192
Views
60
CrossRef citations to date
0
Altmetric
Research Article

Protein and Amino Acid Metabolism in Cancer Cachexia: Investigative Techniques and Therapeutic Interventions

, &
Pages 223-272 | Published online: 27 Sep 2008

References

  • Brennan M. F. Total parenteral nutrition in the cancer patient. N EnglJ Med 1981; 305: 375–82
  • Brennan M. F. Malnutrition in patients with gastrointestinal malignancy. Significance and management. Dig Dis Sci 1986; 31: 77
  • Strain A. J. Cancer cachexia in man. A review. Invest Cell Pathol 1979; 2: 181–93
  • Belghiti J., Longonnet F., Bourstyn E., et al. Surgical implications of malnutrition and immunodeficiency in patients with carcinoma of the oesophagus. Br J Surg 1983; 70: 339–41
  • Buzby G. P., Mullen J. F., Matthews D. C., et al. Prognostic nutritional index in gastrointestinal surgery. Am J Surg 1980; 139: 160–7
  • Nixon D. W., Heymsfield S. B., Cohen A. E., et al. Protein-calorie undernutrition in hospitalized cancer patients. Am J Med 1980; 69: 491–7
  • Smale B. F., Mulfen J. L., Buzby G. P., et al. The efficacy of nutritional assessment and support in cancer surgery. Cancer 1981; 47: 2375–81
  • DeWys W. D., Begg C., Lavin P. T., et al. Prognostic effect of weight loss prior to chemotherapy in cancer patients. Am J Med 1980; 69: 491–7
  • Fein R., Kelsen DP, Geller N. Adenocarcinoma of the esophagus and gastroesophageal junction: prognostic factors and results of therapy. Cancer 1985; 56: 2512–8
  • Harnett W. L. A survey of cancer in London. British Empire Cancer Campaign. 1952; 26
  • Lawson D. H., Richmond A., Nixon D. W., et al. Metabolic approaches to cancer cachexia. Annu RevNutr 1982; 2: 277–301
  • Warren S. The immediate causes of death in cancer. Am J Med Sci 1932; 184: 610–5
  • Copeland G. P., Leinster S. J., Davis J. C., et al. Insulin resistance in patients with colorectal cancer. Br J Surg 1987; 74: 1031–5
  • Inculet R. I., Stein T. P., Peacock J. L., et al. Altered leucine metabolism in noncachectic sarcoma patients. Cancer Res 1987; 47: 4746–4749
  • Pisters PWT, Brennan M. F. Amino acid metabolism in human cancer cachexia. Annu Rev Nutr 1990; 10: 107–32
  • Matthews D. E., Fong Y. Amino acid and protein metabolism. Parenteral nutrition.2nd ed., J. L. Rombeau, M. D. Caldwell. W.B. Saunders, Philadelphia, PA 1993
  • McLaren D. S., Meguid M. M. Nutritional assessment at the crossroads. JPEN 1983; 7: 575–9
  • Harper A. E. Origin of recommended dietary allowances: an historic overview. Am J Clin Nutr 1985; 41: 140–8
  • Munro H. N. Historical perspective on protein requirements: objectives for the future. Nutritional adaptation in man, K. Blaxter, J. C. Waterlow. John Libbey, London 1985; 155–68
  • Kopple J. D. Uses and limitations of the balance technique. JPEN 1987; 11: 79, S-85S
  • Bier D. M. Intrinsically difficult problems: the kinetics of body proteins and amino acids in man. Diabetes Metab Rev 1989; 5: 111–32
  • Golden M., Waterlow JC, Picou D. The relationship between dietary intake, weight change, nitrogen balance, and protein turnover in man. Am J Clin Nutr 1977; 30: 1345–8
  • Young V. R., Alexis S. D., Baliga B. S., et al. Metabolism of administered 3-methylhistidine: lack of muscle transfer ribonucleic acid charging and quantitative excretion as 3-methylhistidine and its N-acetyl derivative. J Biol Chem 1972; 247: 3592–600
  • Young V. R., Munro H. N. NT-methylhistidine (3-methylhistidine) and muscle protein turnover: an overview. Fed Proc 1978; 37: 2291–300
  • Long C. L., Birkhahn R. H., Geiger J. W., et al. Urinary excretion of 3-methylhistidine: an assessment of muscle protein catabolism in adult normal subjects and during malnutrition, sepsis, and skeletal trauma. Metabolism 1981; 30: 765–76
  • Long C. L., Dillard D. R., Bodzin J. H., et al. Validity of 3-methylhistidine excretion as an indicator of skeletal muscle protein breakdown in humans. Metabolism 1988; 37: 844–9
  • Lowry S. F., Horowitz G. D., Jeevanandam M., et al. Whole-body protein breakdown and 3-methylhistidine excretion during brief fasting, starvation and intravenous repletion in man. Ann Surg 1985; 202: 21–7
  • Leverve X., Guignier M, Carpentier F. Effect of parenteral nutrition on muscle amino acid output and 3 methylhistidine excretion in septic patients. Metabolism 1984; 33: 471–7
  • Sjolin J., Stjemstrom H., Henneberg S., et al. Evaluation of urinary 3-methylhistidine excretion in infection by measurements of 1-methylhistidine and the creatinine ratios. Am J Clin Nutr 1989; 49: 62–70
  • Sjolin J., Sjemstrom H., Friman G., et al. Total and net muscle protein breakdown in infection determined by amino acid effluxes. Am J Physiol 1992; 258: E856–63
  • Shenkin A., Neuhauser M., Bergstrom J., et al. Biochemical changes associated with severe trauma. Am J Clin Nutr 1980; 33: 2119–27
  • Keams P. J., Thompson J. D., Werner P. C., et al. Nutritional and metabolic response to acute spinal-cord injury. JPEN 1992; 16: 11–5
  • Grecos G. P., Abbott W. C., Schiller W. R., et al. The effect of major thermal injury and carbohydrate-free intake on serum triglycerides, insulin, and 3-methylhistidine excretion. Ann Surg 1984; 200: 632–7
  • Levere X., Page E, Askanazi J. S. Muscle protein degradation in severely malnourished patients with chronic obstructive pulmonary disease subject to short-term total parenteral nutrition. JPEN 1992; 16: 248–54
  • Ballard F. J., Tomas F. M. Methylhistidine as a measure of skeletal muscle protein breakdown in human subjects: the case for its continued use. Clin Sci 1983; 65: 209–15
  • Rennie M. J., Millward D. H. 3-methylhistidine excretion and the urinary 3-methylhistidine/ creatinine ratio are poor indicators of skeletal muscle protein breakdown. Clin Sci 1983; 65: 217–25
  • Millward D. J., Bates P. C. 3-methylhistidine turnover in the whole body, and the contribution of skeletal muscle and intestine to urinary 3-methylhistidine excretion in the adult rat. Biochem J 1983; 214: 607–15
  • Wassner S. J., Li J. P. NT-methylhistidine release: contribution of rat skeletal muscle, GI tract and skin. Am J Physiol 1982; 243: E293–7
  • Rennie M. J., Bennegard K., Eden E., et al. Urinary excretion and efflux from the leg of 3-methylhistidine before and after major surgical operation. Metabolism 1984; 33: 250–6
  • Sjolin J., Stjemstrom H., Henneberg S., et al. Splanchnic and peripheral release of 3-methylhistidine in relation to its urinary excretion in human infection. Metabolism 1989; 38: 23–9
  • Waterlow J. C., Garlick PJ, Millward D. J. Free amino acid. Protein turnover in mammalian tissues and in the whole body. Elsevier-North Holland, Amsterdam 1978; 117–176
  • Matthews D. E., Schwarz HP, Yang R. D. Relationship of plasma leucine and alpha-ketoisocaproate during a L[13C]leucine infusion in man. A method for measuring human intracellular leucine tracer enrichment. Metabolism 1982; 31: 1105–12
  • Nissen S., Haymond M. W. Effects of fasting on flux and interconversion of leucine and alphaketoisocaproate in vivo. Am J Physiol 1981; 241: E72–5
  • Tessari P., Tsalikian E., Schwenk W. F., et al. Effects of [15N]-leucine infused at low rates on leucine metabolism in humans. Am J Physiol 1985; 249: E121–30
  • Waterlow J. C. Lysine turnover in man measured by intravenous infusion of l-U14C-lysine. Clin Sci 1967; 33: 507–15
  • Abumrad N. N., Miller B. The physiologic and nutritional significance of plasma-free amino acid levels. JPEN. 1983; 7: 163–70
