155
Views
26
CrossRef citations to date
0
Altmetric
Research Article

Organic Acidurias and Related Abnormalities

, &
Pages 377-429 | Published online: 27 Sep 2008

References

  • Scriver C. R., Beaudet A. L., Sly W. S., et al. The metabolic basis of inherited disease.6th ed. McGraw Hill, New York 1989
  • Sweetman L. Qualitative and quantitative analysis of organic acids in physiologic fluids for diagnosis of the organic acidurias. Abnormalities in amino acid metabolism in clinical medicine, W. L. Nyhan. Appleton-Century-Crofts, Norwalk 1984; 419–53
  • Cherrington C. A., Hinton M., Mead G. C., et al. Organic acids: chemistry, antibacterial activity and practical applications. Adv Microb Physiol 1991; 32: 87–107
  • Greenway DLA, Dyke KGH. Mechanism of the inhibitory action of linoleic acid on the growth of. Staphylococcus aureus. J Gen Microbiol 1979; 155: 233–45
  • Van Pilsum J. F. Metabolism of individual tissues. Textbook of biochemistry, T. M. Devlin. John Wiley & Sons, New York 1982; 1001
  • Bremer J., Osmundsen H. Fatty acid oxidation and its regulation. Fatty acid metabolism and its regulation, S. Numa. Elsevier, Amsterdam 1984; 113
  • Mannaerts G. P., Van Veldhoven P. P. Fatty acid oxidation: general overview. Inborn errors of metabolism, J. Schaub, F. Van Hoof, H. L. Vis. Raven Press, New York 1991; 1–18
  • Stanley C. A. New genetic defects in mitochondrial fatty acid oxidation and carnitine deficiency. Adv Pediatr 1987; 35: 59–88
  • Kim C. S., O'Tuamala L. A., Mann J. D., et al. Effect of increasing carbon chain-length on organic acid transport by the choroid plexus: a potential factor in Reye's syndrome. Brain Res. 1983; 259: 340–3
  • Kim C. S., Roe C. R., Mann J. D., et al. Octanoic acid produces accumulation of monoamine acidic metabolites in the brain: interaction with organic anion transport at the choroid plexus. J Neurochem 1992; 58: 1499–1503
  • Trauner D. Regional cerebral Na+-K+-ATPase activity following octanoate administration. Pediatr Res 1980; 14: 844–5
  • Duran M., Mitchell G., De Klerk JBC, et al. Octanoic acidemia and octanoylcamitine excretion with dicarboxylic aciduria due to defective oxidation of medium-chain fatty acids. J Pediatr. 1985; 107: 397–404
  • Tanaka K., Budd M. A., Efron M. L., et al. Isovaleric acidemia: a new genetic defect of leucine metabolism. Proc Natl Acad Sci USA 1966; 56: 236–42
  • Sweetman L. Qualitative and quantitative analysis of organic acids in physiological fluids for diagnosis of organic acidurias. Abnormalities in amino acid metabolism in clinical medicine, W. L. Nyhan. Appleton-Century-Crofts, Norwalk 1984
  • Horning E. C., Homing M. G. Metabolic profiles: gas phase methods for analysis of metabolites. Clin Chem 1971; 17: 802–9
  • Horning E. C., Homing M. G., Szafranek J., et al. Gas phase analytical methods for the study of human metabolites. Metabolic profiles obtained by open tubular capillary chromatography. J Chromatogr. 1974; 91: 367–78
  • Chalmers R. A., Lawson A. M. Organic acids in man. Chapman and Hall, New York 1982
  • Goodman S. I., Markey S. P. Diagnosis of organic acidemias by gas chromatography mass spectrometry. Lab Res Methods Biol Med. 1981; 6: 1–42
  • Goodman S. I. An introduction to gas chromatography-mass spectrometry and the inherited organic acidemias. Am J Hum Genet. 1980; 32: 781–92
  • Hoffman G., Aramaki S., Blum-Hoffman E., et al. Quantitative analysis for organic acid analysis in biological samples: batch isolation followed by gas chromatographic-mass spectrometric analysis. Clin Chem 1989; 35: 587–95
  • Tanaka K., Hine D. G., West-Dull A., et al. Gas-chromatographic method for urinary organic acids. I. Retention Indices for 155 metabolically important compounds. Clin Chem. 1980; 26: 1839–46
