pseudo-Hurler polydystrophy are deficient in uridine 5'-diphosphate-N-acetylglucosamine: glycoprotein N-acetylglucosaminylphosphotransferase activity. J Clin Invest 1981; 67: 1574–9
  • Feizi T. Antigenicities of mucins – their relevance to tumor associated and stage specific embryonic antigens. Mucus in health and disease, Elstein Chantler, Elder. Plenum Press, New York 1982
  • Masri K. A., Appert HE, Fukuda M. N. Identification of the full-length coding sequence for human galactosyltransferase (β. -N-acetylglucosaminide: β1,4-galactosyltransferase). Biochem Biophys Res Commun. 1988; 157: 657–63
  • Nakazawa K. T., Ando T., Kimura, et al. Cloning and sequencing of a full-length cDNA of mouse N-acetylglucosamine (β1–4)galactosyltransferase. J Biochem (Tokyo) 1988; 104: 165–8
  • D'Agostaro G., Bendiak B, Tropak M. Cloning of cDNA encoding the membrane-bound form of bovine β1,4-galactosyltransferase. Eur J Biochem 1989; 183: 211–7
  • Narimatsu H., Sinha S., Brew K., et al. Cloning and sequencing of cDNA of bovine. N-acetylglucosamine (β1–4)galactosyltransferase. Proc Natl Acad Sci USA 1986; 83: 4720–4
  • Shaper N. L., Shaper J. H., Meuth J. L., et al. Bovine galactosyltransferase: a clone identified by direct immunological screening of a cDNA expression library. Proc Natl Acad Sci USA 1986; 83: 1573–7
  • Duncan AMV, McCorquodale M. M., Morgan C., et al. Chromosomal localization of the gene for a human galactosyltransferase (GT-1). Biochem Biophys Res Commun. 1986; 141: 1185–8
  • Shaper N. L., Shaper J. H., Bertness V., et al. The human galactosyltransferase gene is on chromosome 9 at band p13. Somat Cell Mol Genet 1986; 12: 633–6
  • Basu M., Basu S. Biosynthesis in vitro of li core glycosphingolipids from neolactotetraosylceramide by β1–3- and β1–6-N-acetylglucosaminyltransferases from mouse T-lymphoma. J Biol Chem 1984; 259: 12557–62
  • Hosomi O., Takeya A, Kogure T. Separation into two major forms of β(1–3)N-acetylglucosaminyltransferase from human serum. Jpn J Med Sci Biol 1989; 42: 77–82
  • Piller F., Cartron J. UDP-GlcNAc:Galβ1 -4Glc(NAc) β1–3N-acetylglucosaminyltransferase. Identification and characterization in human serum. J Biol Chem 1983; 258: 12293–9
  • van den Eijnden D. H., Koenderman AHL, Schiphorst WECM. Biosynthesis of blood group i-active polylactosaminoglycans. Partial purification and properties of an UDP-GlcNAc: N-acetyllactosaminide β1–3-N-acetylglucosaminyltransferase from Novikoff tumor cell ascites fluid. J Biol Chem. 1988; 263: 12461–71
  • Piller F., Cartron J. P., Maranduba A., et al. Biosynthesis of blood group I antigens. Identification of a UDP-GlcNAc: GlcNAcβ1 l-3Gal(-R) β1–6 (GlcNAc to Gal). N-acetylglucosaminyltransferase in hog gastric mucosa. J Biol Chem. 1984; 259: 13385–90
  • Weinstein J., DeSouza-e-Silva U, Paulson J. C. Purification of a Galβ1–4GlcNAc α2–6-sialyltransferase and a Galβ1–3(4)GlcNAc α2–3-sialyItransferase to homogeneity from rat liver. J Biol Chem. 1982; 257: 13835–44
  • Lee E. U., Roth J, Paulson J. C. Alteration of terminal glycosylation sequences on. N-linked oligosaccharides of Chinese hamster ovary cells by expression of beta-galactoside alpha2,6-sialyltransferase. J Biol Chem. 1989; 264: 13848–55
  • Weinstein J., Lee E. U., McEntee K., et al. Primary structure of P-galactoside α2,6-sialyltransferase. Conversion of a membrane-bound enzyme to soluble forms by cleavage of the NH2 terminal signal anchor. J Biol Chem 1987; 262: 17735–43
  • Wen D. X., Livingston B. D., Medzihradszky K. F., et al. Primary structure of Galβ1,3(4)GlcNAc α2,3-sialyltransferase determined by mass spectrometry sequence analysis and molecular cloning. Evidence for a protein motif in the sialyltransferase gene family. J Biol Chem 1992; 267: 21011–9
  • Beyer T. A., Sadler JE, Hill R. L. Purification to homogeneity of the H blood group P-galactoside α1–2 fucosyltransferase from porcine submaxillary gland. J Biol Chem 1980; 255: 5364–72
  • Samesto A., Köhlin T., Thurin J., et al. Purification of H-gene-encoded β -galactoside α1–2 fucosyltransferase from human serum. J Biol Chem 1990; 265: 15067–75
  • Samesto A., Köhlin T., Hindsgaul O., et al. Purification of the secretor-type β-galactoside α1–2 fucosyltransferase from human serum. J Biol Chem 1992; 267: 2737–44
  • Rajan V. P., Larsen R. D., Ajmera S., et al. A cloned human DNA restriction fragment determines expression of a GDP-L-fucose: β –D galactoside 2-α-L-fucosyltransferase in transfected cells. Evidence for isolation and transfer of the human blood group locus. J Biol Chem 1989; 264: 11158–67
  • Ernst L. K., Rajan V. P., Larsen R. D., et al. Stable expression of blood group H determinants and GDP-L-fucose: β-D-galactoside 2-α-L-fucosyltransferase in mouse cells after transfection with human DNA. J Biol Chem 1989; 264: 3436–47
  • Larsen R. D., Emst L. K., Nair R. P., et al. Molecular cloning, sequence and expression of a human GDP-L-fucose:beta-D-galactoside 2-alpha-L-fucosyltransferase cDNA that can form the H blood group antigen. Proc Natl Acad Sci USA 1990; 87: 6674–8
  • Kuhns W., Schoentag R. Carcinoma-related alterations of glycosyltransferases in human tissues. Cancer Res 1981; 41: 2767–72
  • Prieels J., Monnom D., Dolmans M., et al. Co-purification of the Lewis blood group N-acetylglucosaminide α1–4 fucosyltransferase and N-acetylglucosaminide α1–3 fucosyltransferase from human milk. J Biol Chem. 1981; 256: 10456–63
  • Mollicone R., Candelier J-J, Mennesson B., et al. Five specificity patterns of (1–3)-α-L-fucosyltransferase activity defined by use of synthetic oligosaccharide acceptors. Differential expression of the enzymes during human embryonic development and in adult tissues. Carbohydr Res 1992; 228: 265–76
  • Kukowska-Latallo J. F., Larsen R. D., Nair R. P., et al. A cloned human cDNA determines expression of a mouse stage-specific embryonic antigen and the Lewis blood group α(1,3/ 1,4)fucosyltransferase. Genes Dev 1990; 4: 1288–303
  • Weston B. W., Nair R. P., Larsen R. D., et al. Isolation of a novel human alpha(1,3)fucosyltransferase gene and molecular comparison to the human Lewis blood group alpha(1,3/ 1,4)fucosyltransferase gene. Syntenic, homologous, nonallelic genes encoding enzymes with distinct acceptor substrate specificities. J Biol Chem 1992; 267: 4152–60
  • Campbell C., Stanley P. The Chinese hamster ovary glycosylation mutants LECH and LEC12 express two novel GDP-fucose:N-acetylglucosaminide 3-α-L-fucosyltransferase enzymes. J Biol Chem 1984; 259: 11208–14
  • Fukuda M., Bothner B., Ramsamooj Dell A., et al. Structures of sialylated fucosyl polylactosaminoglycans isolated from chronic myelogenous leukemia cells. J Biol Chem 1985; 260: 12957–67
  • Hansson G. C., Zopf D. Biosynthesis of the cancer-associated Sialyl-Lea antigen. J Biol Chem 1985; 260: 9388–92
  • Couillin P., Mollicone R., Grisard M. C., et al. Chromosome 11q localization of one of the three expected genes for the human alpha-3-fucosyltransferases, by somatic hybridization. Cytogenet Cell Genet. 1991; 56: 109–11
  • Foster C. S., Gillies DRB, Glick M. C. Purification and characterization of GDP-L-Fuc-N-acetyl-β-D-glucosaminide α1–3-fucosyltransferase from human neuroblastoma cells. Unusual substrate specificities of the tumor enzyme. J Biol Chem 1991; 266: 3526–31
  • Muramatsu H., Kamada Y, Muramatsu T. Purification and properties of. N-acetylglucosaminide α1–3-fucosyltransferase from embryonal carcinoma cells. Eur J Biochem. 1986; 157: 71–5
  • Samesto A., Köhlin T., Hindsgaul O., et al. Purification of the β. -N-acetylglucosaminide α1–3-fucosyltransferase from human serum. J Biol Chem. 1992; 267: 2745–52
  • Voynow J. A., Kaiser R. S., Scanlin T. F., et al. Purification and characterization of GDP-L-fucose-N-acetyl β-D-glucosaminide α1–6 fucosyltransferase from cultured human skin fibroblasts. Requirement of a specific biantennary oligosaccharide as substrate. J Biol Chem 1991; 266: 21572–7
  • Longmore G. D., Schachter H. Product identification and substrate-specificity studies of the GDP-L-fucose:2-acetamido-2-deoxy-β-D-glucoside (Fuc→ Asn-linked GlcNAc)6-α-L-fucosyltransferase in a Golgi-rich fraction from porcine liver. Carbohydr Res 1982; 100: 365–92
  • Merkle R. K., Elbein AD, Heifetz A. The effect of swainsonine and castanospermine on the sulfation of the oligosaccharide chains of. N-linked glycoproteins. J Biol Chem. 1985; 260: 1083–9
  • Baenziger J. U., Green E. D. Pituitary glycoprotein hormone oligosaccharides: structure, synthesis and function of the asparagine-linked oligosaccharides on lutropin, follitropin and thyrotropin. Biochim Biophys Acta 1988; 947: 287–306
  • Nagai M., Dave V., Kaplan B. E., et al. Human blood group glycosyltransferases. I. Purification of N-acetylgalactosaminyltransferase. J Biol Chem 1978; 253: 377–9
  • Whitehead J. S., Bella A, Jr, Kim Y. S. An N-acetylgalactosaminyltransferase from human blood group A plasma. I. Purification and agarose binding properties. J Biol Chem 1974; 249: 3442–7
  • Schwyzer M., Hill R. L. Porcine A blood group-specific N-acetylgalactosaminyltransferase. I. Purification from porcine submaxillary glands. J Biol Chem 1977; 252: 2338–45
  • Clausen H., White T., Takio K., et al. Isolation to homogeneity and partial characterization of a histo-blood group A defined Fucalpha 1 →2Galalphal -→3-N-acetyIgalactosaminyltransferase from human lung tissue. J Biol Chem 1990; 265: 1139–45
  • Navaratnam N., Findlay JBC, Keen J. N., et al. Purification, properties and partial amino acid sequence of the blood-group-A-gene-associated α-3-N-acetyIgalactosaminyltransferase from human gut mucosal tissue. Biochem J. 1990; 271: 93–8
  • Nagai M., Dave V., Meunsch H., et al. Human blood group glycosyltransferases. II. Purification of galactosyltransferase. J Biol Chem 1978; 253: 380–1
  • Yates A. D., Watkins W. M. The biosynthesis of blood group B determinants by the blood group A gene-specified α-3-GalNAc-transferase. Biochem Biophys Res Commun 1982; 109: 958–65
  • Greenwell P., Yates AD, Watkins W. M. UDP-N-acetyl-D-galactosamine as a donor substrate for the glycosyltransferase encoded by the B gene at the human blood group ABO locus. Carbohydr Res 1986; 149: 149–70
  • Yamamoto F., Hakomori S. Sugar-nucleotide donor specificity of histo-blood group A and B transferases is based on amino acid substitutions. J Biol Chem 1990; 265: 19257–62
  • Yamamoto F., Marken J., Tsuji T., et al. Cloning and characterization of DNA complementary to human UDP-GalNAc:Fucal-2Galocl-3GalNAc transferase (histo-blood group A transferase) mRNA. J Biol Chem 1990; 265: 1146–51
  • Yamamoto F., Clausen H., White T., et al. Molecular genetic basis of the histo-blood group ABO system. Nature 1990; 345: 229–33
  • Galili U., Shohet S. B., Kobrin E., et al. Man, apes, and old world monkeys differ from other mammals in the expression of α-galactosyl epitopes on nucleated cells. J Biol Chem 1988; 263: 17755–62
  • Larsen R. D., Rajan V. P., Ruff M. M., et al. Isolation of a cDNA encoding a murine UDP-galactose:beta-D-galactosyl-1,4-N-acetyl-D-glucosaminide alpha-1,3-galactosyltransferase: expression cloning by gene transfer. Proc Natl Acad Sci USA 1989; 86: 8227–31
  • Joziasse D. H., Shaper J. H., van den Eijnden D. H., et al. Bovine α→3-galactosyItransferase: isolation and characterization of a cDNA clone. Identification of homologous sequences in human genomic DNA. J Biol Chem 1989; 264: 14290–7
  • Joziasse D. H., Shaper N. L., Shaper J. H., et al. Gene for murine alphal→3-galactosyltransferase homologue on human chromosome 12 that is organized as a processed pseudogene. J Biol Chem 1991; 266: 6991–8