  • Armstrong M. D., Stave U. A study of plasma free amino acid levels. III. Variations during growth and aging. Metabolism 1973; 22: 571–8
  • Armstrong M. D., Stave U. A study of plasma free amino acid levels. II. Normal values for children and adults. Metabolism 1973; 22: 561–9
  • Philcox J. C., Hartley T. F., Worthley L. I., et al. Serum amino acid concentrations in patients receiving total parenteral nutrition with amino acid plus dextrose mixture. JPEN. 1984; 8: 535–41
  • Milson J. P., Morgan MY, Sherlock S. Factors affecting plasma amino acid concentrations in control subjects. Metabolism 1979; 28: 313–9
  • Aoki T. T., Muller W. A., Brennan M. F., et al. Effect of glucagon on amino acid and nitrogen metabolism in fasting man. Metabolism 1974; 23: 805–14
  • Fukagawa N. K., Minaker KL, Young V. R. Insulin dose-dependent reductions in plasma amino acids in man. Am J Physiol 1986; 250: 7–El3
  • Liljenquist J. E., Lewis SB, Cherrington A. D. Effects of pharmacologic hyperglucagonemia on plasma amino acid concentrations in normal and diabetic man. Metabolism 1981; 30: 1195–9
  • Shamoon H., Jacob R, Sherwin R. S. Epinephrine induced hypoaminoacidemia in normal and diabetic human subjects: effects of beta blockade. Diabetes 1980; 29: 875–81
  • Wise J. K., Hendler R, Felig P. Influence of glucocorticoids on glucagon secretion and amino acid concentrations in man. J Clin Invest 1973; 52: 2774–84
  • Abumrad N. N., Williams P., Frexes-Steed M., et al. Inter-organ metabolism of amino acids in vivo. Diabetes Metab Rev 1989; 5: 213–26
  • Christensen H. N. Interorgan amino acid nutrition. Physiol Rev 1982; 62: 1193–233
  • Felig P., Owen O. E., Wahren J., et al. Amino acid metabolism during prolonged starvation. J Clin Invest 1969; 48: 584–94
  • Owen R. E., Robinson R. R. Amino acid extraction and ammonia metabolism by the human kidney during the prolonged administration of ammonium chloride. J Clin Invest 1963; 42: 263–76
  • Tizanello A., DeFerrari G., Garibotto G., et al. Renal metabolism of amino acids and ammonia in subjects with normal renal function and in patients with chronic renal insufficiency. J Clin Invest 1980; 65: 1162–73
  • Abumrad N. N., Rabin D., Wise K. L., et al. The disposal of an intravenously administered load across the human forearm. Metabolism 1982; 31: 463–70
  • Aoki T. T., Brennan M. F., Fitzpatrick G. F., et al. Leucine meal increases glutamine and total nitrogen release from forearm muscle. J Clin Invest 1981; 68: 1522–8
  • Aoki T. T., Muller W. A., Brennan M. F., et al. Blood cell and plasma amino acid levels across forearm muscle during a protein meal. Diabetes 1973; 75–768
  • Pozefsky T., Felig P., Tobin J. D., et al. Amino acid balance across tissues of the forearm in postabsorptive man: effects of insulin at two dose levels. J Clin Invest 1969; 48: 2273–82
  • Aoki T. T., Brennan M. F., Muller W. A., et al. Amino acid levels across normal forearm muscle and splanchnic bed after a protein meal. Am J Clin Nutr 1976; 29: 340–50
  • Bloomgarden Z. T., Liljenquist J., Lacy W., et al. Amino acid disposition by liver and gastrointestinal tract after protein and glucose ingestion. Am J Physiol 1981; 241: E90–9
  • Gelfand R. A., Glickman M. G., Jacob R., et al. Removal of infused amino acids by splanchnic and leg tissues in humans. Am J Physiol 1986; 250: E407–13
  • Wahren J., Felig P, Hagenfeldt L. Effect of protein ingestion on splanchnic and leg metabolism in normal man and in patients with diabetes meliitus. Clin Invest 1976; 57: 987–99
  • Abumrad N. N., Wise K. L., Williams P. E., et al. Disposal of alphaketoisocaproate: roles of liver, gut and kidneys. Am J Physiol 1982; 243: 31–El23
  • Elwyn D. H., Parikh HC, Shoemaker W. C. Amino acid movements between gut, liver and periphery in unanesthetized dogs. Am J Physiol 1968; 215: 1260–75
  • Lochs H., Williams P. E., Morse E. L., et al. Metabolism of dipeptides and their constituent amino acids by liver, gut, kidney, and muscle. Am J Physiol 1988; 254: 94–E588
  • Welboume T. C., Childress D, Givens G. Renal regulation of interorgan glutamine flow in metabolic acidosis. Am J Physiol 1986; 251: R858–66
  • Waterlow J. C. Protein turnover with special reference to man. Q J Exp Physiol 1984; 69: 409–38
  • Bier D. M., Young V. R. A kinetic approach to assessment of amino acid and protein replacement needs of individual sick patients. JPEN 1987; 11: 95, S-7S
  • Picou D., Taylor-Roberts T. The measurement of total protein synthesis and catabolism and nitrogen turnover in infants in different nutritional states and receiving different amounts of dietary protein. Clin Sci 1969; 36: 283–96
  • Waterlow J. C. 15N end-product methods for the study of whole body protein turnover. Proc NutrSoc 1981; 40: 317–20
  • Waterlow J.C, Golden MH, Garlick P. J. Protein turnover in man measured withl5N: comparison of end products and dose regimes. Am J Physiol 1978; 235: 74–E165
  • Shipley R. A., Clark R. C. Tracer methods for in vivo kinetics: theory and applications. Academic Press, New York 1972
  • Golden MHN, Waterlow J. C. The in vivo measurement of protein synthesis. Am J Clin Nutr 1977; 30: 1353–4
  • Bier D. M., Matthews D. E. Stable isotope tracer methods for in vivo investigations. Fed Proc 1982; 41: 2679–85
  • Young V. R. Stable isotopes in nutrition research. Fed Proc 1982; 41: 2677–8
  • Matthews D. E., Bier D. M. Stable isotope methods for nutritional investigation. Annu Rev Nutr. 1983; 3: 309–39
  • Rennie M. J., Halliday D. The use of stable isotope tracers as metabolic probes of whole-body and limb metabolism. Proc Nutr Soc 1984; 43: 189–96
  • Bier D. M. The use of stable isotopes in metabolic investigation. Bailliere's Clin Endocrin Metab. 1987; 1: 817–36
  • Cobelli C., Toffolo G., Bier D. M., et al. Models to interpret kinetic data in stable isotope tracer studies. Am J Physiol 1987; 253: E551
  • Schoenheimer R. The dynamic state of body constituents. Harvard University Press, Cambridge 1942; 1–78
  • Argoud G. M., Schade DS, Eaton R. P. Underestimation of hepatic glucose production by radioactive and stable tracers. Am J Physiol 1987; 252: E606–12
  • Yang R. D., Matthews D. E., Bier D. M., et al. Alanine kinetics in humans: influence of different isotopic tracers. Am J Physiol 1984; 247: E634–8
  • Glynn M. J., Powell-Tuck J, Halliday D. Reproductibility of whole-body protein turnover measurements in an ideal metabolic subject. Eur J Clin Nutr 1988; 42: 273–5
  • Jeevanandam M., Brennan M. F., Mihranian M. H., et al. Tracer priming in human protein turnover studies with3N glycine. Fed Proc 1983; 42: 825
  • Fern E. B., Garlick P. J., McNurlan M. A., et al. The excretion of isotope in urea and ammonia for estimating protein turnover in man with ['WJglycine. Clin Sci 1981; 61: 217–28
  • Jeevanandam M., Lowry S. F., Horowitz G. D., et al. Cancer cachexia and protein metabolism. Lancet. 1984; 2: 1423–6
  • O'Keefe SJD, Sender PM, James WPT. “Catabolic” loss of body nitrogen in response to surgery. Lancet 1974; 2(7888)1035–8
  • Obled C., Barre F., Millward D. J., et al. Whole body protein synthesis: studies with different amino acids in the rat. Am J Physiol 1989; 257: E639–46
  • Desai S. P., Moldawer L. L., Bistrian B. R., et al. Amino acid and protein metabolism in hospitalized patients as measured by L-[U-UC] tyrosine and L-[l-14]leucine. Clin Sci 1983; 65: 499–505