  • Tanaka K., West-Dull A., Hine D. G., et al. Gas chromatographic method of analysis for urinary organic acids. II. Description of the procedure, and its application to diagnosis of patients with organic acidurias. Clin Chem. 1980; 26: 1947–53
  • Lawson A. M., Chalmers RA, Watts RWE. Urinary organic acids in man. I. Normal patterns. Clin Chem. 1976; 22: 1283–7
  • Chalmers R. A., Healy MJR, Lawson A. M., et al. Urinary organic acids in man. II. Effects of individual variation and diet on the urinary excretion of acidic metabolites. Clin Chem. 1976; 22: 1288–91
  • Chalmers R. A., Healy MJR, Lawson A. M., et al. Urinary organic acids in man. III. Quantitative ranges and patternsofexcretion in a normal population. Clin Chem. 1976; 22: 1292–8
  • Thompson J. A., Markey S. P. Quantitative metabolic profiling of urinary organic acids by gas chromatography-mass spectrometry: comparison of isolation methods. Anal Chem 1975; 47: 1313–21
  • Holland J. F., Leary JJ, Sweeley C. S. Advanced instrumentation and strategies for metabolic profiling. J Chromatogr 1986; 379: 3–26
  • Niwa T. Metabolic profiling with gas chromatography-mass spectrometry and its application to clinical medicine. J Chromatogr. 1986; 379: 313–45
  • Jellum E., Thorensen O., Horn L., et al. Advances in the use of computerized gas chromatography-mass spectrometry and high-performance liquid chromatography with rapid scanning detection for clinical diagnosis. J Chromatogr. 1989; 468: 43–53
  • Tuchman M., McCann M. T., Johnson P. E., et al. Screening newborns for multiple organic acidurias in dried filter paper urine samples: method development. PediatrRes. 1991; 30: 315–21
  • Liebich H. M. Basic profiles for organic acids in urine. J Chromatogr. 1990; 525: 1–14
  • Shoemaker J. D., Elliott W. H. Automated screening of urine samples for carbohydrates, organic and amino acids after treatment with urease. J Chromatogr. 1991; 562: 125–38
  • Lehotay D. C. Chromatographic techniques in inborn errors of metabolism. Biomed Chromatogr. 1991; 5: 113–21
  • Bieber L. L., Lewin L. M. Measurement of carnitine and O-acylcamitines. Methods Enzymol. 1981; 72: 276–87
  • Hosokawa Y., Shimomura Y., Harris R. A., et al. Determination of short-chain acyl-Coenzyme A esters by high-performance liquid chromatography. Anal Biochem. 1986; 153: 45–9
  • Hoppel C. L., Brass E. P., Gibbons A. P., et al. Separation of acylcamitines from biological samples using high-performance liquid chromatography. Anal Biochem 1986; 156: 111–7
  • Roe C. R., Millington DS, Maltby D. A. Clinical aspects of human carnitine deficiency, P. R. Borum. Pergamon Press, New York 1985; 97–107
  • Millington D. S., Norwood D. L., Kodo N., et al. Application of fast atom bombardment with tandem mass spectrometry and liquid chromatography to the analysis of acylcamitines in human urine, blood, and tissue. Anal Biochem 1989; 180: 331–9
  • Millington D. S., Terado N., Chase D. H., et al. The role of tandem mass spectrometry in the diagnosis of fatty acid oxidation disorders. Prog Clin Biol Res. 1992; 375: 339–54
  • Yergey A. L., Liberato DJ, Millington D. S. Thermospray liquid chromatography/mass spectrometry for the analysis of L-camitine and its short-chain acyl derivatives. Anal Biochem. 1984; 139: 278–83
  • Rashed M. S., Ozand P. T., Harrison M. E., et al. Electrospray tandem mass spectrometry in the diagnosis of organic acidemias. Rapid Commun Mass Spectrom. 1994; 8: 129–33
  • Lowes S., Rose M. E. Simple and unambiguous method for identifying urinary acylcamitines using gas chromatography-mass spectrometry. Analyst. 1990; 115: 511–16
  • Lowes S., Rose M. E., Mills G. A., et al. Identification of urinary acylcamitines using gas chromatography-mass spectrometry: preliminary clinical applications. J Chromatogr. 1992; 577: 205–14
  • Huang Z. H., Gage D. A., Bieber L. R., et al. Analysis of acylcamitines as their A'-demethylated ester derivatives by gas chromatography-chemical ionization mass spectrometry. Anal Biochem. 1991; 199: 98–105