  • Shaper N. L., Lin S-P, Joziasse D. H., et al. Assignment of two α-1,3-galactosyltransferase gene sequences (GGTA1 and GGTA1P) to chromosomes 9q33-q34 and 12q14-q15. Genomics 1992; 12: 613–5
  • Good A. H. Identification of carbohydrate structures that bind human anti-porcine antibodies: implication for a discordant xenografting in humans. Transplant Proc 1992; 24: 559–62
  • Piller F., Blanchard D., Huet M., et al. Identification of a α-NeuAc-(2–3)- β -D-galactopyranosyl. N-acetyl-β -D-galactosaminyltransferase in human kidney. Carbohydr Res. 1986; 149: 171–84
  • Serafini-Cessi F., Dall'Olio F, Malagolini N. Characterization of N-acetyl-β -D-galactosaminyl-transferase from guinea-pig kidney involved in the biosynthesis of Sda antigen associated with Tamm-Horsfall glycoprotein. Carbohydr Res. 1986; 151: 65–76
  • Takeya A., Hosomi O, Kogure T. Identification and characterization of UDP-GalNAc:NeuAcα2–3Galβ1–4Glc(NAc) β1 -4(GalNAc to Gal). N-acetylgalactosaminyltransferase in human blood plasma. J Biochem (Tokyo). 1987; 101: 251–9
  • Serafini-Cessi F., Malagolini N, Dall'Olio F. Characterization and partial purification of β -N-acetylgalactosaminyltransferase from urine of Sd(a+) individuals. Arch Biochem Biophys 1988; 266: 573–82
  • Conzelmann A., Komfeld S. A murine cytotoxic T lymphocyte cell line resistant to vicia villosa lectin is deficient in UDP-GalNAc: β-Galactose β1,4-N-acetylgalactosaminyltransferase. J Biol Chem 1984; 259: 12536–42
  • Dall'olio F, Malagolini N., di Stefano G., et al. Posmatal development of rat colonic epithelial cells is associated with changes in the expression of the β1,4-A'-acetylgalactosaminyltransferase involved in the synthesis of Sda antigen and of α2,6-sialyltransferase activity toward. N-acetyl-lactosamine. Biochem J. 1990; 270: 519–24
  • Batra S. K., Metzgar RS, HoUingsworth M. A. Human Muc 1 mucin gene expression in the fetal pancreas. Pancreas 1992; 7: 391–3
  • Jany B. H., Gallup M. W., Yan P-S, et al. Human bronchus and intestine express the same gene. J Clin Invest 1991; 87: 77–82
  • Perini J-M, Vandamme-Cubadda N., Aubert J-P, et al. Multiple apomucin translation products from human respiratory mucosa mRNA. Eur J Biochem 1991; 196: 321–8
  • Hounsell E. F., Lawson AM, Feizi T. Structural and antigenic diversity in mucin carbohydrate chains. Mucus in health and disease, Elstein Chantler, Elder. Plenum Press, New York 1982; Pp. 39–41
  • Capon C., Leroy Y., Wieruszeski J. M., et al. Structures of. O-glycosidically linked oligosaccharides isolated from human meconium glycoproteins. Eur J Biochem. 1989; 182: 139–52
  • Van Halbeek H., Gerwig G. J., Vliegenthart JFG, et al. Terminal alpha (l-4)-linked. N-acetylglucosamine: a characteristic constituent of duodenal-gland mucous glycoproteins in rat and pig. A high resolution proton NMR study. Biochim Biophys Acta. 1983; 747: 107–16
  • Nasir-Ud-Din S. A., Hussain R. W., Jeanloz, et al. Studies on cervical glycoproteins. Isolation and characterization of neutral oligosaccharides from Pronase-treated glycoproteins of bonnet monkey (Macacca radiata). Carbohydr Res 1990; 205: 444–52
  • Kurosaka A., Nakajima H., Funakoshi I., et al. Structures of the major oligosaccharides from human rectal adenocarcinoma glycoprotein. J Biol Chem 1983; 258: 11594–8
  • Brockhausen I., Kuhns W., Schachter H., et al. Biosynthesis of O-glycans in leukocytes from normal donors and from patients with leukemia: increase in O-glycan core 2 UDP-GlcNAc:Galβ3GalNAcα-R (GlcNAc to GalNAc) β(1–6)-N-acetylglucosaminyltransferase in leukemic cells. Cancer Res. 1991; 51: 1257–63
  • Sugiura M., Kawasaki T, Yamashina I. Purification and characterization of UDP-GalNAcpoIypeptide. N-acetylgalactosamine transferase from an ascites hepatoma, AH 66. J Biol Chem. 1982; 257: 9501–7
  • Elhammer A., Kornfeld S. Purification and characterization of UDP-N-acetylgalactosamine.-polypeptide N-acetylgalactosaminyltransferase from bovine colostrum and murine lymphoma BW 5147 cells. J Biol Chem 1986; 261: 5249–55
  • Takeuchi M., Yoshikawa M., Sasaki R., et al. Purification and characterization of UDP-N-acetylgalactosamine:kappa-casein polypeptide N-acetylgalactosaminyltransferase from mammary gland of lactating cow. Agric Biol Chem. 1985; 49: 1059–69
  • Wang Y., Abernethy J. L., Eckhardt A. E., et al. Purification and characterization of a UDP-GaINAc:polypeptide. N-acetylgalactosaminyltransferase specific for glycosylation of threonine residues. J Biol Chem. 1992; 267: 12709–16
  • O'Connell B. C., Hagen F., Tabak L. A. The influence of flanking sequences on the O-glycosylation of Threonine. in vitro, J Biol Chem 1992; 267: 25010–8
  • Hughes R. C., Bradbury AF, Smith D. G. Substrate recognition by UDP-N-acetyl-α-D-galactosamine:polypeptide N-acetyl-α-D-galactosaminyltransferase. Effects of chain length and disulfide bonding of synthetic peptide substrates. Carbohydr Res 1988; 178: 259–69
  • Mendicino J., Sivakami S., Davila M., et al. Purification and properties of UDP-Gal. N-acetylgalactosaminide mucin:β1,3-galactosyltransferase from swine trachea mucosa. J Biol Chem. 1982; 257: 3987–94
  • Furukawa K., Roth S. Co-purification of galactosyltransferases from chick-embryo liver. Biochem J 1985; 227: 573–82
  • Brockhausen I., M611er G, Pollex-Krttger A., et al. Control of O-glycan synthesis in rat liver: specificity and inhibition of O-glycan core 1 UDP-Gal: GalNAcα-R β3-galactosyl-transferase. Biochem Cell Biol. 1992; 70: 99–108
  • Brockhausen I., Möller G., Merz G., et al. Control of glycoprotein synthesis: the peptide portion of synthetic. O-glycopeptide substrates influences the activity of O-glycan core 1 uridine 5'-diphosphc-galactose: N-acetylgalactosaminecc-R β 3-galactosyl-transferase. Biochemistry 1990; 29: 10206–12
  • Schachter H., McGuire EJ, Roseman S. Sialic acids. XIII. A uridine diphosphate D-galactosermucin galactosyltransferase from porcine submaxillary gland. J Biol Chem 1971; 246: 5321–8
  • Ronzio R. A. Glycoprotein synthesis in the adult rat pancreas. I. Subcellular distributions of uridine diphosphate galactose:glycoprotein galactosyltransferase and thiamine pyrophosphate phosphohydrolase. Biochim Biophys Acta 1973; 313: 286–95
  • Ronzio R. A. Glycoprotein synthesis in the adult rat pancreas. II. Characterization of Golgi-rich fractions. Arch Biochem Biophys 1973; 159: 777–84
  • Elhammer A., Komfeld S. Two enzymes involved in the synthesis of O-linked oligosaccharides are localized on membranes of different densities in mouse lymphoma BW 5147 cells. J Cell Biol 1984; 98: 327–31
  • Andersson G. N., Eriksson L. C. Endogenous localization of UDP-galactose:asialomucin galactosyltransferase activity in rat liver endoplasmic reticulum and Golgi apparatus. J Biol Chem 1981; 256: 9633–9
  • Piller V., Piller F, Fukuda M. Biosynthesis of truncated. O-glycans in the T cell line Jurkat. Localization of O-glycan initiation. J Biol Chem. 1990; 265: 9264–71
  • Williams D., Longmore G. D., Matta K. L., et al. Mucin synthesis. II. Substrate specificity and product identification studies on canine submaxillary gland UDP-GlcNAc:Galβ1–3GalNAc (GlcNAc to GalNAc) β6-N-acetylglucosaminyltransferase. J Biol Chem 1980; 255: 11253–61
  • Williams D., Schachter H. Mucin synthesis. I. Detection in canine submaxillary glands of an N-acetylglucosaminyltransferase which acts on mucin substrates. J Biol Chem 1980; 255: 11247–52
  • Wingert W. E., Cheng P. Mucin biosynthesis: characterization of rabbit small intestinal UDP-N-acetylglucosamine:galactose β-3-N-acetylgalactosaminide (N-acetylglucosamine to N-acetylgalactosamine) β6-N-acetylglucosaminyltransferase. Biochemistry 1984; 23: 690–7
  • Cheng P., Wingert W. E., Little M. R., et al. Mucin biosynthesis. Properties of a bovine tracheal mucin P-6-iV-acetylglucosaminyltransferase. Biochem J 1985; 227: 405–12
  • Brockhausen I., Matta K. L., Orr J., et al. Mucin synthesis. UDP-GlcNAc:GalNAc-R P3-N-acetylglucosaminyltransferase and UDP-GlcNAc:GlcNAcβ1 -3 GalNAc-R (GlcNAc to GalNAc) β6-N-acetylglucosaminyltransferase from pig and rat colon mucosa. Biochemistry 1985; 24: 1866–74
  • Brockhausen I., Matta K. L., Orr J., et al. Mucin synthesis. VII. Conversion of R1β1 -3Gal-R2 to R1,-β1 -3(GlcNAcβ1–6)Gal-R2 and of R,- β1–3GalNAc-R2 to R1β1–3(GlcNAcβ1–6)GalNAc-R2 by a β6-N-acety lglucosaminyltransferase in pig gastric mucosa. Eur J Biochem 1986; 157: 463–74
  • Ropp P. A., Little MR, Cheng P-W. Mucin biosynthesis: purification and characterization of a mucin p6-N-acetylglucosaminyltransferase. J Biol Chem 1991; 266: 23863–71
  • Bierhuizen M. A., Fukuda M. Molecular cloning of cDNA encoding UDP-GlcNAc:Galβ1 -3GalNAc-R (GlcNAc to GalNAc) β1 -6N-acetylglucosaminyltransferase, an O-glycan branching enzyme, by gene transfer into CHO cells expressing polyoma large T-antigen. Proc Natl Acad Sci USA 1992; 89: 9326–30
  • Kuhns W., Rutz V., Paulsen, et al. Processing of O-glycan core 1, Galβ1–3GalNAcα-R: specificities of core 2 UDP-GlcNAc:Galβ1 -3GalNAcα-R (GlcNAc to GalNAc) β6-N-acetylglucosaminyltransferase and CMP-SA: Galβ1 -3GalNAc-R α3-sialyltransferase. Glyco-conjugate J 1993, in press
  • Brockhausen I., Romero PA, Herscovics A. Glycosyltransferase changes upon differentiation of CaCo-2 human colonic adenocarcinoma cells. Cancer Res 1991; 51: 3136–42
  • Piller F., Piller V., Fox R. I., et al. Human T-lymphocyte activation is associated with changes in. O-glycan biosynthesis. J Biol Chem. 1988; 263: 15146–50
  • Saitoh O., Piller F., Fox R. I., et al. T-lymphocytic leukemia expresses complex, branched O-linked oligosaccharides on a major sialoglycoprotein, leukosialin. Blood. 1991; 77: 1491–9
  • Piller F., Le Deist F., Weinberg K. I., et al. Altered. O-glycan synthesis in lymphocytes from patients with Wiscott-Aldrich syndrome. J Exp Med. 1991; 173: 1501–10
  • Higgins E. A., Siminovitch K. A., Zhuang D., et al. Aberrant O-linked oligosaccharide biosynthesis in lymphocytes and platelets with the Wiscott-Aldrich syndrome. J Biol Chem 1991; 266: 6280–90
  • Kurosaka A., Funakoshi I., Matsuyama M., et al. UDP-GalNAc:GalNAc-mucin α-N-acetylgalactosamine transferase activity in human intestinal cancerous tissues. FEBS Lett 1985; 190: 259–62
  • Yazawa S., Abbas S. A., Madiyalakan R., et al. N-acetyl-β-D-glucosaminyltransferases related to the synthesis of mucin-type glycoproteins in human ovarian tissue. Carbohydr Res. 1986; 149: 241–52
  • Brockhausen I., Williams D., Matta K. L., et al. Mucin synthesis III: UDP-GlcNAc:Galβ1–3(GlcNAcβ1 -6)GalNAc-R (GlcNAc to Gal) β3-N-acetylglucosaminyltransferase, an enzyme in porcine gastric mucosa involved in the elongation of mucin-type oligosaccharides. Can J Biochem Cell Biol 1983; 61: 1322–33
  • Brockhausen I., Orr J, Schachter H. Mucin synthesis V. The action of pig gastric mucosal UDP-GlcNAc:Galβ1- 3(R1)GalNAc-R2 (GlcNAc to Gal) β3-N-acetylglucosaminyltransferase on high molecular weight substrates. Biochem Cell Biol 1984; 62: 1081–90
  • Sheares B. T., Carlson D. M. Characterization of UDP-gaIactose:2-acetamido-2-deoxy-D-glucose 3beta-galactosyltransfera.se from pig trachea. J Biol Chem 1983; 258: 9893–8
  • Sadler J. E., Rearick J. I., Paulson J. C., et al. Purification to homogeneity of a β-galactoside α2–3-sialyltransferase and partial purification of an α-N-acetylgalactosaminide α2–6-sialyltransferase from porcine submaxillary glands. J Biol Chem 1979; 254: 4434–43
  • Gillespie W., Kelm S, Paulson J. C. Cloning and expression of the Galβ1- 3GalNAc α2,3 sialyltransfeTase. J Biol Chem 1992; 267: 21004–10