  • Motil K. J., Bier D. M., Matthews D. E., et al. Whole body leucine and lysine metabolism studied with [l-13C]leucine and (a-l5N]lysine:response in healthy young men given excess energy intake. Metabolism 1981; 30: 783–91
  • Staten M. A., Bier DM, Matthews D. E. Regulation of valine metabolism in man: a stable isotope study. Am J Clin Nutr 1984; 40: 1224–34
  • Matthews D. E., Motil K. J., Rohrbaugh D. K., et al. Measurement of leucine metabolism in man from a primed, continuous infusion of L-[l-l3C]leucine. Am J Physiol 1980; 238: E473–9
  • Matthews D. E., Cobelli C. Leucine metabolism in man: lessons from modeling. JPEN 1991; 15: 86
  • Wolfe R. R. Tracers in metabolic research: radioisotope and stable isotopelmass spectrometer methods. Liss, New York 1984; 4–6
  • Millward D. J., Price G. M., Pacy P. J., et al. Whole-body protein and amino acid turnover in man: what can we measure with confidence%. Proc Nutr Soc 1991; SO: 197–216
  • Wenhum D., Pacy P. J., Halliday D., et al. Bicarbonate recovery: feeding vs. time. Proc Nutr Soc 1991; 50: 47, A (abstract)
  • Clague M. B., Keir MJ, Wright P. D. Development of a technique for measuring the oxidation rate of al4C-labelled substrate from14CO2production without the need for collection of expired air. Clin Sci 1981; 60: 233–5
  • Kien C. L. Isotopic dilution of CO, as an estimate of CO2production during substrate oxidation studies. Am J Physiol 1989; 257: E296–8
  • Clugston G. A., Garlick P. J. Recovery of infused [14C]bicarbonate as respiratory14CO-, in man. Clin Sci 1983; 64: 231–3
  • Thompson G. N., Pacy P. J., Merritt H., et al. Rapid measurement of whole body and forearm protein turnover using a [2H5]phenylalanine model. Am J Physiol 1989; 256: E631–9
  • Clark JTR, Bier D. M. The conversion of phenylalanine to tyrosine in man. Direct measurement by continuous intravenous tracer infusions of L-[ring-2H5]-phenylalanine and L-[l-13C]tyrosine in the postabsorptive state. Metabolism 1982; 31: 999–1005
  • Pacy P. J., Thompson GN, Halliday D. Measurement of whole-body protein turnover in insulin-dependent (type 1) diabetic patients during insulin withdrawal and infusion: comparison of [l3C]leucine and [2H5]phenylalanine methodologies. Clin Sci 1991; 80: 345–52
  • Golden MHN, Waterlow J. C. Total proteir synthesis in elderly people: a comparison of results with [l5N]glycine and [14C]leucine. Clin Sci Mol Med. 1977; S3: 277–88
  • Horber F. F., Horber-Feyder C. M., Krayer S., et al. Plasma reciprocal pool specific activity predicts that of intracellular free leucine for protein synthesis. Am J Physiol 1989; 257: E385–99
  • Layman D. K., Wolfe R. R. Sample site selection for tracer studies applying a unidirectional circulatory approach. Am J Physiol 1987; 253: 173–8
  • Rodriguez N., Schwenk W. F., Beaufrere B., et al. Trioctanoin infusion increases in vivo leucine oxidation: a lesson in isotope modeling. Am J Physiol 1986; 251: E343–8
  • Schwenk W. F., Beaufrere B, Haymond M. W. Use of reciprocal pool specific activities to model leucine metabolism in humans. Am J Physiol 1985; 249: E646–50
  • Thompson G. N., Pacy P. J., Ford G. C., et al. Relationships between plasma isotope enrichments of leucine and ct-ketoisocaproic acid during continuous infusion of labelled leucine. Eur J Clin Invest 1988; 18: 639–43
  • Cobelli C., Saccomani M. P., Tessari P., et al. Compartmental model of leucine kinetics in humans. Am J Physiol 1991; 261: E539–50
  • Chua B., Seil DL, Morgan H. E. Effect of leucine and metabolites of branched-chain amino acids on protein turnover in heart. J Biol Chem 1979; 254: 8358–62
  • Fulks R. M., Li JB, Goldberg A. L. Effects of insulin, glucose and amino acids on protein turnover in rat diaphragm. J Biol Chem 1975; 250: 290–8
  • Mitch W. E., Walser M, Sapir D. Nitrogen sparing induced by leucine compared with that induced by its keto analogue, a-ketoisocaproate, in fasting obese man. J Clin Invest 1981; 67: 553–62
  • Sapir D., Owen O. E., Pozefsky T, et al. Nitrogen sparing induced by a mixture of essential amino acids given chiefly as their keto analogues during prolonged starvation in obese subjects. J Clin Invest 1974; 54: 974–80
  • Sapir D., Walser M. Nitrogen sparing induced early in starvation by infusion of branched-chain ketoacids. Metabolism 1977; 26: 301–8
  • Buse M. G., Reid S. S. Leucine: a possible regulator of protein turnover in muscle. J Clin Invest 1975; 56: 1250–61
  • Yagi M., Matthews DE, Walser M. Nitrogen sparing by 2-ketoisocaproate in parenterally fed rats. Am J Physiol 1990; 259: E633–8
  • Tischler M. E., Desautels M, Goldberg A. L. Does leucine, leucyl-tRNA, or some metabolite of leucine regulate protein synthesis and degradation in skeletal and cardiac muscle%. J Biol Chem 1982; 25: 1613–21
  • Tsalikian E., Howard C. P., Gerich J. E., et al. Increased leucine flux during short-term fasted human subjects: evidence for increased proteolysis. Am J Physiol 1984; 247: E323–7
  • Schwenk W. F., Tsalikian E., Beaufrere B., et al. Recycling of an amino acid label with prolonged isotope infusion: implications for kinetic studies. Am J Physiol 1985; 248: E482–7
  • Taveroff A., Hoffer L. J. Is the leucine kinetic model valid in the fed state%. Clin Res 1992; 40: 763, (abstract)
  • Meguid M. M., Matthews D. E., Bier D. M., et al. Leucine kinetics at graded leucine intakes in young men. Am J Clin Nutr 1986; 4.3: 80–770
  • Meredith C. N., Wen Z-M, Bier D. M., et al. Lysine kinetics at graded lysine intakes in young men. Am J Clin Nutr 1986; 43: 787–94
  • Zhao X-H, Wen C. N., Meredith C. N., et al. Threonine kinetics at graded threonine intakes in young men. Am J Clin Nutr 1986; 43: 795–802
  • Rennie M. J., Edwards RHT, Halliday D., et al. Muscle protein synthesis measured by stable isotope techniques in man: the effects of feeding and fasting. Clin Sci 1982; 63: 519–23
  • Millward D. J., Rivers JPW. Protein and amino acid requirements in the adult human. J Nutr 1986; 116: 2559–61
  • Nissen S., Haymond M. W. Changes in leucine kinetics during meal absorption: effects of dietary leucine availability. Am J Physiol 1986; 250: E695–701
  • Istfan N. W., Ling P. R., Bistrian B. R., et al. Systemic exchangeability of enteral leucine: relationship to plasma flux. Am J Physiol 1988; 254: R688–98
  • Hoerr R. A., Matthews D. E., Bier D. M., et al. Leucine kinetics from [2H3]- and [13C]leucine infused simultaneously by gut and vein. Am J Physiol 1991; 260: El 11–7
  • Rrempf M., Hoerr R. A., Marks L., et al. Phenylalanine flux in adult men: estimates with different tracers and route of administration. Metabolism 1990; 39: 560–2
  • Halliday D., Pacy P. J., Cheng K. N., et al. Rate of protein synthesis in skeletal muscle in normal man and patients with muscular dystrophy: a reassessment. Clin Sci 1988; 74: 237–40
  • Nair K. S., Halliday D, Griggs R. C. Leucine incorporation into mixed skeletal muscle protein in humans. Am J Physiol 1988; 254: E208–13
  • Pacy P. J., Nair K. S., Ford C., et al. Failure of insulin infusion to stimulate fractional muscle protein synthesis in type I diabetic patients. Diabetes 1989; 38: 618–24
  • Rennie M. J., Edwards RHT, Millward D. J., et al. Effects of Duchenne muscular dystrophy on muscle protein synthesis. Nature 1982; 296: 165–7
  • Halliday D., McKeran R. O. Measurement of muscle protein synthetic rate from serial muscle biopsies and total body protein turnover in man by continuous intravenous infusion of L-[α-15N]lysine. Clin Sci Mol Med 1975; 49: 581–90