  • Huang Z. H., Sweeley C. C., Bieber L. L., et al. A general method for the simultaneous analysis of free carnitine and acylcamitines by GC-MS of their /V-methylated silylated derivatives. Presented at the 1992 meeting of the ASMS, Nashville, TN. 1992
  • Rinaldo P., O'Shea J. J., Coates P. M., et al. Medium-chain acyl-CoA dehydrogenase deficiency: diagnosis by stable isotope dilution measurement of urinary n-hexanoylglycine and 3-phenylpropionylglycine. N Engl J Med 1988; 319: 1308–13
  • Rinaldo P., O'Shea J. J., Goodman S. I., et al. Comparison of urinary acylglycines and acylcamitines as diagnostic markers of medium-chain acyl-CoA dehydrogenase deficiency. J Inherited Metab Dis 1989; 12(suppl 2)325–8
  • Bennett M. J., Bhala A., Poirier S. F., et al. When does gut flora in the newborn produce 3-phenylpropionic acid? Implications for the early diagnosis of the medium-chain acyl-CoA dehydrogenase (MCAD) deficiency. Clin Chem. 1992; 38: 278–81
  • Bhala A., Bennett M. J., McGowan K. L., et al. Limitations of 3-phenylpropionylglycine in early screening for medium-chain acyl-coenzyme A dehydrogenase deficiency. J Pediatr. 1993; 122: 100–3
  • Rumsby G., Seakins JWT, Leonard J. V. A simple screening test for medium-chain acyl-CoA dehydrogenase deficiency. Lancet. 1986; 2: 467
  • Hommes F. A., Blitzer M. G., Brewster M. A., et al. Proficiency testing for biochemical genetics laboratories: the first 10 rounds of testing. Am J Hum Genet 1990; 46: 1001
  • Bonham J. R., Downing M., Pollit R. J., et al. Quality assessment of urinary organic acid analysis. Ann Clin Biochem. 1994; 31: 129–33
  • Bennett M. J., Ragni M. C., Hood I., et al. Azelaic and pimelic acids: metabolic intermediates or artefacts. J Inherited Metab Dis. 1992; 15: 220–3
  • Walker V., Mills G. A., Hall M. A., et al. Carbohydrate fermentation by gut microflora in preterm neonates. Arch Dis Child 1989; 64: 1367–73
  • Shoemaker J. D., Lynch R. E., Hoffmann J. W., et al. Misidentification of propionic acid as ethylene glycol in a patient with methylmalonic acidemia. J Pediatr 1992; 120: 417–21
  • Woolf A. D., Wynshaw-Boris A., Rinaldo P., et al. Intentional infantile ethylene glycol poisoning presenting as an inherited metabolic disorder. J Pediatr. 1992; 120: 421–4
  • Saudubray J. M., Ogier H. Clinical approach to inherited metabolic disorders. Inborn metabolic diseases, J. Fernandes, J. M. Saudubray, K. Tada. Springer-Verlag, Berlin 1990; 3–25
  • Ozand P. T., Gascon G. G. Organic acidurias: a review, Part 1. J Child Neurol 1991; 6: 196–219
  • Robinson B. H. Lacticacidemia. Biochim Biophys Acta Mol Basis Dis. 1993; 1182: 231–44
  • Danner D. J., Elsas I LJ. Disorders of branched chain amino acid and keto acid metabolism. The metabolic basis of inherited disease.6th ed., C. R. Scriver, A. L. Beaudet, W. S. Sly, et al. McGraw-Hill, New York 1989; 671–92
  • Sweetman L. Branched chain organic acidurias. The metabolic basis of inherited disease.6th ed., C. R. Scriver, A. L. Beaudet, W. S. Sly, et al. McGraw-Hill, New York 1989; 791–819
  • Leonard J. V., Seakins JWT, Bartlett K., et al. Inherited disorders of 3-methylcrotonyl CoA carboxylation. Arch Dis Child 1981; 56: 53–9
  • Sweetman L., Nyhan W. L. Inheritable biotin-treatable disorders and associated phenomena. Annu Rev Nutr. 1986; 6: 317–43
  • Wolf B., Grier R. E., Allen R. J., et al. Biotinidase deficiency: the enzymatic defect in late-onset multiple carboxylase deficiency. Clin ChimActa. 1983; 131: 272–81
  • Gibson K. M., Elpeleg O. N., Jakobs C., et al. Multiple syndromes of 3-methylglutaconic aciduria. Pediatr Neurol. 1993; 9: 120–3
  • Duran M., Walther FJ, Bruinvis L., et al. The urinary excretion of ethylmalonic acid: what level requires further attention%. Biochem Med 1983; 29: 171–5