  • De Heij H. T., Tetteroo PAT, van Kessel AHMG, et al. Specific expression of a myeloid-associated CMP-NeuAc:Galβ1- 3GalNAcα-R α2–3-sialyltransferase and the sialyl-X determinant in myeloid human-mouse cell hybrids containing human chromosome 11. Cancer Res 1988; 48: 1489–93
  • Bergh MLE, van den Eijnden D. H. Aglycon specificity of fetal calf liver and ovine and porcine submaxillary gland α-N-acetylgalactosaminide α2–6 sialyltransferase. Eur J Biochem 1983; 136: 113–8
  • Bergh MLE, Hooghwinkel GJM, van den Eijnden D. H. Biosynthesis of the O-glycosidically linked oligosaccharide chains of fetuin. J Biol Chem 1983; 258: 7430–6
  • Sadler J. E., Rearick JI, Hill R. L. Purification to homogeneity and enzymatic characterization of an α-N-acetylgalactosaminide α2–6-sialyltransferase from porcine submaxillary glands. J Biol Chem 1979; 254: 5934–41
  • Carter S. R., Slomiany A., Gwozdzinski K., et al. Enzymatic sulfation of mucus glycoprotein in gastric mucosa. Effect of ethanol. J Biol Chem 1988; 263: 11977–84
  • Kasinathan C., Liau Y. H., Murty VLN, et al. Identification of gastric mucus glycoprotein sulfotransferase. Biochem Int 1991; 24: 43–9
  • Watkins W. M., Greenwell P., Yates A. D., et al. Regulation of expression of carbohydrate blood group antigens. Biochimie 1988; 70: 1597–611
  • Paulson J. C., Weinstein J, Schauer A. Tissue-specific expression of sialyltransferases. J Biol Chem 1989; 264: 10931–4
  • Paulson J. C., Colley K. J. Glycosyltransferases. Structure, localization and control of cell type-specific glycosylation. J Biol Chem 1989; 264: 17615–8
  • Yamashita K., Hitoi A., Taniguchi N., et al. Comparative study of the sugar chains of glutamyltranspeptidases purified from rat liver and rat AH-66 hepatoma cells. Cancer Res 1983; 43: 5059–63
  • Svensson E. C., Soreghan B, Paulson J. C. Organization of the beta-galactoside alpha 2,6-sialyltransferase gene. Evidence for the transcriptional regulation of terminal glycosylation. Biol Chem 1990; 265: 20863–8
  • Wang X-C, O'Hanlon T. P., Young R. F., et al. Rat β-galactoside α2,6-sialyltransferase genomic organization: alternate promoters direct the synthesis of liver and kidney transcripts. Glycobiology 1990; 1: 25–31
  • Hollis G. F., Douglas J. G., Shaper N. L., et al. Genomic structure of murine beta-1,4-galactosyltransferase. Biochem Biophys Res 1989; 162: 1069–75
  • Russo R. N., Shaper NL, Shaper J. H. Bovine betal-4-galactosyltransferase: two sets of mRNA transcripts encode two forms of the protein with different amino-terminal domains. In vitro translation experiments demonstrate that both the short and the long forms of the enzyme are type II membrane-bound glycoproteins. J Biol Chem 1990; 265: 3324–31
  • Shaper N. L., Wright WW, Shaper J. H. Murine betal,4-galactosyltransferase: both the amounts and structure of the mRNA are regulated during spermatogenesis. Proc Natl Acad Sci USA 1990; 87: 791–5
  • Moscarello M., Mitranic MM, Vella G. Stimulation of bovine milk galactosytransferase activity by bovine colostrum. N-acetylglucosaminyltransferase I. Biochim Biophys Acta. 1985; 831: 192–200
  • Taatjes D. J., Roth J., Weinstein J., et al. Post-Golgi apparatus localization and regional expression of rat intestinal sialyltransferase detected by immunoelectron microscopy with polypeptide epitope-purified antibody. J Biol Chem 1988; 263: 6302–9
  • Dunphy W. G., Rothman J. E. Compartmental organization in the Golgi stack. Cell 1985; 42: 13–21
  • Colley K. J., Lee E. U., Adler B., et al. Conversion of a Golgi apparatus sialyltransferase to a secretory protein by replacement of the NH2-terminal signal anchor with a signal peptide. J Biol Chem 1989; 264: 17619–22
  • Lammers G., Jamieson J. C. Cathepsin D-like activity in the release of Galbetal-4GlcNAca2–6 sialyltransferase from mouse and guinea pig liver Golgi membranes during the acute phase response. Comp Biochem Physiol 1990; 95B: 327–34
  • Eckstein D. J., Shur B. D. Cell surface β-l,4-galactosyltransferase is associated with the detergent-insoluble cytoskeleton on migrating mesenchymal cells. Exp Cell Res 1992; 201: 83–90
  • Barcellos-Hoff M. H. Mammary epithelial reorganization on extracellular matrix is mediated by cell surface galactosyltransferase. Exp Cell Res 1992; 201: 225–34
  • Bunnell B. A., Adams DE, Kidd V. J. Transient expression of a p58 protein kinase cDNA enhances mammalian glycosyltransferase activity. Biochem Biophys Res Commun 1990; 171: 196–203
  • O'Keefe E., Mordick T, Bell J. E. Bovine galactosyltransferase: interaction with ct-lactalbumin and the role of a-lactalbumin in lactose synthetase. Biochemistry 1980; 19: 4962–6
  • te Heesen S., Janetzky B., Lehle L., et al. The yeast WBP1 is essentia] for oligosaccharyltransferase activity in vivo and in vitro. EMBO J 1992; 11: 2071–5
  • Nagpurkar A., Hunt D, Mookerjea S. A low molecular weight protein factor in rat colon specifically activates α2–6 sialyltransferase. Int Carbohydr Symp 1992, Paris, France, Abstract B062
  • Allen S. D., Tsai D, Schachter H. Control of glycoprotein synthesis. X. The in vitro synthesis by hen oviduct membrane preparations of hybrid Asn-linked oligosaccharides containing five mannose residues. J Biol Chem 1984; 259: 6984–90
  • Carver J. P., Brisson J-R. The three-dimensional structure of N-linked oligosaccharides. Biology of carbohydrates, V. Ginsburg, P. Robbins. Wiley and Sons, New York 1984; Vol. 2: Pp. 289–331
  • Narasimhan S., Freed JC, Schachter H. Control of glycoprotein synthesis. Bovine UDP-galactose N-acetylglucosamine β-4-galactosyltransferase catalyzes the preferential transfer of galactose to GlcNAcβ1,2 Manα 1,3-branch of both bisected and nonbisected complex biantennary asparagine-linked oligosaccharides. Biochemistry 1985; 24: 1694–700
  • Wieland F. T., Gleason M. L., Serafini T. A., et al. The rate of bulk flow from the ER to the cell surface. Cell 1987; 50: 289–300
  • Savvidou G., Klein M., Grey A. A., et al. Possible role for peptide-oligosaccharide interactions in differential oligosaccharide processing at asparagine-107 of the light chain and asparagine-297 of the heavy chain in a monoclonal IgG. Biochemistry 1984; 23: 3736–40
  • Carver J. P., Cumming D. A. Site-directed processing of N-linked oligosaccharides: the role of three-dimensional structure. Pure Appl Chem 1987; 5(9)1465–76
  • Lindh I., Hiridsgaul O. Synthesis and enzymatic evaluation of two conformationally restricted trisaccharide analogues as substrates for N-acetylglucosaminyltransferase V. J Am Chem Soc 1991; 113: 216–23
  • Paulsen H., Pollex-Kruger A, Sinnwell V. Konformationsanalytische Untersuchungen von N-terminalen. O-glycopeptidsequenzen des Interleukin-2. Carbohydr Res. 1991; 214: 199–226
  • Paquet M. R., Narasimhan S., Schachter H., et al. Branch specificity of purified rat liver Golgi UDP-galactose Jv-acetylglucosamine β-1,4-galactosyltransferase. Preferential transfer of galactose on the GlcNAcβ1,2-Manα1,3 branch of a complex biantennary Asn-linked oligosaccharide. J Biol Chem 1984; 259: 4716–21
  • Joziasse D. H., Schiphorst WECM, van den Eijnden D. H., et al. Branch specificity of bovine colostrum CMP-sialic acid: Galβ -4GlcNAc-R α2–6-sialyltransferase. Sialyation of bi-, tri-, and tetraantennary oligosaccharides and glycopeptides of the. N-acetyllactosamine type. J Biol Chem. 1987; 262: 2025–33
  • Schwarz R. T., Datema R. Inhibitors of trimming: new tools in glycoprotein research. Trends Biochem Sci 1984; 9: 32–4
  • Fuhrmann 15, Bause E, Ploegh H. Inhibitors of oligosaccharide processing. Biochim Biophys Acta 1985; 825: 95–110
  • Kuan S-F, Byrd J. C., Basbaum C., et al. Inhibition of mucin glycosylation by aryl-N-acetyl-α-galactosaminides in human colon cancer cells. J Biol Chem 1989; 264: 19271–7
  • Kojima N., Handa K., Newman W., et al. Inhibition of selectin-dependent tumor cell adhesion to endothelial cells and platelets by blocking O-glycosylation of these cells. Biochem Biophys Res Commun 1992; 182: 1288–95
  • Hatanaka K., Slama JT, Elbein A. D. Synthesis of a new inhibitor of the UDP-GalNAc: polypeptide galactosaminyltransferase. Biochem Biophys Res Commun 1991; 175: 668–72
  • Palcic M. M., Heerze L. D., Srivastava O. P., et al. A bisubstrate analog inhibitor for α(1–2)-fucosyltransferase. J Biol Chem 1989; 264: 17174–81
  • Hindsgaul O., Kaur K. J., Srivastava G., et al. Evaluation of deoxygenated oligosaccharide acceptor analogs as specific inhibitors of glycosyltransferases. J Biol Chem 1991; 226: 17858–62
  • Khan S. H., Crawley S. C., Kanie O., et al. A trisaccharide acceptor analog for. N-acetylglucosaminyltransferase V which binds to the enzyme but sterically precludes the transfer reaction. J Biol Chem. 1993; 268: 2468–73
  • Reck F., Paulsen H., Brockhausen I., et al. Synthesis of specific tetrasaccharide inhibitors for N-acetylglucosaminy[transferase II (Gn-T II) using a trisaccharide precursor and recombinant N-acetylglucosaminyltransferase I (Gn-T I). Glycobiology 1992; 2: 483, Soc for Complex Carbohydr. Nashville, TN
  • Kajihara Y., Hashimoto H, Kodama H. Methyl-3-O-(2-acetamido-2-deoxy-6-thio-β-D-glucopyranosyl)- β-D-galactopyranoside: a slow reacting acceptor-analogue which inhibits glycosylation by UDP-D-galactose-N-acetyl-D-glucosamine-(1 -4)- β-D-galactosyl transferase. Carbohydr Res 1992; 229: C5–C9
  • Larsen E., Palbrica T., Sajer S., et al. PADGEM-dependent adhesion of platelets to monocytes and neutrophils is mediated by a lineage-specific carbohydrate, LNF III (CD 15). Cell 1990; 63: 467–74
  • Polley M. J., Phillips M. I., Wayner E., et al. CD-62 and ELAM-1 recognize the same carbohydrate ligand, Sialyl-Le. Proc Natl Acad Sci USA 1991; 88: 6624–8
  • Lowe J. B., Stoolman L. M., Nair R. P., et al. ELAM-1-dependent cell adhesion to vascular endothelium determined by a transfected human fucosyltransferase cDNA. Cell 1990; 63: 475–84
  • Phillips M. L., Nudelman E., Gaeta F., et al. ELAM-1 mediates cell adhesion by recognition of a carbohydrate ligand, sialyl-Lex. Science 1990; 250: 1130–2
  • Majuri M-L, Matilla P, Renkonen R. Recombinant E-selectin-protein mediates tumor cell adhesion via sialyl Lea and sialyl Lex. Biochem Biophys Res Commun 1992; 182: 1376–82
  • Berg E. L., Magnani J., Wamock R. A., et al. Comparison of L-selectin and E-selectin ligand specificities: the L-selectin can bind the E-selectin ligands sialyl Lex and sialyl Lea. Biochem Biophys Res Commun 1992; 184: 1048–55
  • Lasky L. A., Singer M. S., Dowbenko D., et al. An endothelial ligand for L-selectin is a novel mucin-like molecule. Cell 1992; 69: 927–38
  • Goelz S. E., Hession C., Goff D., et al. ELFT: a gene that directs the expression of an ELAM-1 ligand. Cell 1990; 63: 1349–56
  • Walz G., Aruffo A., Kolanus W., et al. Recognition by ELAM-1 of the sialyl-Lex determinant on myeloid and tumor cells. Science 1990; 250: 1132–5
  • Brandley B. K., Swiedler SJ, Robbins P. W. Carbohydrate ligands of the LEC cell adhesion molecules. Cell 1990; 63: 861–3
  • Feizi T. Cell-cell adhesion and membrane glycosylation. Curr Opin Struct Biol 1991; 1: 766–70
  • Leeuwenberg JFM, Tan A., Jeunhomme TMAA, et al. The ligand recognized by ELAM-1 on HL60 cells is not carried by N-linked oligosaccharides. Eur J Immunol 1991; 21: 3057–9
  • Larsen G. R., Sako D., Ahem T. J., et al. P-selectin and E-selectin. Distinct but overlapping leukocyte ligand specificities. J Biol Chem 1992; 267: 11104–10
  • Foxall C., Watson S. R., Dowbenko D., et al. The three members of the selectin receptor family recognize a common carbohydrate epitope, the sialyl Lewis oligosaccharide. J Cell Biol 1992; 117: 895–902
  • Shur B. D. Expression and function of cell surface galactosyltransferase. Biochim Biophys Acta 1989; 988: 389–409