  • Garlick P. J., McNurlan MA, Preddy V. R. A rapid and convenient technique for measuring the rate of protein synthesis in tissues by injection of [3H]phenylalanine. Biochem J 1980; 192: 719–23
  • Garlick P. J., Wemerman J., McNurlan M. A., et al. Measurement of the rate of protein synthesis in muscle of postabsorptive young men by injection of a “flooding dose” of [l-13C]Ieucine. Clin Sci 1989; 77: 329–36
  • Barrett E. J., Revkin J. H., Young L. H., et al. An isotopic method for measurement of muscle protein synthesis and degradation in vivo. Biochem J 1987; 245: 223–8
  • Devlin J. T., Brodsky I., Scrimgeour A., et al. Amino acid metabolism after intense exercise. Am J Physiol 1990; 258: E259–55
  • Gelfand R. A., Barrett E. J. Effect of physiologic hyperinsulinemia on skeletal muscle protein synthesis and breakdown in man. J Clin Invest 1987; 80: 1–6
  • Louard R. J., Barrett EJ, Gelfand R. A. Effect of infused branched-chain amino acids on muscle and whole-body amino acid metabolism in man. Clin Sci 1990; 79: 457–66
  • Cheng K. N., Dworzak F., Ford G. C., et al. Direct determination of leucine metabolism and protein breakdown in humans using L-[1-I3C,15N]-leucine and the forearm model. Eur J Clin Invest 1985; 15: 349–54
  • Gelfand R. A., Glickman M. G., Castellino P., et al. Measurement of L-[l-14C]leucine kinetics in splanchnic and leg tissues in humans. Diabetes 1988; 37: 1365–72
  • Revkin J., Young L., Zaret B., et al. A novel isotope dilution technique to measure protein turnover in heart muscle. Clin Res 1986; 34: 338
  • Biolo G., Tessari P., Inchiostro S., et al. Leucine and phenylalanine kinetics during mixed meal ingestion: a multiple tracer approach. Am J Physiol 1992; 262: E455–63
  • Garlick P. J., Wemerman J., McNurlan M. A., et al. Organ-specific measurements of protein turnover in man. Proc Nutr Soc 1991; 50: 217–25
  • Barrett E. J., Gelfand R. A. The in vivo study of cardiac and skeletal muscle protein turnover. Diabetes Metab Rev. 1989; 5: 133
  • Cheng K. N., Pacy P. J., Dworzak F., et al. Influence of fasting on leucine and muscle protein metabolism across the human forearm determined using L-[1-13C,15N]leucine as the tracer. Clin Sci 1987; 73: 241–6
  • Bennett W. M., Connacher A. A., Scrimgeour C. M., et al. Euglycemic hyperinsulinemia augments amino acid uptake by human leg tissues during hyperaminoacidemia. Am J Physiol 1990; 259: El 85–94
  • Watt P. W., Lindsay Y., Scrimgeour C. M., et al. Isolation of aminoacyl-tRNA and its labeling with stable-isotope tracers: use in studies of human tissue protein synthesis. Proc Natl Acad Sci USA 1991; 88: 5892–6
  • Rannels D. E., Wartell SA, Watkins C. A. The measurement of protein synthesis in biological systems. Life Sci 1982; 30: 1679–90
  • Airhart J., Vidrich A, Khairallah E. A. Compartmentation of free amino acids for protein synthesis in rat liver. Biochem J 1974; 140: 539–48
  • Airhart J., Arnold J. A., Stirewalt W. S., et al. Insulin stimulation of protein synthesis in cultured skeletal and cardiac muscle cells. Am J Physiol 1982; 243: C81–6
  • Khairallah E. A., Mortimore G. E. Assessment of protein turnover in perfused rat liver. Evidence for amino acid compartmentation from differential labeling of free and tRNA-bound valine. JBiolChem 1976; 251: 1375–84
  • McKee E. E., Cheung J. Y., Rannels D. E., et al. Measurement of the rate of protein synthesis and compartmentation of heart phenylalanine. J Biol Chem 1978; 253: 1030–40
  • Vidrich A., Airhart J., Bruno M. K., et al. Compartmentation of free amino acids for protein biosynthesis. Influence of diurnal changes in hepatic amino acid concentrations on the composition of the precursor pool charging amino acyltransfer ribonucleic acid. Biochem J 1977; 162: 257–66
  • Martin A. F., Rabinowitz M., Blough R., et al. Measurements of half-life of rat cardiac myosin heavy chain with leucyl-tRNA used as precursor pool. J Biol Chem 1977; 252: 3422–9
  • Everett A. W., Prior G, Zak R. Equilibration of leucine between the plasma compartment and leucyl-tRNA in the heart, and turnover of cardiac myosin heavy chain. J Biol Chem 1981; 194: 365–8
  • Ward W. F., Mortimer G. E. Compartmentation of intracellular amino acids in rat liver. Evidence for an intralysosomal pool derived from protein degradation. J Biol Chem 1978; 253: 3581–7
  • Hod Y., Hershko A. Relationship of the pool of intracellular valine to protein synthesis and degradation in cultured cells. J Biol Chem 1976; 251: 4458–67
  • McNurlan M. A., Tomkins AM, Garlick P. J. The effect of starvation on the rate of protein synthesis in rat liver and small intestine. Biochem J 1979; 178: 373–9
  • Ballard F. J. Regulation of protein accumulation in cultured cells. Biochem. J. 1982; 208: 275–87
  • Smith K., Barua J. M., Watt P. W., et al. Flooding with L-[l-13C]Ieucine stimulates human muscle protein incorporation of continuously infused L-[1-13C] valine. Am J Physiol 1992; 262: E372–6
  • Henshaw E. C., Hirsch C. A., Morton B. E., et al. Control of protein synthesis in mammalian tissues through changes in ribosome activity. Biol Chem 1971; 246: 436–46
  • Wernerman J., von der Decken A, Vinnars E. Size distribution of ribosomes in biopsy specimens of human skeletal muscle during starvation. Metabolism. 1985; 34: 665–9
  • von der Decken A. Minireview. Experimental studies on the quality of food proteins. Comp Biochem Physiol 1983; 74B: 213–20
  • Henshaw E. C., Guiney DG, Hirsch C. A. The ribosome cycle in mammalian protein synthesis. J Biol Chem 1973; 248: 4367–76
  • Lied E., Lund B., von der Decken A. Protein synthesis in vitro by epaxial muscle polyribosomes from cod. Cadus morhua. Comp Biochem Physiol 1982; 72B: 187–93
  • Hammarqvist F., Wernerman J., Ali R., et al. Addition of glutamine to total parenteral nutrition after elective abdominal surgery spares free glutamine in muscle, counteracts the fall in muscle protein synthesis, and improves nitrogen balance. Ann Surg 1989; 209: 455–61
  • Nowak T. S., Carty ER, Lust W. D. An in vitro amino acid incorporating method for assessing the status of in vivo protein synthesis. Ann Biochem 1984; 136: 285–92
  • Hammarqvist F., Wernerman J., von der Decken A. Alpha-ketoglutarate preserves protein synthesis and free glutamine in skeletal muscle after surgery. Surgery 1991; 109: 28–36
  • Bennegard K., Eden E., Ekman L., et al. Metabolic response of whole body and peripheral tissues to enteral nutrition in weight-losing cancer and non-cancer patients. Gastroenterology 1983; 85: 92–9
  • Bennegard K., Lindmark L., Eden E., et al. Flux of amino acids across the leg in weight-losing cancer patients. Cancer Res 1984; 44: 386–93
  • Eden E., Ekman L., Bennegard K., et al. Whole-body tyrosine flux in relation to energy expenditure in weight-losing cancer patients. Metabolism 1984; 33: 1020–7
  • Lundholm K., Bennegard K., Eden E., et al. Efflux of 3-methylhistidine from the leg in cancer patients who experience weight loss. Cancer Res 1982; 42: 4807–11
  • Heber D., Chlebowski R. T., Ishibashi D. E., et al. Abnormalities in glucose and protein metabolism in noncachectic lung cancer patients. Cancer Res 1982; 42: 4815–9
  • Donaldson S. S. Effects of therapy on nutritional status of the pediatric cancer patient. Cancer Res 1982; 429: 729, S-36S
  • Van Eyes J., Carter P., Carr D., et al. Nutrient intake in children with cancer. Proc Am Soc Clin Oncol. 1982; 1: C244, (Abstr.)