  • Costeff H., Elpeleg O., Apter N., et al. 3-Methylglutaconic aciduria in optic atrophy plus. Ann Neurol 1993; 33: 103–41
  • Costeff H., Gadoth N., Apter N, et al. A familial syndrome of infantile optic atrophy, movement disorder, and spastic paraplegia. Neurology 1989; 39: 595–7
  • Chitayat D, Chemke J., Gibson K. M., et al. 3-Methylglutaconic aciduria: a marker for as yet unspecified disorders and the relevance of prenatal diagnosis in a 'new' type ('type 4'). J Inherited Metab Dis. 1992; 15: 204–12
  • Gibson K. M., Sherwood W. G., Hoffmann G. F., et al. Phenotypic heterogeneity in the syndromes of 3-methylglutaconic aciduria. J Pediatr. 1991; 118: 885–90
  • Holme E., Greter J., Jacobson C. E., et al. Mitochondrial ATP-synthase deficiency in a child with 3-methylglutaconic aciduria. Pediatr Res. 1992; 32: 731–5
  • Ibel H., Endres W., Hadom H-B, et al. Multiple respiratory chain abnormalities associated wim hypertrophic cardiomyopathy and 3-methylglutaconic aciduria. Eur J Pediatr. 1993; 152: 665–70
  • Muller-Hocker J., Ibel H., Paetzke I., et al. Fatal infantile mitochondria] cardiomyopathy and myopathy with heterogeneous tissue expression of combined respiratory chain deficiencies. Virchows Arch [A]. 1991; 419: 355–62
  • Lichter-Konecki U., Trefz F. K., Rotig A., et al. 3-Methylglutaconic aciduria in a patient with Pearson syndrome. Eur J Pediatr. 1993; 152: 378–9
  • Hammond J., Wilcken B. 3-Hydroxy-3-methylglutaric, 3-methylglutaconic, and 3-methylgIutaric acids can be non-specific indicators of metabolic disease. J Inherited Metab Dis 1984; 7(Suppl 12)117–8
  • Gibson K. M., Breuer J, Nyhan W. L. 3-Hydroxy-3-methylglutaryl-coenzyme A lyase deficiency: review of 18 reported patients. Eur J Pediatr. 1988; 148: 180–6
  • Wysocki S. J., Hahnel R. 3-Hydroxy-3-methylglutaryl-coenzyme A lyase deficiency: a review. J Inherited Metab Dis. 1986; 9: 225–33
  • Faull K. F., Bolton P. D., Halpern B., et al. The urinary organic acid profile associated with 3-hydroxy-3-methyl glutaric aciduria. Clin ChimActa 1976; 73: 553–9
  • Duran M., Ketting D., Wadman SK, et al. Organic acid excretion in a patient with 3-hydroxy-3-methylglutaryl-CoA lyase deficiency: facts and artefacts. Clin ChimActa 1978; 90: 187–93
  • Roe C. R., Millington DS, Maltby D. A. Identification of 3-methylglutarylcarnitine. A new diagnostic metabolite of 3-hydroxy-3-methylglutaryl-coenzyme A lyase deficiency. J Clin Invest 1986; 77: 1391–4
  • Massoud A. F., Leonard J. V. Cardiomyopathy in propionic acidemia. Eur J Pediatr. 1993; 152: 441–5
  • Rosenberg L. E., Fenton W. A. Disorders of propionate and methylmalonate metabolism. The metabolic basis of inherited disease, C. R. Scriver, A. L. Beaudet, W. S. Sly, et al. McGraw-Hill, New York 1989; 822–44
  • Ledley F. D., Crane AM, Lumetta M. Heterogeneous alleles and expression of methylmalonyl CoA mutase in mut methylmalonic acidemia. Am J Hum Genet 1990; 46: 539–47
  • Ledley F. D., Levy H. L., Shih V. E., et al. Benign methylmalonic aciduria. N Engl J Med. 1984; 311: 1015–8
  • Ando T., Rasmussen K., Wright J. M., et al. Isolation and identification of methylcitrate, a major metabolic product of propionate in propionic acidemia. J Biol Chem. 1972; 247: 2200–4
  • Rosenblatt D. S., Cooper B A. Inherited disorders of vitamin Butilization. Bioessays. 1990; 12: 331–4
  • Haworth J. C., Booth F. A., Chudley A. E., et al. Phenotypic variability in glutaric aciduria type I: report of fourteen cases in five Canadian Indian kindreds. J Pediatr. 1991; 118: 52–8
  • Campistol J., Ribes A., Alvarez L., et al. Glutaric aciduria type I; unusual biochemical presentation. J Pediatr. 1992; 121: 83–6
  • Frerman F. E., Goodman S. I. Glutaric acidemia type II and defects of the mitochondrial respiratory chain. The metabolic basis of inherited disease, C. R. Scriver, A. L. Beaudet, W. S. Sly, et al. McGraw-Hill, New York 1989; 915–31