  • Ashwell G., Harford J. Carbohydrate-specific receptors of the liver. Annu Rev Biochem 1982; 51: 531–54
  • Baenziger J. U., Maynard Y. Human hepatic lectin. Physiochemical properties and specificity. J Biol Chem 1980; 255: 4607–13
  • Schwartz A. L., Fridovich SE, Lodish H. F. Kinetics of internalization and recycling of the asialoglycoprotein receptor in a hepatome cell line. J Biol Chem 1982; 257: 4230–7
  • Schwartz A. L., Rup D. Biosynthesis of the human asialoglycoprotein receptor. J Biol Chem 1983; 258: 11249–55
  • Schauer R. Chemistry, metabolism, and biological functions of sialic acids. Adv Carbohydr Chem Biochem 1982; 40: 131–234
  • Narasimhan S., Lee JWW, Cheung R. K., et al. β-1,4-mannosyl-glycoprotein β-1.4-N-acetylglucosaminyltransferase m activity in human B and T lymphocytic lines and in tonsillar B and T lymphocytes. Biochem Cell Biol 1988; 66: 889–900
  • Greenwell P., Ball MG, Watkins W. Fucosyltransferase activities in human lymphocytes and granulocytes. Blood group H-gene-specified α-2-L-fucosyltransferase is a discriminatory marker of peripheral blood lymphocytes. FEBS Lett 1983; 164: 314–7
  • Monsigny M., Roche A-C, Kieda C., et al. Characterization and biological implications of membrane lectins in tumor, lymphoid and myeloid cells. Biochimie 1988; 70: 1633–49
  • Pimlott NJG, Miller R. G. Glycopeptides inhibit allospecific cytotoxic T-lymphocyte recognition in an MHC specific manner. J Immunol 1986; 136: 6–11
  • Ahrens B., Ankel H. Natural killer cells discriminate between high mannose- and complex-type asparagine-linked oligosaccharides. Biochimie 1988; 70: 1619–25
  • Fukuda M. Leukosialin, a major. O-glycan-containing sialoglycoprotein defining leukocyte differentiation and malignancy. Glycobiology 1991; 1: 347–56
  • Carlsson S. R., Sasaki H, Fukuda M. Structural variation of. O-linked oligosaccharides present in leukosialin isolated from erythroid, myeloid and T-lymphoid cell lines. J Biol Chem. 1986; 261: 12787, r95
  • Ogata S., Maimonis PJ, Itzkowitz S. H. Mucins bearing the cancer-associated sialosyl-Tn antigen mediate inhibition of natural killer cell cytotoxicity. Cancer Res 1992; 52: 4741–6
  • Hakomori S-I, Fukuda M, Nudelman E. Role of cell surface carbohydrates in differentiation: behaviour of lactosaminoglycan in glycolipids and glycoproteins. Teratocarcinoma and embryonic cell interactions, T. Muramatsu, G. Gachelin, A. A. Moscona, Y Flcawa. Academic, New York 1982; Pp. 179–200
  • Feizi T. Demonstration by monoclonal antibodies that carbohydrate structures of glycoproteins and glycolipids are onco-developmental antigens. Nature 1985; 314: 53–7
  • Feizi T., Gooi H. C., Childs R. A., et al. Mucin-type glycoproteins. Tumor-associated and differentiation antigens on the carbohydrate moieties of mucin-type glycoproteins. Biochem Soc Trans 1984; 12: 591–6
  • Hakomori S-I. Aberrant glycosylation in cancer cell membranes as focussed on glycolipids: overview and perspectives. Cancer Res 1985; 45: 2405–14
  • Fenderson B. A., Zehavi U, Hakomori S-I. A multivalent lacto-N-fucopentaose III-lysyllysine conjugate decompacts preimplantation mouse embryos, while the free oligosaccharide is ineffective. J Exp Med 1984; 160: 1591–6
  • Gooi H. C., Feizi T., Kapadia A., et al. Stage-specific embryonic antigen involves ctl-3 fucosylated type 2 blood group chains. Nature 1981; 292: 156–8
  • Aoi Y. Biosynthesis of glycoprotein-glycosyltransferases during the cell cycle. Tohuku J Exp Med 1978; 124: 139–44
  • Youakim A., Romero P., Yee K., et al. Decrease in polylactosaminoglycans associated with lysosomal membrane glycoproteins during differentiation of CaCo-2 human colonic adenocarcinoma cells. Cancer Res 1989; 49: 6889–95
  • Koenderman AHL, Wijermans PW, van den Eijnden D. H. Changes in the expression of N-acetylglucosaminyltransferase III, IV, V associated with the differentiation of HL60 cells. FEBS Lett 1987; 222: 42–6
  • Shah S., Lance P., Smith T. J., et al. n-Butyrate reduces the expression of β-galactoside α2,6-sialyltransferase in HepG2 cells. J Biol Chem. 1992; 267: 10652–8
  • Wice B. M., Trugnan G., Ointo M., et al. The intracellular accumulation of UDP-N-acetylhexosamines is concomitant with the inability of human colon cancer cells to differentiate. J Biol Chem 1985; 260: 139–46
  • Lopez L. C., Bayna E. M., Litoff D., et al. Receptor function of mouse sperm surface galactosyltransferase during fertilization. J Cell Biol 1985; 101: 1501–10
  • Miller D. J., Macek MB, Shur B. D. Cell surface beta 1,4-galactosyltransferase and egg-coat ZP3 mediates sperm-egg binding. Nature 1992; 357: 589–93
  • Lambert H., Le A. V. Possible involvement of a sialylated component of the sperm plasma membrane in sperm-zona interaction in the mouse. Gamete Res 1984; 10: 153–63
  • Bleil J. D., Wassarman P. M. Galactose at the nonreducing terminus of O-linked oligosaccharides of mouse egg zona pellucida glycoprotein ZP3 is essential for the glycoprotein's sperm receptor activity. Proc Natl Acad Sci USA 1988; 85: 6778–82
  • CarduUo R. A., Armant DR, Millette C. F. Increased Fuc-transferase activity between isolated mouse spermatocytes and spermatids. J Cell Biol 1986; 103: 81
  • Durr R., Shur B, Roth S. Sperm associated sialyltransferase activity. Nature 1977; 265: 547–8
  • Kobata A. Structural changes induced in the sugar chains of glycoproteins by malignant transformation of producing cells and their clinical application. Biochimie 1988; 70: 1575–85
  • Yamaguchi K., Akai K., Kawanishi G., et al. Effects of site-directed removal of. N-glycosylation sites in human erythropoietin on its production and biological properties. J Biol Chem. 1991; 266: 20434–9
  • Wasley L. C., Timony G., Murtha P., et al. The importance of N- and O-linked oligosaccharides for the biosynthesis and in vitro and in vivo biologic activities of erythropoietin. Blood 1991; 77: 2624–32
  • Higuchi M., Oh-Eda M, Kubonima H., et al. Role of sugar chains in the expression of the biological activity of human erythropoietin. J Biol Chem 1992; 267: 7703–9
  • Smith P. L., Baenziger J. U. A pituitary N-acetylgalactosamine transferase that specifically recognizes glycoprotein hormones. Science 1988; 242: 930–3
  • Smith P. L., Baenziger J. U. Recognition by the glycoprotein hormone-specific. N-acetylgalactosaminetransferase is independent of hormone native conformation. Proc Natl Acad Sci USA 1990; 87: 7275–9
  • Baenziger J. U., Kumar S., Brodbeck, et al. Circulatory half-life but not interaction with the lutropin/chorionic gonadotropin receptor is modulated by sulfation of bovone lutropin oligosaccharides. Proc Natl Acad Sci USA 1992; 89: 334–8
  • Chen W., Bahl O. P. Recombinant carbohydrate variant of human choriogonadotropin β-subunit (hCGβ)descarboxyl terminus (115–145). J Biol Chem 1991; 266: 6246–51
  • Amano J., Nishimura R., Sato S., et al. Altered glycosylation of human chorionic gonadotropin decreases its hormonal activity as determined by cyclic-adenosine 3',5'-monophosphate production in MA-10 cells. Glycobiology 1990; 1: 45–50
  • Kingsley D. M., Kozarsky K. F., Hobbie L., et al. Reversible defects in O-linked glycosylation and LDL receptor expression in a UDP-Gal/UDP-GalNAc 4-epimerase deficient mutant. Cell 1986; 44: 749–59
  • Reddy P., Caras I, Krieger M. Effects of O-linked glycosylation on the cell surface expression and stability of decay-accelerating factor, a glycophospholipid-anchored membrane protein. J Biol Chem 1989; 264: 17329–36
  • Fischer T., Thoma B., Scheurich P., et al. Glycosylation of the human interferon-γ receptor, relinked carbohydrates contribute to structural heterogeneity and are required for ligand binding. J Biol Chem 1990; 265: 1710–7
  • Filipovic I. Effect of inhibiting. N-glycosylation on the stability and binding activity of the low density lipoprotein receptor. J Biol Chem. 1989; 264: 8815–20
  • Li M., Jourdian G. W. Isolation and characterization of the two glycosylation isoforms of low molecular weight mannose 6-phosphate receptor from bovine testis. J Biol Chem 1991; 266: 17621–30
  • Wendland M., Waheed A., Schmidt B., et al. Glycosylation of the M, 46,000 mannose 6-phosphate receptor. Effect on ligand binding, stability, and conformation. J Biol Chem 1991; 266: 4598–604
  • Snider M. D., Rogers O. C. Intracellular movement of cell surface receptors after endocytosis: resialylation of asialo-transferrin receptor in human erythroleukemia cells. J Cell Biol 1985; 100: 826–34
  • Hunt R. C., Riegler R, Davis A. A. Changes in glycosylation alter the affinity of the human transferrin receptor for its ligand. J Biol Chem 1989; 264: 9643–8
  • Williams A. M., Enns C. A. A mutated transferrin receptor lacking asparagine-linked glycosylation sites shows reduced functionality and an association with binding immunoglobulin protein. J Biol Chem 1991; 266: 17648–54
  • Hoe M. H., Hunt R. C. Loss of one asparagine-linked oligosaccharide from human transferrin receptors results in specific cleavage and association with the endoplasmic reticulum. J Biol Chem 1992; 267: 4916–23
  • Podskalny J. M., Rouiller D. G., Grunberger G., et al. Glycosylation defects alter insulin but not insulin-linked growth factor I binding to Chinese hamster ovary cells. J Biol Chem 1986; 261: 14076–81
  • Markwell MAK, Paulson J. C. Sendai virus utilizes specific sialy(oligosaccharides as host cell receptor determinants. Proc Natl Acad Sci USA 1980; 77: 5693–7
  • Herrler G., Rott R., Klenk H-D, et al. The receptor-destroying enzyme of influenza C virus is neuraminate-O-acetylesterase. EMBO J 1985; 4: 1503–6
  • Lingwood C. Glycolipids as receptors. Adv Lipid Res 1991; 1: 39–55
  • Zamze S. Glycosylation in parasitic protozoa of the trypanosomatidae family. Glycoconjugate J 1991; 8: 443–7
  • Avila J. L., Rojas M, Towbin H. Serological activity against galactosylct-(1–3)galactose in sera from patients with several kinetoplastida infections. J Clin Microbiol 1988; 26: 126–32
  • Gahmberg C. G., Autero M, Hermonen J. Major o-glycosylated sialoglycoproteins in human hematopoietic cells: differentiation antigens with poorly understood functions. J Cell Biochem 1988; 37: 91–105
  • Buck C. A., Glick MC, Warren L. A comparative study of glycoproteins from the surface of control and Rous sarcoma virus transformed hamster cells. Biochemistry 1970; 9: 4567–76
  • Buck C. A., Glick MC, Warren L. Glycopeptides from the surface of control and virus-transformed cells. Science 1971; 172: 169–71
  • Santer U. V., DeSantis R., Hard K. J., et al. N-linked oligosaccharide changes with oncogenic transformation require sialylation of multiantennae. Eur J Biochem 1989; 181: 249–60
  • Vandamme V., Cazlaris H., Le Marer N., et al. Comparison of sialyl- and α-1,3-galactosyltransferase activity in NIH3T3 cells transformed with ras oncogen: increased β-galactoside α-2,6-sialyltransferase. Biochimie 1992; 74: 89–100
  • Le Marer N., Laudet V., Svensson E. C., et al. The. c-ras oncogene induces increased expression of beta-galactoside alpha-2,6-sialyltransferase in rat fibroblast (FR3T3) cells. Glycobiology 1992; 2: 49–56
  • Yamashita K., Ohkura T., Tachibana Y., et al. Comparative study of the oligosaccharides released from baby hamster kidney cells and their polyoma transformant by hydrazinolysis. J Biol Chem 1984; 259: 10834–40
  • Yamashita K., Tachibana Y., Ohkura T., et al. Enzymatis basis for the structural changes of asparagine-linked sugar chains of membrane glycoproteins of baby hamster kidney cells induced by polyoma transformation. J Biol Chem 1985; 260: 3963–9