  • Heber D., Bylerly LO, Chlebowski R. T. Metabolic abnormalities in the cancer patient. Cancer 1985; 55: 225–9
  • Pisters PWT, Cersosimo E., Rogatko A., et al. Insulin action on glucose and branched-chain amino acid metabolism in cancer cachexia: differential effects of insulin. Surgery 1992; 111: 310–10
  • Newman E., Heslin M. J., Wolf R. F., et al. The effect of insulin on glucose and protein metabolism in the forearm of cancer patients. Surg Oncol. 1992; 1: 257–67
  • Ching N., Grossi C., Jham G., et al. Plasma amino acid and serum unesterified fatty acid deficits and the effect of nutritional support in chemotherapy treatment. Surgery 1984; 95: 730–7
  • Clarke E. F., Lewis AM, Waterhouse C. Peripheral amino acid levels in patients with cancer. Cancer 1978; 42: 2909–13
  • Norton J. A., Gorschboth C. M., Wesley R. A., et al. Fasting plasma amino acid levels in cancer patients. Cancer 1985; 56: 1181–6
  • Holt L. E., Snyderman S. E., Norton P. M., et al. The plasma aminogram in kwashiorkor. Lancet. 1963; 2: 1343–8
  • Cersosimo E., Pisters P. W., Pesola G., et al. Insulin secretion and action in patients with pancreatic cancer. Cancer 1991; 67: 486–93
  • Cersosimo E., Pisters PWT, Pesola G., et al. The effect of graded doses of insulin on peripheral glucose uptake and lactate release in cancer cachexia. Surgery 1991; 109: 459–67
  • Lundholm K., Holm G, Schersten T. Insulin resistance in patients with cancer. Cancer Res 1978; 38: 4665–70
  • Gold J. Cancer cachexia and gluconeogenesis. Ann NY Acad Sci 1974; 203: 103–10
  • Kem K. A., Norton J. A. Cancer cachexia. J PEN 1988; 12: 286–98
  • Burt M. E., Aoki TT, Gorschboth C. M. Peripheral tissue metabolism in cancer-bearing man. Ann Surg 1983; 198: 685–91
  • Finley R. J., Inculet R. I., Pace R., et al. Major operative trauma increases peripheral amino acid release during the steady state infusion of total parenteral nutrition in man. Surgery 1986; 99: 491–9
  • Norton J A, Burt ME, Brennan M. F. In vivo utilization of substrate by human sarcoma-bearing limbs. Cancer 1980; 45: 2934–9
  • Burt M. E., Stein TP, Brennan M. F. A controlled, randomized trial evaluating the effects of enteral and parenteral nutrition on protein metabolism in cancer-bearing man. J Surg Res 1983; 34: 303–14
  • Burt M. E., Stein T. P., Schwade J. G., et al. Whole-body protein metabolism in cancer-bearing patients. Effect of total parenteral nutrition and associated serum insulin response. Cancer 1984; 53: 1246–52
  • Lundholm K., Bylund AC, Holm J. Skeletal muscle metabolism in patients with malignant tumor. Eur J Cancer 1976; 12: 465–73
  • Emery P. W., Edwards RHT, Rennie M. J., et al. Protein synthesis in muscle measured in vivo in cachectic patients with cancer. Br Med J 1984; 289: 584–6
  • Shaw JHF, Humberstone D. A., Douglas R. G., et al. Leucine kinetics in patients with benign disease, non-weight-losing cancer, and cancer cachexia: studies at the whole-body and tissue level and the response to nutritional support. Surgery 1991; 109: 37–50
  • Heslin M. J., Newman E., Wolf R. F., et al. Effect of systemic hyperinsulinemia in cancer patients. Cancer Res 1992; 52: 3845–50
  • Pearlstone D. B., Wolf R. F., Berman R. S., et al. Systemic insulin improves protein kinetics in postoperative cancer patients. Presented at the 46th annual meeting of the Society of Surgical Oncology 1993, (abstract). 1993
  • Carmichael M. J., Clague M. B., Keir M. J., et al. Whole body protein turnover, synthesis and breakdown in patients with colorectal carcinoma. Br J Surg 1980; 67: 736–9
  • Lundholm K., Edstrom S, Ekman L. A comparative study of the influence of malignant tumor on host metabolism in mice and man. Cancer 1978; 42: 453–61
  • Starnes H. F., Jr. Warren RS Brennan M. F. Proteinsynthesis in hepatocytes isolated from patients with gastrointestinal malignancy. J Clin Invest 1987; 80: 1384–90
  • Reeds P. J., Fuller MF, Nicholson B. A. Metabolic basis of energy expenditure with particular reference to protein. Substrate and energy metabolism in man, J. S. Garrow, D. Halliday. Libby, London 1985; 46–57
  • Fearon KCH, Hansell D. T., Preston T., et al. Influence of whole body protein turnover on resting energy expenditure in patients with cancer. Cancer Res 1988; 48: 2590–5
  • Stein T. P., Ang S. D., Schluter M. D., et al. Whole-body protein turnover in metabolically stressed patients and patients with cancer as measured with [l5N]glycine. Biochem Med 1983; 30: 59–77
  • Waterhouse C., Mason J. Leucine metabolism in patients with malignant disease. Cancer 1981; 48: 939–44
  • Borzotta A. P., Clague MB, Johnston IDA. The effects of gastrointestinal malignancy on whole body protein metabolism. J Surg Res 1987; 43: 505–12
  • Glass R. E., Fern EB, Garlick PJi. Whole-body protein turnover before and after resection of colorectal tumors. Clin Sci 1983; 64: 101–8
  • Ward H. C., Johnson A. W., Halliday D., et al. Protein metabolism in patients with disseminated malignancy in the immediate postoperative period. Br J Surg 1985; 72: 983–6
  • Dresler C. M., Jeevanandam M, Brennan M. F. Metabolic efficacy of enteral feeding in malnourished cancer and noncancer patients. Metabolism 1987; 36: 82–8
  • Jeevanandam M., Lowry SF, Brennan M. F. Effect of the route of nutrient administration on whole-body protein kinetics in man. Metabolism 1987; 36: 968–73
  • Norton J. A., Stein TP, Brennan M. F. Whole body protein synthesis and turnover in normal man and malnourished patients with and without known cancer. Ann Surg 1981; 194: 123–8
  • Fearon KCH, Borland W., Preston T., et al. Cancer cachexia: influence of systemic ketosis on substrate levels and nitrogen metabolism. Am J Clin Nutr 1988; 47: 42–8
  • Tayek J. A., Heber D, Chlebowski R. T. Effect of hydrazine sulphate on whole-body protein breakdown measured by14C-lysine metabolism in lung cancer patients. Lancet. 1987; 1: 241–4
  • Stein T. P., Mullen J. L., Oram-Smith C., et al. Relative rates of tumor, normal gut, liver and fibrinogen protein synthesis in man. Am J Physiol 1978; 234: E948–52
  • Costa G. Cachexia, the metabolic component of neoplastic disease. Cancer Res 1977; 37: 2327–35
  • Dudrick S. J., Wilmore D. W., Vars H. M., et al. Long-term total parenteral nutrition with growth, development, and positive nitrogen balance. Surgery 1968; 64: 134–42
  • Copeland E. M., Macfayden B. V., Jr. Dudrick S. J. Intravenous hyperalimentation in cancer patients. Surg Res 1974; 16: 241–7
  • Bozzetti F. Effects of artificial nutrition on the nutritional status of cancer patients. JPEN 1989; 13: 406–20
  • Koretz R. L. Nutritional support: how much for how much%. Gut 1986; 27: 85–95
  • Ng E-H, Lowry S. F. Nutritional support and cancer cachexia. Evolving concepts of mechanisms and adjunctive therapies. HematollOncol Clin North Am. 1991; 5: 161–84
  • Lipman T. O. Clinical trials of nutritional support in cancer. HematollOncol Clin North Am. 1991; 5: 91–102
  • Chen M. K., Souba WW, Copeland E. M. Nutritional support of the surgical oncology patient. HematollOncol Clin North Am. 1991; 5: 125–45
  • Heys S. D., Park KGM, Garlick P. J., et al. Nutrition and malignant disease: implications for surgical practice. Br J Surg 1992; 78: 614–23
  • Souba W. W., Copeland E. M. Hyperalimentation in cancer. Cancer J Clinicians 1989; 309: 105–14
  • Douglas R. G., Shaw JHF. Metabolic effects of cancer. Br J Surg 1990; 77: 246–54
  • McGeer A. J., Detsky AS, O'Rourke K. Parenteral nutrition in patients receiving cancer chemotherapy. Ann Intern Med 1989; 110: 734–6
  • Dudrick S. J., MacFadyen B. V., Souchon E. A., et al. Parenteral nutrition techniques in cancer patients. Cancer Res 1977; 37: 2440–50
  • Fischer J. E. Adjuvant parenteral nutrition in the patient with cancer. Surgery 1984; 96: 578–80
  • Mahaffey S. M., Copeland E. M. Total parenteral nutrition in the cancer patient. Adv Surg 1987; 20: 47–68
  • Brennan M. F., Ekman L. Metabolic consequences of nutritional support of the cancer patient. Cancer 1984; 54: 2627–34
  • Klein S., Simes J, Blackburn G. L. Total parenteral nutrition and cancer clinical trials. Cancer 1986; 58: 1378–6
  • Koretz R. L. Parenteral nutrition: is it oncologically logical%. J Clin Oncol 1984; 2: 534–41
  • Daly J. M., Hoffman K., Lieberman M., et al. Nutritional support in the cancer patient. JPEN 1990; 14: 244, S-8S
  • Norton J. A., Peacock JL, Morrison S. D. Cancer cachexia. CRC Crit Rev Oncol Hematol. 1987; 7: 289–327
  • Thompson B. R., Julian TB, Stremple J. F. Perioperative total parenteral nutrition in patients with gastrointestinal cancer. J Surg Res 1981; 30: 497–500
  • Copeland E. M., Daly JM, Dudrick S. J. Nutrition as an adjunct to cancer treatment in the adult. Cancer Res 1977; 37: 2451–6
  • Heatley R. V., Williams RHP, Lewis M. H. Pre-operative intravenous feeding – a controlled trial. Postgrad Med J 1979; 55: 541–5
  • Muller J. M., Brenner U., Dienst C., et al. Preoperative parenteral feeding in patients with gastrointestinal carcinoma. Lancet 1982; 1(8263)68–71
  • Daly J. M., Massar E., Giacco G., et al. Parenteral nutrition in esophageal cancer patients. Ann Surg 1982; 196: 203–8
  • Holter A., Fischer J. E. The effects of perioperative hyperalimentation on complications in patients with carcinoma and weight loss. J Surg Res 1977; 23: 31–4
  • Popp M. B., Fisher R. I., Wesley R., et al. A prospective randomized study of adjuvant parenteral nutrition in the treatment of advanced diffuse lymphoma: influence on survival. Surgery 1981; 90: 195–203
  • Weiner R. S., Kramer B. S., Clamon G. H., et al. Effects of intravenous hyperalimentation during treatment in patients with small-cell lung cancer. J Clin Oncol. 1985; 3: 949–57
  • Nixon D. W., Moffitt S., Lawson D. H., et al. Total parenteral nutrition as an adjunct to chemotherapy of metastatic colorectal cancer. Cancer Treat Rep 1981; 65: 121–8
  • Nixon D. W., Lawson D. H., Kutner M., et al. Hyperalimentation of the cancer patient with protein-calorie undernutrition. Cancer Res 1981; 41: 2038–45
  • Burt M. E., Gorschboth CM, Brennan M. F. A controlled, prospective randomized trial evaluating the metabolic effects of enteral and parenteral nutrition in the cancer patient. Cancer 1982; 49: 1092–105
  • Lim STK, Choa R. G., Lam K. H. Total parenteral nutrition versus gastrostomy in the preoperative preparation of patients with carcinoma of the oesophagus. Br J Surg 1981; 68: 69–72
  • Bozzetti F., Ammatuna M., Migliavacca S., et al. Total parenteral nutrition prevents further nutritional deterioration in patients with cancer cachexia. Ann Surg 1987; 205: 138–43
  • Shamberger R. C., Brennan M. F., Goodgame J. T., et al. A prospective, randomized study of adjuvant parenteral nutrition in the treatment of sarcomas: results of metabolic and survival studies. Surgery 1984; 96: 1–12
  • Eriksson B., Douglass H. O., Jr. Intravenous hyperalimentation: an adjunct to treatment of malignant disease of upper gastrointestinal tract. JAMA 1980; 243: 2049–52
  • Kishi T., Iwasawa Y., Hiroshi B. S., et al. Nutritional responses of tumor-bearing rats to oral or intravenous feeding. JPEN. 1982; 6: 295–300
  • Shaw JHF. Influence of stress, depletion, and/or malignant disease on the responsiveness of surgical patients to total parenteral nutrition. Am J Clin Nittr 1988; 48: 144–7
  • Shaw JHF, Wolfe R. R. Whole-body protein kinetics in patients with early and advanced gastrointestinal cancer; the response to glucose infusion and total parenteral nutrition. Surgery 1988; 103: 148–55
  • Moghissi K., Homshaw J., Teasdale P. R., et al. Parenteral nutrition in carcinoma of the oesophagus treated by surgery: nitrogen balance and clinical studies. Br J Surg 1977; 64: 125–8
  • Jeevanandam M., Legaspi A., Lowry S. F., et al. Effect of total parenteral nutrition on whole body protein kinetics in cachectic patients with benign or malignant disease. JPEN 1988; 12: 229–36
  • Drott C., Unsgaard B., Schersten T., et al. Total parenteral nutrition as an adjuvant to patients undergoing chemotherapy for testicular carcinoma: protection of body composition – a randomized, prospective study. Surgery 1988; 103: 499–506
  • Hyltander A., Wamold I., Eden E., et al. Effect on whole-body protein synthesis after institution of intravenous nutrition in cancer and non-cancer patients who lose weight. Eur J Cancer 1991; 27: 16–21
  • Karnofsky D. A., Burchenal J. H. The clinical evaluation of chemotherapeutic agents in cancer. Evaluation of chemotherapeutic agents, C. M. MacLeod. Columbia University Press, New York 1949; 191–205
  • Meguid M. M., Meguid V. Preoperative identification of the surgical cancer patient in need of postoperative supportive total parenteral nutrition. Cancer 1985; 55: 258–62
  • Yamada N., Koyama H., Hioki K., et al. Effect of postoperative total parenteral nutrition (TPN) as an adjunct to gastrectomy for advanced gastric carcinoma. Br J Surg 1983; 70: 267–74
  • Muller J. M., Keller H. W., Brenner U., et al. Indications and effects of pre-operative parenteral nutrition. World J Surg 1986; 10: 53–63
  • Monson JRT, Sedman P. C., Ramsden C. W., et al. Total parenteral nutrition adversely influences tumour-directed cellular cytotoxic responses in patients with gastrointestinal cancer. Eur J Surg Oncol 1988; 14: 435
  • Sclfani L. M., Shike M., Quesada E., et al. A randomized prospective trial of TPN following major pancreatic surgery. Society of Surgical Oncology, 44th Annual Meeting, Orlando FL 1991 (abstract). 1991
  • American Society of Parenteral and Enteral Nutrition Board of Directors. Guidelines for use of total parenteral nutrition in the hospitalized adult patient. JPEN 1986; 10: 441–5