  • Pierce M., Arango J. Rous sarcoma virus-transformed baby hamster kidney cells express higher levels of asparagine-linked tri- and tetra-antennary glycopeptides containing [GlcNAc-β(l,6)Man-α(1,6)Man] and PolyN-acetyllactosamine sequences than baby hamster kidney cells. J Biol Chem 1986; 261: 10772–7
  • Yousefi S., Higgins E., Daoling Z., et al. Increased UDP-GlcNAc:Galβ1- 3GalNAc-R (GlcNAc to GalNAc) β1,6-N-acetylglucosaminyltransferase activity in metastatic murine tumor cell lines. Control of polylactosaminoglycan synthesis. J Biol Chem 1991; 266: 1772–82
  • Fernandes B., Sagman U., Auger M., et al. Betal-6 branched oligosaccharides as a marker of tumor progression in human breast and colon neoplasia. Cancer Res 1991; 51: 718–23
  • Warren L., Buck CA, Tuszynski G. P. Glycopeptide changes and malignant transformation. A possible role for carbohydrate in malignant behaviour. Biochim Biophys Acta 1978; 516: 97–127
  • Baker S. R., Blithe D. L., Buck C. A., et al. Glycosaminoglycans and other carbohydrate groups bound to proteins of control and transformed cells. J Biol Chem 1980; 255: 8719–28
  • Warren L., Buck C. A. The membrane glycoproteins of the malignant cell. Clin Biochem 1980; 13: 191–7
  • Ivatt R. J., Hubbard SC, Robbins P. W. Processing of cell surface glycoproteins in normal and transformed fibroblasts. Prog Clin Biol Res 1980; 41: 857–72
  • Hollstein M., Sidransky D., Vogelstein B., et al. p53 Mutations in human cancer. Science 1991; 253: 49–53
  • Fearon E. R., Cho K. R., Nigra J. M., et al. Identification of a chromosome 18q gene that is altered in colorectal cancers. Science 1990; 247: 49–54
  • Xerri L., Payan M-J, Choux R., et al. Predominance of sialomucin secretion in malignant and premalignant pancreatic lesions. Hum Pathol 1990; 21: 927–31
  • Jerome K. R. Cytotoxic T-lymphocytes derived from patients with breast adenocarcinoma recognize an epitope present on the protein core of a mucin molecule preferentially expressed by malignant cells. Cancer Res 1991; 51: 2908–16
  • Gendler S. J., Burchell J. M., Duhig T., et al. Cloning of partial cDNA encoding differentiation and tumor-associated mucin glycoproteins expressed by human mammary epithelium. Proc Natl Acad Sci USA 1987; 84: 6060–4
  • Gendler S. J., Lancaster C. A., Taylor-Papadimitriou J., et al. Molecular cloning and expression of tumor-associated polymorphic epithelial mucin. J Biol Chem 1990; 265: 15286–93
  • Siddiqui J., Abe M., Hayes D., et al. Isolation and sequencing of a cDNA coding for the human DF3 breast carcinoma-associated antigen. Proc Natl Acad Sci USA 1988; 85: 2320–3
  • Lan M. S., Batra S. K., Qi W-N, et al. Cloning and sequencing of a human pancreatic tumor mucin cDNA. J Biol Chem 1990; 265: 15294–9
  • Larocca D., Peterson J. A., Urrea R., et al. A Mr 46 000 human milk fat globule protein that is highly expressed in human breast tumors contains factor VHI-iike domains. Cancer Res 1991; 51: 4994–8
  • Devine P. L., Layton G. T., Clark B. A., et al. Production of MUC1 and MUC2 mucins by human tumor cell lines. Biochem Biophys Res Commun 1991; 178: 593–9
  • Devine P. L., Clark B. A., Birell G. W., et al. The breast tumor-associated epitope defined by monoclonal antibody 3E1.2 is an O-Iinked mucin carbohydrate containing. N-glycoIylneuraminic acid. Cancer Res. 1991; 51: 5826–36
  • Burchell J., Taylor-Papadimitriou J., Boshell M., et al. A short sequence, within the amino acid tandem repeat of a cancer-associated mucin, contains immunodominant epitopes. Int J Cancer 1989; 44: 691–6
  • Bemacki R. J., Kim U. Concomitant elevations in serum sialyltransferase activity and sialic acid content in rats with metastasizing mammary tumors. Science 1977; 195: 577–80
  • Ip C., Dao T. Increase in serum and tissue glycosyltransferases and glycosidases in tumor-bearing rats. Cancer Res 1977; 37: 3442–7
  • Ip C., Dao T. Alterations in serum glycosyltransferases and 5'-nucleotidase in breast cancer patients. Cancer Res 1978; 38: 723–8
  • Kessel D., Allen J. Elevated plasma sialyltransferase in the cancer patient. Cancer Res 1975; 35: 670–2
  • Kessel D., Sykes E, Henderson M. Glycosyltransferase levels in tumors metastatic to liver and in uninvolved liver tissue. JNCI 1977; 59: 29–32
  • Evans I. M., Hilf R., Murphy M., et al. Correlation of serum, tumor, and liver serum glycoprotein: N-acetylneuraminic acid transferase activity with growth of the R3230AC mammary tumor in rats and relationship of the serum activity to tumor burden. Cancer Res 1980; 40: 3103–11
  • Dennis J. W., Laferté S. Oncodevelopmental expression of GlcNAcβ1–6Manαl-6Manβ1-branched asparagine-linked oligosaccharides in murine tissues and human breast carcinomas. Cancer Res 1989; 49: 945–50
  • Warren L., Fuhrer JP, Buck C. A. Surface glycoproteins of normal and transformed cells. A difference determined by sialic acid and a growth-dependent sialyltransferase. Proc Natl Acad Sci USA 1972; 69: 1838–42
  • Warren L. The malignant cell and its membranes. Am J Pathol 1974; 77: 69–76
  • Holzhauser R., Faillard H. Sialic acids in human lymphocytes. Qualitative and quantitative alterations in cancer cases. Carbohydr Res 1988; 183: 89–95
  • Lcuta K., Nishi Y., Simizu Y., et al. Hanganutziu-Deicher type heterophile antigen-positive cells in human cancer tissue demonstrated by membrane immunofluorescence. Biken J 1982; 25: 47–50
  • Ohashi Y., Sasabe T., Nishida T., et al. Hanganutziu-Deicher heterophile antigen in human retinoblastoma cells. Am J Opthalmol 1983; 96: 321–5
  • Higashi H., Dcuta K., Ueda S., et al. Characterization of N-glycolylneuraminic acid-containing glycosphingolipids from Marek's disease lymphoma-derived chicken cell line, MSB1, as tumor-associated heterophile Hanganutziu-Deicher antigens. J Biochem (Tokyo) 1984; 95: 785–94
  • Nakarai H, Kawai T., Kato A., et al. Quantitative determination of N-glycolylneuraminic acid expression in human cancerous tissues and avian lymphoma cell lines as a tumor-associated sialic acid by gas chromatography-mass spectrometry. Cancer Res 1991; 51: 1242–6
  • Manzi A. E., Sjoberg E. R., Diaz S., et al. Biosynthesis and turnover of O-acetyl and N-acetyl groups in the gangliosides of human melanoma cells. J Biol Chem. 1990; 265: 13091–103
  • Kawai T., Kato A., Higashi H., et al. Quantitative determination of. N-glycolylneuraminic acid expression in human cancerous tissues and avian lymphoma cell lines as a tumor-associated sialic acid by gas chromatography-mass spectrometry. Cancer Res. 1991; 51: 1242–6
  • Bastida E., Almirall L., Jamieson G. A., et al. Cell surface sialylation of two human tumor cell lines and its correlation with their platelet-activating activity. Cancer Res 1987; 47: 1767–70
  • Scialla S. J., Speckart S. F., Hant M. J., et al. Alterations in platelet surface sialyltransferase activity and platelet aggregation in a group of cancer patients with high incidence of thrombosis. Cancer Res 1979; 39: 2031–5
  • Springer G. F., Yang H. J. Isolation and partial characterization of blood group M- and N-specific glycopeptides and oligosaccharides from human erythrocytes. Immunochemistry 1977; 14: 497–502
  • Chatterjea S. K., Bhattacharya M, Barlow J. J. Glycosyltransferase and glycosidase activities in ovarian cancer patients. Cancer Res 1979; 39: 1943–51
  • Silver HKB, Karim K. A., Archibald E. L., et al. Serum sialic acid and sialyltransferase as monitors of tumor burden in malignant melanoma patients. Cancer Res 1979; 39: 5036–42
  • Kim Y. S., Perdomo J., Whitehead J. S., et al. Study of serum galactosyltransferase and. N-acetylgalactosaminyltransferase in patients with liver disease. J Clin Invest. 1972; 51: 2033–9
  • Mookerjea S., Michaels M. A., Hudgin R. L., et al. The levels of nucleotide-sugar:glycoprotein sialyl- and A^-acetylglucosaminyltransferases in normal and pathological human serum. Biochem Cell Biol 1972; 50: 738
  • Fukushi Y., Nudelman E., Levery S. B., et al. Novel fucolipids accumulating in human adenocarcinoma. UI. A hybridoma antibody (FH6) defining a human cancer-associated difucoganglioside (VI3NeuAcV3III3Fuc2nLc6). J Biol Chem 1984; 259: 4681–5
  • Fukushi Y., Hakomori S-I, Nudelman E., et al. Novel fucolipids accumulating in human adenocarcinoma. II. Selective isolation of hybridoma antibodies that differentially recognize mono-, di-, and trifucosylated type 2 chain. J Biol Chem 1984; 259: 4681–5
  • Hoff S. D., Matsushita Y., Ota D. M., et al. Increased expression of sialyl-dimeric Le antigen in liver metastasis of human colorectal carcinoma. Cancer Res 1989; 49: 6883–8
  • Shirahama T., Dcoma M., Muramatsu H., et al. Reactivity to fucose-binding proteins of lotus tetragonolobus correlates with metastatic phenotype of transitional cell carcinoma of the bladder. J Urol 1992; 147: 1659–64
  • Matsusako T., Muramatsu H., Shirahama T., et al. Expression of a carbohydrate signal, sialyl dimaeric Lex antigen, is associated with metastatic potential of transitional cell carcinoma of the human bladder. Biochem Biophys Res Commun 1991; 181: 1218–22
  • Asao T., Yazawa S., Nagamachi Y., et al. Seruma(1–3)-L-Fucosy ltransferase, carcinoembryonic antigen, and sialyl Lewis X-i antigen levels in lung cancer. Cancer 1989; 64: 2541–5
  • Yazawa S., Madiyalakan R., Izawa H., et al. Cancer-associated elevation of α(1–3)-L-fucosyltransferase activity in human serum. Cancer 1988; 62: 516–20
  • Itai S., Nishikata J., Yoneda T., et al. Tissue distribution of 2–3 and 2–6 sialyl Lewis A antigens and significance of the ratio of two antigens for the differential diagnosis of malignant and benign disorders of the digestive tract. Cancer 1991; 67: 1576–87
  • Kim Y. S., Isaacs R. Glycoprotein metabolism in inflammatory and neoplastic diseases of the human colon. Cancer Res 1975; 35: 2092–7
  • Plotkin G. M., Wides R. L., Gilbert S. L., et al. Galactosyltransferase activity in human transitional cell carcinoma lines and in benign and neoplastic human bladder epithelium. Cancer Res 1979; 39: 3856–60
  • Madiyalakan R., Piscorz C. F., Piver M. S., et al. Serum β-(1–4)-galactosyltransferase activity with synthetic low molecular weight acceptor in human ovarian cancer. Eur J Cancer Clin Oncol 1987; 23: 901–6
  • Nozawa S., Yajima M., Sakuma T., et al. Cancer-associated galactosyltransferase as a tumor marker for ovarian clear cell carcinoma. Cancer Res 1990; 50: 754–9
  • Kirschbaum B. B. Glycoprotein metabolism in human renal disease: serum glycoproteins and glycoprotein: glycosyltransferase levels in chronic renal failure. J Lab Clin Med 1975; 86: 764–71
  • Humphries-Beyer M. G., Maeda N, Purushotham K. R. Increased expression of the enzyme β1–4-galactosyltransferase is associated with human parotid neoplasms. Proc Soc Exp Biol Med 1990; 193: 293–300
  • Kijimoto-Ochiai S., Makita A., Kameya T., et al. Elevation of glycoprotein galactosyltransferase activity in human lung cancer related to histological types. Cancer Res 1981; 41: 2931–5
  • Podolsky D. K., Weiser M. M. Galactosyltransferase activities in human sera: detection of a cancer-associated isoenzyme. Biochem Biophys Res Commun 1975; 65: 545–51
  • Weiser M. M., Podolsky DK, Isselbacher K. J. Cancer-associated isoenzyme of serum galactosyltransferase. Proc Natl Acad Sci USA 1976; 73: 1319–22
  • Podolsky D. K., Weiser M. M. Purification of galactosyltransferase “isoenzymes” I and n. Comparison of cancer-associated and normal galactosyltransferase activities. J Biol Chem 1979; 254: 3983–90
  • Uemura M., Winant R. C., Sikic B., et al. Characterization and immunoassay of human tumor-associated galactosyltransferase isoenzyme II. Cancer Res 1988; 48: 5325–34