  • Shike M., Russel DM, Detsky A. S. Changes in body composition in patients with small cell lung cancer: the effect of total parenteral nutrition as an adjunct of chemotherapy. Ann Intern Med 1984; 101: 303–9
  • Hays D. M., Merritt R. J., White L., et al. Effect of total parenteral nutrition on marrow recovery during induction therapy for acute non-lymphocytic leukemia in childhood. Med Pediatr Oncol 1983; 11: 134–40
  • Weisdorf S. A., Lysne J., Wind D., et al. Positive effect of prophylactic total parenteral nutrition on long term outcome of bone marrow transplantation. Transplantation 1987; 43: 833–8
  • Szeluga D. J., Stuart R. K., Brookmeyer R., et al. Nutritional support of bone marrow transplant recipients: a prospective, randomized clinical trial comparing total parenteral nutrition to an enteral feeding program. Cancer Res 1987; 47: 3309–16
  • Brown M. S., Buchanan RB, Karran S. J. Clinical observations on the effects of elemental diet supplementation during irradiation. Clin Radiol 1980; 31: 19–20
  • Valerio D., Overett L, Malcolm A. Nutritional support of cancer patients receiving abdominal and pelvic radiotherapy: a randomized prospective clinical experiment of intravenous feeding. Surg Forum 1978; 29: 145–8
  • Kinseila T. J., Malcolm AW, Bothe A. Prospective study of nutritional support during pelvic irradiation. Int J Radial Oncol Biol Phys. 1981; 7: 543–8
  • Mullen J. L., Buzby G. P., Matthews D. C., et al. Reduction of operative morbidity and mortality by combined preoperative and postoperative nutritional support. Ann Surg 1980; 192: 604–13
  • Veterans Affairs Total Parenteral Nutrition Cooperative Study Group. Perioperative total parenteral nutrition in surgical patients. N Engl J Med 1991; 325: 525–32
  • Daly J. M., Reynolds H. M., Rowlands B. J., et al. Nutritional manipulation of tumor-bearing animals: effects on body weight, serum protein levels and tumor growth. Surg Forum 1978; 29: 143–4
  • Goodgame J. T., Lowry SF, Brennan M. F. Nutritional manipulations and tumor growth II. The effects of intravenous feeding. Am J Clin Nutr 1979; 32: 2285–94
  • Grossie V. B., Ota D. M., Ajani J. A., et al. Influence of total parenteral nutrition on tumor growth and polyamine biosynthesis of fibrosarcoma-bearing rats after induced cachexia. J PEN 1988; 12: 441
  • Popp M. B., Morrison SD, Brennan M. F. Total parenteral nutrition in a methylcholanthrene-induced rat sarcoma model. Cancer Treat Rep 1981; 65(Suppl. 5)137–43
  • DeGraaf P. W., Zwaveling A. The influence of intravenous hyperalimentation (IVH) on wound healing in tumor-bearing rats. J Surg Oncol 1983; 24: 332–7
  • Westin T., Stein H., Niedobitek G., et al. Tumor cytokinetic response to total parenteral nutrition in patients with head and neck cancers. Am J Clin Nutr 1991; 53: 764–8
  • Popp M. B., Wagner SC, Brito O. J. Host and tumor responses to increasing levels of nutritional support. Surgery 1983; 94: 300–8
  • Popp M. B., Kirkemo A. K., Morrison S. D., et al. Tumor and host carcass changes during total parenteral nutrition in an anorectic rat-tumor system. Ann Surg 1984; 199: 205–10
  • Morrison S. D., Moley JF, Norton J. A. Contribution of inert mass to experimental cancer cachexia in rats. J Natl Cancer Inst 1984; 73: 991–8
  • Heys S. D., Park KGM, McNurlan M. A. Stimulation of protein synthesis in human tumours by parenteral nutrition: evidence for modulation of tumour growth. Br J Surg 1991; 78: 483–7
  • Baron P. L., Lawrence W., Chan WMY, et al. Effects of parenteral nutrition on cell cycle kinetics of head and neck cancer. Arch Surg 1986; 121: 1282–6
  • Mullen J. L., Buzby G. P., Gertner M. H., et al. Protein synthesis dynamics in human gastrointestinal malignancies. Surgery 1980; 87: 331–8
  • Lundholm K., Edstrom S., Ekman L., et al. Protein degradation in human skeletal muscle tissue: the effect of insulin, leucine, amino acids and ions. Clin Sci 1981; 60: 319–26
  • Frexes-Steed M., Lacy D. B., Collins J., et al. Role of leucine and other amino acids in regulating protein metabolism in vivo. Am J Physiol 1992; 262: E925–35
  • Crosby L. E., Bistrian B. R., Ling P-R, et al. Effects of branched chain amino acid-enriched total parenteral nutrition on amino acid utilization in rats bearing yoshida sarcoma. Cancer Res 1988; 48: 2698–2702
  • McNurlan M. A., Fem EB, Garlick P. J. Failure of leucine to stimulate protein synthesis in vivo. Biochem J 1982; 204: 831–8
  • Hasslegren P-O, LaFrance R., Pederson P., et al. Infusion of branched chain amino acid enriched solution α-ketoisocaproic acid in septic rats: effect on nitrogen balance and skeletal muscle protein turnover. JPEN 1988; 12: 244–9
  • Tayek J. A., Bistrian BR, Hehir D. J. Improved protein kinetics and albumin synthesis by branched chain amino acid-enriched total parenteral nutrition in cancer cachexia: a prospective randomized crossover trial. Cancer 1986; 58: 147–157
  • Hunter D. C., Weintraub M., Blackburn G. L., et al. Branched chain amino acids as the protein component of parenteral nutrition in cancer cachexia. Br J Surg 1989; 76: 149–53
  • McNurlan M. A., Heys SD, Park KGM. Protein synthesis in human tumour and muscle is enhanced more by TPN than by solutions enriched with branched-chain amino acids. Clin Nutr. 1990; 9: 21
  • Lieberman M. D., Shou J, Torres A. S. Effects of nutrient substrates on immune function. Nutrition 1990; 6: 88–91
  • Barbul A., Rettura G, Wasserkrug H. L. Arginine stimulates lymphocyte immune responses in healthy humans. Surgery 1981; 90: 244–51
  • Reynolds J. V., Thorn A. K., Zhang S. M., et al. Arginine, protein malnutrition, and cancer. J Surg Res 1988; 45: 513–22
  • Daly J. M., Lieberman MD, Goldfine J. Enteral nutrition with supplemental arginine, RNA and omega-3 fatty acids in patients after operation: immunologic, metabolic and clinical outcome. Surgery 1992; 112: 56–67
  • Daly J. M., Reynolds J, Thom A. Immune and metabolic effects of arginine in the surgical patient. Ann Surg 1988; 208: 412–23
  • Brittenden J., Park KGM, Hayes P. D., et al. Effect of arginine on natural cytotoxicity in cancer patients and healthy volunteers. Br. J Surg 1992; 79: A442, (abstract)
  • Grossie V. B., Jr, Nishioka K., Ajani J. A., et al. Substituting ornithine for arginine in total parenteral nutrition eliminates enhanced tumor growth. J Surg Oncol 1992; SO: 7–161
  • Park KGM, Heys S. D., Blessing K., et al. Stimulation of human breast cancers, in vivo, by dietary I-arginine. Clin Sci 1992; 82: 413–7
  • Tachibana K., Murai K, Hiraoka I. Evaluation of the effects of arginine-enriched amino acid solution on tumor growth. JPEN. 1985; 9: 428–34
  • Souba W. W., Strebel F. R., Bull J. M., et al. Interorgan glutamine metabolism in the tumor-bearing rat. J Surg Res 1988; 44: 720–6
  • Jepson M. M., Bates PC, Broadbent P. Relationship between glutamine concentration and protein synthesis in rat skeletal muscle. Am J Physiol 1988; 18: E166–72
  • Klimberg V. S., Souba W. W., Salloum R. M., et al. Glutamine-enriched diets support muscle glutamine metabolism without stimulating tumor growth. J Surg Res 1990; 48: 319–23
  • Scheltinga M. R., Young L. A., Benfell K., et al. Glutamine-enriched intravenous feedings attenuate extracellular fluid expansion after a standard stress. Ann Surg 1991; 214: 385–95
  • Klimberg V. S., Nwokedi E., Hutchins L. F., et al. Does glutamine facilitate chemotherapy while reducing its toxicity%. Surg Forum 1991; 42: 16–8
  • Fox A. D., Kripke S A, DePaula J. Effect of a glutamine-supplemented enteral diet on methotrexate-induced enterocolitis. JPEN 1988; 12: 325–31
  • Austgen T., Dudrick P. S., Sitren H., et al. The effects of glutamine-enriched total parenteral nutrition on tumor growth and host tissues. Ann Surg 1992; 215: 107–13
  • Kovacevick Z., Morris H. P. The role of glutamine in the oxidative metabolism of malignant cells. Cancer Res 1972; 32: 326–33
  • Fischer J. E., Chance W. T. Total parenteral nutrition, glutamine, and tumor growth. JPEN 1990; 14: 86, S-9S
  • Chance W. T., Cao L, Nelson J. L. Acivicin reduces tumor growth during total parenteral nutrition (TPN). Surgery 1987; 102: 386–94
  • Chance W. T., Cao L, Fischer J. E. Insulin and acivicin improve host nutrition and prevent tumor growth during total parenteral nutrition. Ann Surg 1988; 208: 524–31
  • Burt M. E., Peters M. L., Brennan M. F., et al. Hypoglycemia with glycerol infusion as antineoplastic therapy; a hypothesis. Surgery 1985; 97: 231–3
  • Weksler B., Ng B, Wolf R. F. 3-Mercaptopicolinic acid inhibits tumor growth in a rat sarcoma model. Proc AACR 1992; 554, (abstract)
  • Bishop J. S., Marks P. A. Studies on carbohydrate metabolism in patients with neoplastic disease. II. Response to insulin administration. J Clin Invest 1959; 38: 668–72
  • Heslin M. J., Newman E., Wolf R. F., et al. Effect of hyperinsulinemia on whole body and skeletal muscle carbon kinetics. Am J Physiol 1992; 262: E911–8
  • Beck S. A., Tisdale M. J. Effect of insulin on weight loss and tumour growth in a cachexia model. Br J Cancer 1989; 59: 677–81
  • Moley J. F., Morrison SD, Norton J. A. Insulin reversal of cancer cachexia in rats. Cancer Res 1985; 45: 4925–31
  • Moley J. F., Morrison SD, Norton J. A. Preoperative insulin reverses cachexia and decreases mortality in tumor-bearing rats. J Surg Res 1987; 43: 21–8
  • Moley J. F., Morrison S. D., Gorschboth C. M., et al. Body composition changes in rats with experimental cancer cachexia: Improvement with exogenous insulin. Cancer Res 1988; 48: 2784–7
  • Chance W. T., Muggia-Sullam M., Chen M-H, et al. Reversal of tumor-induced biochemical abnormalities by insulin treatment in rats. J Natl Cancer Inst 1986; 77: 497–503
  • Tayek J. A. A review of cancer cachexia and abnormal glucose metabolism in humans with cancer. J Am Col Nutr 1992; 11: 445–56
  • Gore D. C., Honeycutt D., Jahoor F., et al. Effect of exogenous growth hormone on whole-body an isolated-limb protein kinetics in bumed patients. Arch Surg 1991; 126: 38
  • Crist D. M., Peake G. T., Egan P. A., et al. Body composition response to exogenous GH during training in highly conditioned adults. Am J Physiol 1988; 65: 579–84
  • Fryburg D. A., Geifand RA, Barrett E. J. Growth hormone acutely stimulates forearm muscle protein synthesis in normal humans. Am J Physiol 1991; 260: E499–E504
  • Jiang Z-M, He G-Z, Zhang S-Y, et al. Low-dose growth hormone and hypocaloric nutrition attenuate the protein-catabolic response after major operation. Ann Surg 1989; 210: 513–25
  • Manson J. M., Smith RJ, Wilmore D. W. Growth hormone stimulates protein synthesis during hypocaloric parenteral nutrition. Ann Surg 1988; 208: 136–42
  • Rudman D., Feller A. G., Nagraj H. S., et al. Effects of human growth hormone in men over 60 years old. N Engl J Med 1990; 323: 1–6
  • Ng E-H, Rock C. S., Lazarus D., et al. Impact of exogenous growth hormone on host preservation and tumor cell-cycle distribution in a rat sarcoma model. J Surg Res 1991; 51: 99–105
  • Wolf R. F., Weksler B., Ng B., et al. Prolonged growth hormone and insulin therapy does not influence tumor growth in MCA sarcoma tumor-bearing rats. Proc AACR 1992; 33: 207, (abstract)
  • Ng E-H, Rock C. S., Hawes A. S., et al. Total parenteral nutrition with growth hormone or insulinlike growth factor-1: responses in the tumor-bearing state. Surg Forum 1991; 42: 444–6
  • Ng E-H, Rock C. S., Lazarus D., et al. Insulin-like growth factor I preserves host lean tissue mass in cancer cachexia. Am J Physiol 1992; 262: R426–31
  • Binnerts A., Uitterlinden P., Hofland L. J., et al. The in vitro and in vivo effects of human growth hormone administration on tumor growth of rats bearing a transplantable rat pituitary tumor. Eur J Cancer 1990; 26: 269–76
  • Wolf R. F., Pearlstone D. B., Newman E., et al. Growth hormone and insulin reverse net whole body and skeletal muscle protein catabolism in cancer patients. Ann Surg 1992; 216: 280–90
  • Nakanishi Y., Mulshine JL, Kasprzyk P. G. Insulin-like growth factor 1 can mediate autocrine proliferation of human small cell lung cancer line in vitro. J Clin Invest 1988; 82: 354–9
  • Lippman M. E., Dickson RB, Bates S. Autocrine and paracrien growth regulation of human breast cancer. Breast Cancer Res Treat. 1986; 7: 59–70
  • Torosian M. H., Donoway R. B. Total parenteral nutrition and tumor metastasis. Surgery 1991; 109: 597–601
  • Donoway T. B., Torosian M. H. Growth hormone inhibits tumor metastases. Surg Forum 1989; 40: 413–5
  • Akaza H., Matsuki K., Matsushima H., et al. Stimulatory effects of growth hormone on rat bladder carcinogenesis. Cancer 1991; 68: 2418–21
  • Wolf R. F., Ng B., Weksler B., et al. The preferential effect of growth hormone on host vs. tumor protein synthesis. Presented at the 46th annual meeting of the Society of Surgical Oncology 1993, (abstract). 1993
  • Stallion A., Zhang F-S, Chance W. T., et al. Reversal of cancer cachexia in rats by cimaterol and supplemental nutrition. Surgery 1991; 110: 678–84
  • Chance W. T., Cao L., Zhang F-S, et al. Clenbuterol treatment increases muscle mass and protein content of tumor-bearing rats maintained on total parenteral nutrition. JPEN 1991; 15: 530–5
  • Shaw JHF, Holdaway CM, Humberstone D. A. Metabolic intervention in surgical patients: the effect of alpha or beta blockade on glucose and protein metabolism in surgical patients receiving total parenteral nutrition. Surgery 1988; 103: 520–5
  • Kien C. L., Camitta B. M. Increased whole-body protein turnover in sick children with newly diagnosed leukemia or lymphoma. Cancer Res 1983; 43: 5586–92

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.