  • Davey R., Harvie R., Cahill J., et al. Serum galactosyltransferase isoenzyme patterns of cancer patients with liver involvement. Br J Cancer 1986; 53: 211–5
  • Podolsky D. K., McPhee M. S., Alpert E., et al. Galactosyltransferase isoenzyme II in the detection of pancreatic cancer: comparison with radiologic, endoscopic, and serologic tests. N Engl J Med 1981; 304: 1313–8
  • Boyle F. A., Cook ND, Peters T. J. Separation and partial characterization of two galactosyltransferase isoforms from malignant ascitic fluid. Clin Chim Acta 1988; 171: 187–96
  • Chatterjea S. K., Bhattacharya M, Barlow J. J. Biochemical and immunological characterization of galactosyltransferase purified from the ascites of ovarian cancer patients. J Natl Acad Sci 1985; 75: 237–48
  • Lehman E. D., Hudson BG, Ebner K. E. Studies on the carbohydrate structure of bovine milk galactosyltransferase. FEBS Lett 1975; 54: 65–9
  • Gmeiner B., Wolf G. Comparison of cell-associated and soluble galactosyltransferase isoenzymes from a human bladder transitional cell carcinoma line. Cancer Res 1987; 47: 23
  • Gmeiner BMK, Wolf G. Galactosyltransferase activities in cultured urinary bladder tumor cells. Cancer Biochem Biophys 1985; 7: 111–222
  • Zhuang D., Yousefi S, Dennis J. W. Tn antigen and UDP-Gal:GalNAcα-R β1–3galactosy ltransferase expression in human breast carcinoma. Cancer Biochem Biophys 1991; 12: 185–98
  • Aird I., Beutall H., Mekigan J., et al. The blood groups in relation to peptide ulceration and carcinoma of colon, rectum, breast and bronchus. An association between blood groups and peptic ulceration. Br Med J 1954; 2: 315–21
  • Srinivas V., Khan S. A., Hoisington S., et al. Relationship of blood groups and bladder cancer. J Urol 1988; 135: 50–2
  • Finan P., Wight D., Lennox E., et al. Human blood group isoantigen expression on normal and malignant gastric epithelium studied with anti-H and anti-B monoclonal antibodies. JNCI 1983; 70: 679–82
  • Dabelsteen E., Vedtofte P., Halomori S, et al. Carbohydrate chains specific for blood group antigens in differentiation of human oral epithelium. J Invest Dermatol 1982; 9: 3–7
  • Paul R., Hermelin B., Mergey M., et al. Incompatible blood-group A determinants in tumoral mucins. Isolation of oligosaccharides having a 2-acetamido-2-deoxy-α-D-galactopyranosyl group at the nonreducing end. Carbohydr Res 1982; 110: 89–99
  • Hakomori S-I. Structures and organization of cell surface glycolipids, dependency on cell growth and malignant transformation. Biochim Biophys Acta 1975; 417: 55–89
  • Perlman E. J., Epstein J. I. Blood group sntigen expression in dysplasia and adenocarcinoma of the prostate. Am J Surg Pathol 1990; 14: 810–8
  • Springer G., Desai P., Fry W., et al. Carcinoma cell membrane T-antigen. Immunodiagnosis in membranes in tumor growth, T. Galcotti. Elsevier, New York 1982
  • Springer G. F., Desai P. R., Wise W., et al. Pancarcinoma T and Tn epitopes: autoimmunogens and diagnostic markers that reveal incipient carcinomas and help establish prognosis. Immunodiagnosis of cancer, R. B. Herberman, D. W. Mercer. Marcel Dekker, New York 1990; Pp. 587–612
  • Springer GF. T and Tn, general carcinoma autoantigens. Science 1984; 224: 1198–206
  • Pierce-Cretel A., Pamblanco M., Strecker G., et al. Heterogeneity of the glycans O-glycosid-ically linked to the hinge region of secretory immunoglobulins from human milk. Eur J Biochem 1981; 114: 169–78
  • Nakasaki H., Mitomi T., Noto T., et al. Mosaicism in the expression of tumor-associated carbohydrate antigens in human colonic and gastric cancers. Cancer Res 1989; 49: 3662–9
  • Amano J., Nishimura R., Mochizuki M., et al. Comparative study of the mucin-type sugar chains of human chorionic gonadotropin present in the urine of patients with trophoblastic diseases and healthy pregnant women. J Biol Chem 1988; 263: 1157–65
  • Cole L. A. The O-linked oligosaccharide structures are striking different on pregnancy and choriocarcinoma hCG. J Clin Endocrinol Metab 1987; 65: 811–3
  • Hard K., Damm JBL, Spruijt MPN, et al. The carbohydrate chains of the β subunit of human chorionic gonadotropin produced by the choriocarcinoma cell line BeWo. Novel O-linked and novel bisecting-GlcNAc-containing N-linked carbohydrates. Eur J Biochem 1992; 205: 785–98
  • Mizuochi T., Nishimura R., Derappe C., et al. Structures of the Asparagine-linked sugar chains of human chorionic gonadotropin produced in choriocarcinoma. J Biol Chem 1983; 258: 14126–9
  • Nishimura R., Endo Y., Tanabe K., et al. The biochemical properties of urinary human chorionic gonadotropin from patients with trophoblastic diseases. J Endocrinol Invest 1981; 4: 349–58
  • Hutchinson W. L., Du M-Q, Johnson P. J., et al. Fucosyltransferases: differential plasma and tissue alterations in hepatocellular carcinoma and cirrhosis. Hepatology 1991; 13: 683–8
  • Ingraham H. A., Aldaheff J. A. Characterization of sialyltransferase in noncancerous and neoplastic human liver tissue. JNCI 1978; 61: 1371–4
  • Dao T. L., Ip C, Patel J. Serum sialyltransferase and 5'-nucleotidase as reliable biomarkers in women with breast cancer. JNCI 1980; 65: 529–34
  • Qian G. X., Liu CK, Waxman S. Abnormal isoelectric focusing patterns of serum galactosyltransferase activity in patients with liver neoplasia. Proc Soc Exp Biol Med 1984; 175: 21–4
  • Ohno M., Nishikawa A., Koketsu M., et al. Enzymatic basis of sugar structures of oc-fetoprotein in hepatoma and hepatoblastoma cell lines: correlation with activities of α-6 fucosyltransferase and. N-acetylglucosaminyltransferases III and V. Int J Cancer. 1992; 51: 315–7
  • Campion B., Léger D, Wieruszeski J-M, et al. Presence of fucosylated triantennary, tetraantennary and pentaantennary glycans in transferrin synthesized by the human hepatocarcinoma cell line Hep G2. Eur J Biochem 1989; 184: 405–13
  • Brockhausen I., unpublished
  • Nishikawa A., Fujii S., Sugiyama T, et al. High expression of an N-acetylglucosaminyltransferase III in 3'-methyl DAB-induced hepatoma and ascites hepatoma. Biochem Biophys Res Commun 1988; 152: 107–12
  • Narasimhan S., Schachter H, Rajalakshmi S. Expression of. N-acetylglucosaminyltransferase III in hepatic nodules during rat liver carcinogenesis promoted by orotic acid. J Biol Chem. 1988; 263: 1273–81
  • Ishibashi K., Nishikawa A., Hayashi N., et al. N-acetylglucosaminyltransferase III in human serum, and liver and hepatoma tissues: increased activity in liver cirrhhosis and hepatoma patients. Clin ChimActa. 1989; 185: 325–32
  • Yamashita K., Totani K., Iwaki Y., et al. Comparative study of the sugar chains of γ-glutamyltranspeptidases purified from human hepatocellular carcinoma and from human liver. J Biochem 1989; 105: 728–35
  • Kim Y. S., Isaacs R, Perdomo J. M. Alterations of membrane glycopeptides in human colonic adenocarcinoma. Proc Natl Acad Sci USA 1974; 71: 4869–73
  • Yuan M., Itzkowitz S. H., Palekar A., et al. Distribution of blood group antigens A, B, H, Lea and Leb in normal, fetal, and malignant colonic tissue. Cancer Res 1985; 45: 4499–511
  • Dabelsteen E., Graem N., Clausen H., et al. Structural variations of blood group A antigens in human normal colon and carcinomas. Cancer Res 1988; 48: 181–7
  • Schoentag R., Primus FJ, Kuhns W. ABH and Lewis blood group expression in colorectal carcinoma. Cancer Res 1987; 47: 1695–700
  • Irimura T., Ota DM, Cleary K. R. Ulex europus agglutinin-I-reactive high molecular weight glycoproteins of adenocarcinoma of distal colon and rectum and their possible relationship with metastatic potential. Cancer Res 1987; 47: 881–9
  • Ruggiero F., Cooper HS, Steplewski Z. Immunohistochemical study of colorectal adenomas with monoclonal antibodies against blood group antigens (sialosyl-Lea, Lea, Leb, Lex, Ley A, B, and H). Lab Invest 1988; 59: 96–103
  • Itzkowitz S. H., Yuan M., Ferrell L. D., et al. Cancer associated alteration of blood group antigen expression in human colorectal polyps. Cancer Res 1986; 46: 5976–84
  • Hanisch F-G, Hanski C, Hasegawa A. Sialyl Lewis antigen as defined by monoclonal antibody AM-3 is a marker of dysplasia in the colonic adeno-carcinoma sequence. Cancer Res 1992; 52: 3138–44
  • Kim Y. S., Yuan M., Itzkowitz S. H., et al. Expression of Lex and extended Ley blood group-related antigens in human malignant, premalignant, and nonmalignant colonic tissues. Cancer Res 1986; 46: 5985–92
  • Yuan M., Itzkowitz S. H., Ferrell L. D., et al. Expression of Lewisx and sialylated Lewisx antigens in human colorectal polyps. JNCI 1987; 78: 479–88
  • Boland C. R., Montgomery CK, Kim Y. S. A cancer-associated mucin alteration in benign colonic polyps. Gastroenterology 1982; 82: 664–72
  • Itzkowitz S. H., Yuan M., Fukushi Y., et al. Lewisx- and sialylated Lewisx-related antigen expression in human malignant and nonmalignant colonic tissue. Cancer Res 1986; 46: 2627–32
  • Ømtoft T. F., Greenwell P., Clausen H., et al. Regulation of the oncodevelopmental expression of type 1 chain ABH and Lewisb blood group antigens in human colon by α-2-L-fucosylation. Gut 1991; 32: 287–93
  • Itzkowitz S. H., Dahiya R., Byrd J. C., et al. Blood group antigen synthesis and degradation in normal and cancerous colonic tissues. Gastroenterology 1990; 99: 431–42
  • Baeckström D., Hansson G. C., Nilsson O., et al. Purification and characterization of a membrane-bound and a secreted mucin-type glycoprotein carrying the carcinoma-associated sialyl-Lea epitope on distinct core proteins. J Biol Chem 1991; 266: 21537–47
  • Shi Z. R., McLntyre J., Knowles B. B., et al. Expression of a carbohydrate differentiation antigen, stage-specific embryonic antigen 1, in human colonic adenocarcinoma. Cancer Res 1984; 44: 1142–7
  • Fukushima K., Hirota M., Terasaki P. I., et al. Characterization of sialosylated Lewis as a new tumor-associated antigen. Cancer Res 1984; 44: 5279–85
  • Hakomori S-I, Nudelman E., Levery S., et al. Novel fucolipids accumulating in human adenocarcinoma. I. Glycolipids with di- or tri-fucosylated type 2 chain. J Biol Chem 1984; 259: 4672–80
  • Matsushita Y., Nakamori S., Seftor E. A., et al. Human colon carcinoma cells with increased invasive capacity obtained by selection for sialyl-dimeric Lex antigen. Exp Cell Res 1991; 196: 20–5
  • Holmes E. H., Ostrander G. K., Clausen H., et al. Oncofetal expression of Lex carbohydrate antigens in human colonic adenocarcinomas. J Biol Chem 1987; 262: 11331–8
  • Stroup G. B., Anumula K. R., Kline T. F., et al. Identification and characterization of two distinct α-(1–3)-L-fucosyltransferase activities in human colon carcinoma. Cancer Res 1990; 50: 6787–92
  • Holmes E. H., Levery S. B. Biosynthesis of fucose containing lacto-series glycolipids in human colonic adenocarcinoma COLO 205 cells. Arch Biochem Biophys 1989; 274: 633–47
  • Vavasseur F., Dole K., Yang J., et al. O-glycan biosynthesis in human colon cancer cell lines. Glycobiology 1992; 2: 470, Soc. for Complex Carboh. Nashville, TN
  • Boland C. R., Deshmukh G. D. The carbohydrate composition of mucin in colonic cancer. Gastroenterology 1990; 98: 1170–7
  • Shimamoto C., Deshmukh G. D., Rigot W. L., et al. Analysis of cancer-associated colonic mucin by ion-exchange chromatography: evidence for a mucin species of lower molecular charge and weight in cancer. Biochim Biophys Acta 1989; 991: 284–95
  • Cooper H. S. Peanut lectin-binding sites in large bowel carcinoma. Lab Invest 1982; 47: 383–90
  • Itzkowitz S. H., Yuan M., Montgomery C. K., et al. Expression of Tn, sialosyl-Tn, and T-antigens in human colon cancer. Cancer Res 1989; 49: 197–204
  • Itzkowitz S. H., Bloom E. J., Kokal W. A., et al. Sialosyl-Tn. A novel mucin antigen associated with prognosis in colorectal cancer patients. Cancer 1990; 66: 1960–6
  • Ømtoft T. F., Harving N, Langkilde N. C. O-linked mucin-type glycoproteins in normal and malignant colon mucosa: lack of T-antigen expression and accumulation of Tn and sialosyl-Tn antigens in carcinomas. Int J Cancer 1990; 45: 666–72
  • Irimura T., Wynn D. M., Hager L. G., et al. Human colonic sulfomucin identified by a specific monoclonal antibody. Cancer Res 1991; 51: 5728–35
  • Yamori T., Kimura H., Stewart K., et al. Differential production of high molecular weight sulfated glycoproteins in normal colonic mucosa, primary colon carcinoma, and metastases. Cancer Res 1987; 47: 2741–7
  • Yamori T., Ota D. M., Geary K. R., et al. Monoclonal antibody against human colonic sulfomucin: immunochemical detection of its binding sites in colonic mucosa, colorectal primary carcinoma, and metastases. Cancer Res 1989; 49: 887–94
  • Hounsell E. F., Lawson A. M., Feeney J., et al. Structural analysis of the O-glycosidically linked core – region oligosaccharides of human meconium glycoproteins which express oncofetal antigens. Eur J Biochem 1985; 148: 367–77
  • Allen D. C., Connolly N. S., Biggart J. D. Mucin profiles in ulcerative colitis with dysplasia and carcinoma. Histopathology 1988; 13: 413–24
  • Hutchins J. T., Reading C. L., Giavazzi R., et al. Distribution of mono-, di-, and tri-O-acetylated sialic acids in normal and neoplastic colon. Cancer Res 1988; 48: 483–9
  • Higashi H., Hirabayashi Y., Fukui Y., et al. Characterization of. N-glycolylneuraminic acid-containing gangliosides as tumor-associated Hanganutziu-Deicher antigen in human colon cancer. Cancer Res. 1985; 45: 3796–802
  • Hirabayashi Y., Kasakura H., Matsumoto M., et al. Specific expression of unusual GM2 ganglioside with Hanganutziu-Deicher antigen activity on human colon cancers. J Cancer Res 1987; 78: 251–60
  • Niv Y., Byrd J. C., Ho S. B., et al. Mucin synthesis and secretion in relation to spontaneous differentiation of colon cancer cells. in vitro. Int J Cancer 1992; 50: 147–52
  • Dall'Olio F., Malagolini N., Serafini-Cessi F. The expression of soluble and cell-bound α2,6 sialyltransferase in human colonic carcinoma Caco-2 cells correlates with the degree of enterocytic differentiation. Biochem Biophys Res Commun 1992; 184: 1405–10
  • Dall'Olio F., Malagolini N., Di Stefano G., et al. Increased CMP-Neu-Ac:Galβ1, 4GlcNAc-R α2,6 sialyltransferase activity in human colorectal cancer tissue. Int J Cancer 1989; 44: 434–9
  • Dall'olio F, Malagolini N., di Stefano G., et al. α2,6 Sialylation of. N-acetyllactosaminic sequences in human colorectal cancer cell lines. Relationship with non-adherent growth. Int J Cancer. 1991; 47: 291–7
  • Dall'Olio F., Malagolini N., Serafini-Cessi F. Enhanced CMP-NeuAc-R α2,6 sialyltransferase activity of human colon cancer xenografts in athymic nude mice and of xenograft-derived cell lines. Int J Cancer 1992; 50: 325–30
  • Nicolson G. L. Cell surface molecules and tumor metastasis. Exp Cell Res 1984; 150: 3–22
  • Bresalier R. S., Niv Y., Byrd J. C., et al. Mucin production by human colonic carcinoma cells correlates with their metastatic potential in animal models of colon cancer metastasis. J Clin Invest 1991; 87: 1037–45
  • Kitagawa H., Nakada H., Fukui S., et al. Characterization of mucin-type oligosaccharides with the sialyl-Lea structure from human colorectal adenocarcinoma cells. Biochem Biophys Res Commun 1991; 178: 1429–36
  • Saitoh O., Wang W-C, Lotan R., et al. Differential glycosylation and cell surface expression of lysosomal membrane glycoproteins in sublines of a human colon cancer exhibiting distinct metastatic potentials. J Biol Chem 1992; 267: 5700–11
  • Dennis J. W., Carver J. P., Schachter H. Asparagine-linked oligosaccharides in murine tumor cells: comparison of a WGA-resistant non-metastatic mutant and a related WGA-sensitive metastatic cell line. J Cell Biol 1984; 99: 1034–44
  • Finne J., Tao T., Burger M. M. Carbohydrate changes in glycoproteins of a poorly metastatic wheat germ agglutinin-resistant melanoma clone. Cancer Res 1980; 40: 2580–7
  • Yogeeswaran G., Salk P. L. Metastatic potential is positively correlated with cell surface sialylation of cultured murine tumor cell lines. Science 1981; 212: 1514–6
  • Passaniti A., Hart G. W. Cell surface sialylation and tumor metastasis. J Biol Chem 1988; 263: 7591–603
  • Bresalier R. S., Rockwell R. W., Dahiya R., et al. Cell surface sialoprotein alterations in metastatic murine colon cancer cell lines selected in an animal model for colon cancer metastasis. Cancer Res 1990; 50: 1299–307
  • Dennis J. W., Waller C., Timpl R., et al. Sialic acid on metastatic tumor cells reduces cell attachment to fibronectin and collagen type IV. Nature 1982; 300: 274–6
  • Zhu BCR, Laine R. A. Polylactosamine glycosylation on human fetal placental fibronectin weakens the binding affinity of fibronectin to gelatin. J Biol Chem 1985; 260: 4041–5
  • Nabi I. R., Raz A. Cell shape modulation alters glycosylation of a metastatic melanoma cell surface antigen. Int J Cancer 1987; 40: 396–402
  • Altevogt P., Fogel M., Cheingsong-Popov R., et al. Different patterns of lectin binding and cell surface sialylation detected on related high- and low-metastatic tumor lines. Cancer Res 1983; 43: 5138–44
  • Dennis J. W. Different metastatic phenotypes in two genetic classes of wheat germ agglutinin-resistant tumor cell mutants. Cancer Res 1986; 46: 4594–600
  • Aldaheff J. A., Holzinger R. T. Sialyltransferase, sialic acid and sialoglycoconjugates in metastatic tumors and human liver tissue. Int J Biochem 1982; 14: 119–26
  • Lotan R., Raz A. Endogenous lectins as mediators of tumor cell adhesion. J Cell Biochem 1988; 37: 107–17
  • Irimura T., Matsushita Y., Sutton R. C., et al. Increased content of an endogenous lactose-binding lectin in human colorectal carcinoma progressed to metastatic stage. Cancer Res 1991; 51: 387–93
  • Lotan R., Matsushita Y., Ohannesian D., et al. Lactose-binding lectin expression in human colorectal carcinomas. Relation to rumor progression. Carbohydr Res 1991; 213: 47–57
  • Passaniti A., Hart G. W. Sialic acids and penultimate oligosaccharides on metastatic tumour cell surfaces. Biochem Soc Trans 1989; 17: 33–6
  • Humphries M. J., Matsumoto K., White S. L., et al. Inhibition of experimental metastasis by castanospermine in mice: blockage of two distinct stages of tumor colonization by oligosaccharide processing inhibitors. Cancer Res 1986; 46: 5215–22
  • Dennis J. W. Effects of swainsonine and polyinosinic:polycytidylic acid on murine tumor cell growth and metastasis. Cancer Res 1986; 46: 5131–6
  • Dennis J. W., Laferti S., Waghome C., et al. β1–6 Branching of Asn-linked oligosaccharides is directly associated with metastasis. Science 1987; 236: 582–5
  • Easton E. W., Blokland I., Geldof A. A., et al. The metastatic potential of rat prostate tumor variant R3327-MatLyLu is correlated with an increased activity of N-acetylglucosaminyltransferase m and V. FEBS Lett 1992; 308: 46–9
  • Yamamura K., Takasaki S., Ichihashi M., et al. Increase of sialylated tetraantennary sugar chains in parallel to the higher lung-colonizing abilities of mouse melanoma clones. J Invest Dermatol 1991; 97: 735–41
  • Ogawa H., Inoue M., Tanizawz O., et al. Altered expression of sialyl-Tn, Lewis antigens and carcinoembryonic antigens between primary and metastatic lesions of uterine cervical cancers. Histochemistry 1992; 97: 311–7
  • Rossowsky W., Srivastava BIS. Glycosyltransferase activities in leukemic cells from patients and human leukemic cell lines. Eur J Cancer Clin Oncol 1983; 19: 1431–7
  • Baker M. A., Taub R. N., Whelton C. H., et al. Aberrant sialylation of granulocyte membranes in chronic myelogenous leukemia. Blood 1984; 63: 1194–7
  • Kanani A., Sutherland D. R., Fibach E., et al. Human leukemic myeloblasts and myeloblastoid cells contain the enzyme CMP-NANA: Gal|3l-3GalNAc-R α(2–3)sialyltransferase. Cancer Res 1990; 50: 5003–7
  • Baker M. A., Taub R. N., Kanani A., et al. Increased activity of a specific sialyltransferase in chronic myelogenous leukemia. Blood 1985; 66: 1068–71
  • Baker M. A., Kanani A., Brockhausen I., et al. Presence of Cytidine 5'-monophospho-N-acetylneuraminic acid: Galβ1i- 3 GalNAc-R α(2–3)-sialyltransferase in normal human leukocytes and increased activity of this enzyme in granulocytes from chronic myelogenous leukemia patients. Cancer Res 1987; 47: 2763–6
  • De Korte D., Haverkort W. A., de Boer M., et al. Imbalance in nucleotide pools of myeloid leukemia cells and HL60 cells: correlation with cell-cycle phase, proliferation, differentiation, and transformation. Cancer Res 1987; 47: 1841–7
  • Augener W., Brittinger G, Schiphorst WECM. Activities and specificities of N-acetylglucosaminyltransferases in leukemic cells. Haematol, blood transfusion. Vol. 28, Modern trends in leukemia, Neth, et al. Springer Verlag. 1983; Pp. 135–8
  • Fukuda M., Carlsson S. R., Klock J. C., et al. Structures of O-linked oligosaccharides isolated from normal granulocytes, chronic myelogenous leukemia cells, and acute myelogenous leukemia cells. JBiolChem 1986; 261: 12796–806
  • Saitoh O., Gallagher RE, Fukuda M. Expression of aberrant. O-glycans attached to leukosialin in differentiation-deficient HL60 cells. Cancer Res. 1991; 51: 2854–62
  • Kuhns W. J., Primus F. J. Alterations of blood groups and blood group precursors in cancer. Progress in clinical biochemistry and medicine: Vol. 2. Springer Verlag. 1985; Pp. 49–95
  • Kuhns W., Oliver R., Watkins W., et al. Leukemia-induced alterations of serum glycosyltransferase enzymes. Cancer Res 1980; 40: 268–75
  • Skacel P. O., Watkins W. M. Significance of altered α-2-L-fucosyltransferase levels in serum of leukemic patients. Cancer Res 1988; 48: 3998–4001
  • Suda K., Sakamoto S., Hida K., et al. Electrofocussing pattern of fucosyltransferase activity in human leukemic cells. Cancer Res 1987; 47: 2782–6
  • Johnson P. H., Watkins W. M. Sialyl compounds as acceptor substrates for the human α3/α4 L-fucosyltransferases. Biochem Soc Trans 1987; 13: 1119–20
  • Skacel P. O., Watkins W. α-3-Fucosyltransferase expression in leukemia. Biochem Soc Trans 1988; Pp 1034–5
  • Shumak K., Beldotti L, Rachkewich R. Diagnosis of haematological disease using anti-i. I. Disorders with lymphocytosis. Br J Haematol 1979; 41: 399–405
  • Fox R. I., Hueniken M., Fong S., et al. A novel surface antigen (T305) found in increased frequency on acute leukemia cells and in autoimmune disease states. J Immunol 1983; 131: 762–7
  • Geyer H., Holschbach C., Hunsmann G., et al. Carbohydrates of human immunodeficiency virus. J Biol Chem 1988; 263: 11760–7
  • Mizuochi T., Matthews T. J., Kato M., et al. Diversity of oligosaccharide structures on the envelope glycoprotein gp 120 of human immunodeficiency vims 1 from the lymphoblastoid cell line H9. J Biol Chem 1990; 265: 8519–24
  • Fennie C., Lasky L. A. Model for intracellular folding of the human immunodeficiency virus type 1 GP 120. Virol 1989; 63: 639–46
  • Fenouillet E., Gluckman JC, Bahraoui E. Role of N-linked glycans of envelope glycoproteins in infectivity of human immunodeficiency virus type 1. J Virol 1990; 64: 2841–8
  • Hansen J-ES, Nielsen C. M., Nielsen C., et al. Correlation between carbohydrate structures on the envelope glycoprotein gp 120 of HIV-1 and HIV-2 and syncytium inhibition with lectins. AIDS 1989; 3: 635–41
  • Lifson J., Coutré S, Huang E., et al. Role of envelope glycoprotein carbohydrate in human immunodeficiency virus (HIV) infectivity and vims-induced cell fusion. J Exp Med 1986; 164: 2101–6
  • Lee W-R, Syu W-J, Du B., et al. Nonrandom distribution of gp 120 N-linked glycosylation sites important for infectivity of human immunodeficiency virus type 1. Proc Natl Acad Sci USA 1992; 89: 2213–7
  • Dedera D., Gu R, Ratner L. Role of asparagine-linked glycosylation in human immunodeficiency virus type 1 transmembrane envelope function. Virology 1992; 187: 377–82
  • Dedera D., van der Heyden N, Ratner L. Attenuation of HIV-l infectivity by an inhibitor of oligosaccharide processing. AIDS Res Hum Retroviruses 1990; 6: 785–94
  • Shimizu H., Tsuchie H., Yoshida K., et al. Inhibitory effect of novel 1-deoxynojirimycin derivatives on HIV-l replication. AIDS 1990; 4: 975–9
  • Pal R., Hoke GM, Sarngadhara M. G. Role of oligosaccharides in the processing and maturation of envelope glycoproteins of human immunodeficiency virus type 1. Proc Natl Acad Sci USA 1989; 86: 3384–8
  • Montefiori D. C., Robinson WE, Mitchell W. M. Role of protein N-glycosylation in pathogenesis of human immunodeficiency virus type 1. Proc Natl Acad Sci USA 1988; 85: 9248–52
  • Hansen J-ES, Clausen H., Nielsen C., et al. Inhibition of human immunodeficiency virus (HIV) infection in vitro by anticarbohydrate monoclonal antibodies: peripheral glycosylation of HIV envelope glycoprotein gp 120 may be a target for virus neutralization. J Virol 1990; 64: 2833–40
  • Hansen J-ES, Nielsen C., Arendrup M., et al. Broadly neutralizing antibodies targeted to mucin-type carbohydrate epitopes of human immunodeficiency virus. J Virol 1991; 12: 6461–7
  • Herkt F., Parente J. P., Leroy Y., et al. Structure determination of oligosaccharides isolated from Cad erythrocyte membranes by permethylation analysis and 500-MHz proton NMR spectroscopy. EurJBiochem 1985; 146: 125–9
  • Berger E. G., Kozdrowski I. Permanent mixed-field polyagglutinable erythrocytes lack galactosyltransferase activity. FEBS Lett 1978; 93: 105–8
  • Cartron J., Andrev J., Cartron J., et al. Demonstration of T-transferase deficiency in Tn-polyagglutinable blood samples. Eur J Biochem 1978; 92: 111–9
  • Kobata A. Function and pathology of the sugar chains of human immunoglobulin G. Glycobiology 1990; 1: 5–8
  • Okhura T., Isobe T., Yamashita K., et al. Structures of the carbohydrate moieties of two monoclonal human λ-type immunoglobulin light chains. Biochemistry 1985; 24: 503–8
  • Frithz G., Ronquist G, Ericsson P. Serum sialyltransferase and fucosyltransferase activities in patients with multiple myeloma. Eur J Clin Oncol 1985; 21: 913–7
  • Fukuda M. HEMP AS disease: genetic defect of glycosylation. Glycobiology 1990; 1: 9–15
  • Wesley A., Forstner J., Qureshi R., et al. Human intestinal mucin in cystic fibrosis. Pediatr Res 1983; 17: 65–9
  • Cheng P. W., Boat T. F., Cranfill K., et al. Increased sulfation of glycoconjugates by cultured nasal epithelial cells from patients with cystic fibrosis. J Clin Invest 1989; 84: 68–72
  • Mawhinney T. P., Adelstein E., Morris D. A., et al. Structure determination of five sulfated oligosaccharides derived from tracheobronchial mucus glycoproteins. J Biol Chem 1987; 262: 2994–3001
  • Roussel P., Lamblin G., Degand P., et al. Heterogeneity of the carbohydrate chains of sulfated bronchial glycoproteins isolated from a patient suffering from cystic fibrosis. J Biol Chem 1975; 250: 2114–22
  • Lamblin G., Rahmoune H., Wieruszeski J-M, et al. Structure of two sulphated oligosaccharides from respiratory mucins of a patient suffering from cystic fibrosis. Biochem J 1991; 275: 199–206
  • Chace K. V., Leahy D. S., Martin R., et al. Respiratory mucous secretions in patients with cystic fibrosis: relationship between levels of highly sulfated mucin component and severity of the disease. Clin Chim Acta 1983; 132: 143–55
  • Lamblin G., Boersma A., Lhermitte M., et al. Further characterization, by a combined high-performance liquid chromatography/1H-NMR approach, of the heterogeneity displayed by the neutral carbohydrate chains of human bronchial mucins. Eur J Biochem 1984; 143: 227–36
  • Van Halbeek H., Dorland L., Vliegenthart JFG, et al. Primary-structure determination of fourteen neutral oligosaccharides derived from bronchial-mucus glycoproteins of patients suffering from cystic fibrosis, employing 500-MHz 'H-NMR spectroscopy. Eur J Biochem 1982; 127: 7–20
  • Wang Y-M, Hare T. R., Won B., et al. Additional fucosyl residues on membrane glycoproteins but not a secreted glycoprotein from cystic fibrosis fibroblasts. Clin Chim Acta 1990; 188: 193–210
  • Rao GJS, Spells G, Nadler H. L. Enhanced UDP-galactose: glycoprotein galactosyl transferase activity in cultivated skin fibroblasts from patients with cystic fibrosis and its possible relationship to the pathogenesis of the disease. Pediatr Res 1977; 11: 981–5
  • Ben-Yoseph Y., DeFranco CL, Nadler H. L. Glycoproteins and dolichol derivatives in fibroblasts from patients with cystic fibrosis. Biochim Biophys Acta 1982; 718: 172–6
  • Baker A. P., Sawyer J. L. Glycosyltransferases in human respiratory tissue. Alterations in subjects with hypersecretion of mucus. Biochem Med Metab Biol 1975; 14: 42–50
  • Louisot P., Levrat C. A new pathogenic hypothesis for cystic fibrosis: hyperactivity of glycosyl transferases at microsomic level. Clin Chim Acta 1973; 48: 373–6
  • Alhadeff J. A., Cimino C. Cystic fibrosis liver sialyltransferase. Clin Genet 1978; 13: 207–12
  • Sajjan U. S., Corey M., Karmali M. A., et al. Binding of Pseudomonas cepacia to normal human intestinal mucin and respiratory mucin from patients with cystic fibrosis. J Clin Invest 1992; 89: 648–56
  • Ramphal R., Camoy C., Fiebre S., et al. Pseudomonas aeruginosa recognizes carbohydrate chains containing type 1 (Galβ1- 3GlcNAc) or type 2 (Galβ1i- 4GlcNAc) disaccharide units. Infect Immun 1991; 59: 700–4
  • Forstner J., Maxwell B, Roomi N. Intestinal secretion of mucus in chronically reserpine treated rats. Am J Physiol 1981; 241: G443
  • Martinez J. R., Bylund D. B., Mawhinney T., et al. The chronically reserpinized rat as a model for cystic fibrosis: alterations in the mucus-secreting sublingual gland. Pediatr Res 1983; 17: 523–8
  • Forstner J., Roomi N., Khorasani R., et al. Effect of reserpine on the histochemical and biochemical properties of rat intestinal mucin. Exp Mol Pathol 1991; 54: 129–43
  • Snouwaert J. N., Brigman K. K., Latour A. M., et al. An animal model for cystic fibrosis made by gene targeting. Science 1992; 257: 1083–8
  • Podolsky D. K., Isselbacher K. J. Composition of human colonic mucin: selective alteration in inflammatory bowel disease. J Clin Invest 1983; 72: 142–53
  • Jacobs L. R., Huber P. W. Regional distribution and alterations of lectin binding to colorectal mucin in mucosal biopsies from controls and subjects with inflammatory bowel disease. J Clin Invest 1985; 75: 112–8
  • Clamp J. R., Fraser G, Read A. E. Study of the carbohydrate content of mucus glycoproteins from normal and diseased colons. Clin Sci 1981; 61: 229–34
  • Thor A., Itzkowitz S. H., Schlom J., et al. Tumor-associated glycoprotein (TAG-72) expression in ulcerative colitis. Int J Cancer 1989; 43: 810–5
  • Boland C. R., Lance P., Levin B., et al. Abnormal goblet cell glycoconjugates in rectal biopsies associated with an increased risk of neoplasia in patients with ulcerative colitis: early results of a prospective study. Gut 1984; 25: 1364–71
  • Kim Y. S., Byrd JC. Ulcerative colitis: a specific mucin defect%. Gastroenterology 1984; 87: 1193–5
  • Smith A. C., Podolsky D. K. Biosynthesis and secretion of human colonic mucin glycoproteins. J Clin Invest 1987; 80: 300–7
  • Podolsky D. K., Isselbacher K. J. Glycoprotein composition of colonic mucosa. Gastroenterology 1984; 87: 991–8
  • Fenger C., Filipe M. I. Mucin histochemistry of the anal canal epithelium. Studies of normal anal mucosa and mucosa adjacent to carcinoma. Histochem J 1981; 13: 921–30
  • Reid P. E., Culling CFA, Dunn W. L., et al. Chemical and histochemical study of normal and diseased human gastrointestinal,tract. A comparison between histologically normal colon, colonic tumors, ulcerative colitis and diverticular disease of the colon. Histochem J 1984; 16: 235–51
  • Lammers G., Jamieson J. C. The role of a cathepsin D-like activity in the release of Galβ-4GlcNAc α2–6-sialyltransferase from rat liver Golgi membranes during the acute-phase response. Biochem J 1988; 256: 623–31
  • Fraser I. H., Coolbear T., Sakar M., et al. Increase of sialyltransferase activity in the serum and liver of inflamed rats. Biochim Biophys Acta 1984; 799: 102–5
  • Kaplan H., Woloski BMNRNJ, Hellman M., et al. Studies on the effect of inflammation on rat liver and serum sialyltransferase. Evidence that inflammation causes release of Galβ1- 4GlcNAc α2–6 sialyltransferase from liver. J Biol Chem 1983; 258: 11505–9
  • Parekh R. B., Dwek R. A., Sutton BJ. Association of rheumatoid arthritis and primary osteoarthritis with changes in the glycosylation pattern of total serum IgG. Nature 1985; 316: 452–7
  • Tsuchiya N., Endo T., Matsuta K. Effects of galactose depletion from oligosaccharide chains on immunological activities of human IgG. J Rheumatol 1989; 16: 285–90
  • Axford J. S., Mackenzie L., Lydyard P. M., et al. Reduced B-cell galactosyltransferase activity in rheumatoid arthritis. Lancet 1987; ii: 1486–8
  • Axford J. S., Sumar N., Alavi A., et al. Changes in normal glycosylation mechanisms in autoimmune rheumatic disease. J Clin Invest 1992; 89: 1021–31
  • Stibler H., Jaeken J, Kristiansson B. Biochemical characteristics and diagnosis of the carbohydrate-deficient glycoprotein syndrome. Acta Paediatr Scand Suppl 1991; 375: 21–31
  • Ong G. L., Ettenson D., Sharkey R. M. Galactose-conjugated antibodies in cancer therapy: properties and principles of action. Cancer Res 1991; 51: 1619–26
  • Skilleter D. N., Fozwell BMJ. Selective uptake of ricin A-chain by hepatic non-parenchymal cells in vitro. FEBS Lett 1986; 196: 344–8
  • Simmons B. M., Stahl PD, Russell J. H. Mannose receptor-mediated uptake of ricin toxin and ricin A chain by macrophages. J Biol Chem 1986; 261: 7912–20
  • Zabel P., Noujain A., Shysh A., et al. Radio iodinated peanut lectin: a potential radiopharmaceutical for immunodetection of carcinoma expressing the T-antigen. Eur J Nucl Med 1983; 8: 250–4
  • Bellou B., Jaffe R., Taylor R., et al. Tumor radioimmunolocalization: differential antibody retention by antigenic normal tissue and tumor. J Immunol 1984; 132: 2111–6
  • Fung PYS, Madej M., Koganty R. R., et al. Active specific immunotherapy of a murine mammary adenocarcinoma using a synthetic tumor-associated glycoconjugate. Cancer Res 1990; 50: 4308–14
  • Springer G. F., Desai P. R., Spencer B. D., et al. T and its immediate precursor epitope (EP) Tn are pivotal in human breast carcinoma (CA) pathogenesis, diagnosis and prognosis. T (Tn) antigen (Ag) is highly effective as long-term human vaccine. Breast Cancer Symposium, San Antonio 1991
  • Irimura T., Gonzalez R, Nocolson G. L. Effects of tunicamycin on B16 metastatic melanoma cell surface glycoproteins and blood-borne arrest and survival properties. Cancer Res 1981; 41: 3411–8
  • Pulverer G., Beuth J., Ko H. L., et al. Glycoprotein modifications of sarcoma L-1 tumor cells by tunicamycin, swainsonine, bromocondruritol or 1-desoxynojirimycin treatment inhibits their metastatic lung colonization in Balb/c-mice. J Cancer Res Clin Oncol 1988; 114: 217–20
  • Geilen C. C., Kannicht C., Onhen B., et al. Incorporation of the hexose analogue 2-deoxy-D-galactose into membrane glycoproteins in HepG2 cells. Arch Biochem Biophys 1992; 296: 108–14

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.