  • Amendt B. A., Rhead W. J. The multiple acyl-coenzyme A dehydrogenation disorders, glutaric aciduria type II and ethylmalonic-adipic aciduria: mitochondrial fatty acid oxidation, acyl-coenzyme A dehydrogenase, and electron transfer flavoprotein activities in fibroblasts. J Clin Invest 1986; 78: 205–13
  • Frerman F., Goodman S. Deficiency of electron transfer flavoprotein or electron transfer flavoprotein: ubiquinone oxidoreductase in glutaric acidemia II fibroblasts. Proc Natl Acad Sci USA 1985; 82: 4517–20
  • Barth P. G., Hoffmann G. F., Jaeken J., et al. L-2-Hydroxyglutaric acidaemia: clinical and biochemical findings in 12 patients and preliminary report on L-2-hydroxyacid dehydrogenase. J Inherited Metab Dis 1993; 16: 753–61
  • Gibson K. M., Craigen W., Herman G. E. D-2-Hydroxyglutaric aciduria in a newborn with neurological abnormalities: a new neurometabolic disorder. J Inherited Metab dis 1993; 16: 497–500
  • Rating D., Hanefeld F., Siemens H., et al. 4-Hydroxybutyric aciduria: a new inborn error of metabolism. I. Clinical review. J. Inherited Metab Dis. 1984; 7: 90–1
  • Jacobs C., Kneer J, Rating D., et al. Hydroxybutyric aciduria: a new inborn error of metabolism. II. Biochemical findings. J Inherited Metab Dis. 1984; 7: 92
  • Gibson K. M., Jansen I., Sweetman L., et al. 4-Hydroxybutyric aciduria: a new inborn error of metabolism. III. Enzymology and inheritance. J Inherited Metab Dis. 1984; 7: 95–9
  • Matalon R., Michaels K., Kaul R., et al. Malonic aciduria and cardiomyopathy. J Inherited Metab Dis 1993; 16: 571–3
  • Sewell A. C., Herwig J., Bohles H., et al. A new case of short-chain acyl-CoA dehydrogenase deficiency with isolated ethylmalonic aciduria. Eur J Pediatr. 1993; 152: 922–4
  • Burlina A. B., Dionisi-Vici C., Bennett M. J., et al. A new syndrome with ethylmalonic aciduria and normal fatty acid oxidation in fibroblasts. J Pediatr. 1994; 124: 79–86
  • Garavaglia B., Colamaria V., Carrara F., et al. Muscle cytochrome c oxidase deficiency in two Italian patients with ethylmalonic aciduria and peculiar clinical phenotype. J Inherited Metab Dis 1994; 17: 301–3
  • Christensen E., Brandt N. J., Schmalbruch H., et al. Muscle cytochrome C oxidase deficiency accompanied by a urinary organic acid pattern mimicking multiple acyl-CoA dehydrogenase deficiency. J Inherited Metab Dis 1993; 16: 553–6
  • Lehnert W., Ruitenbeek W. Ethylmalonic aciduria associated with progressive neurological disease and partial cytochrome C oxidase deficiency. J Inherited Metab Dis 1993; 16: 557–9
  • Duran M., Walther F. J., Bruinvis L., et al. The urinary excretion of ethylmalonic acid: what level requires further attention%. Biochem Med 1983; 29: 171–5
  • Kay M. A., O'Brien W., Kessler B., et al. Transient organic aciduria and methemoglobinuria with acute gastroenteritis. Pediatrics 1990; 85: 589–92
  • Whelan D. T., Hill RE, McClorry S. Fumaric aciduria: a new organic aciduria, associated with mental retardation and speech impairment. Clin Chim Acta. 1983; 132: 301–8
  • Lindblad B., Lindstedt S, Steen G. On the enzymic defects in hereditary tyrosinemia. Proc Natl AcadSci USA 1977; 74: 4641–5
  • Kvittingen E. A. Hereditary tyrosinemia type I: an overview. Scand J Clin Lab Invest 1986; 46(Suppl 146)27–34
  • Lindstedt S., Holme E., Lock E. A., et al. Treatment of hereditary tyrosinaemia type I by inhibition of 4-hydroxyphenylpyruvate dioxygenase. Lancet. 1992; 340: 813–7
  • Hillman R. E. Primary hyperoxalurias. The metabolic basis of inherited disease, C. R. Scriver, A. L. Beaudet, W. S. Sly, et al. McGraw-Hill, New York 1989; 933–44
  • Wandzilak T. R., Williams H. E. The hyperoxaluric syndromes. Endocrinol Metab Clin North Am 1990; 19: 851–67
  • Danpure C. J., Jennings P. R. Peroxisomal alanine: glyoxylate aminotransferase deficiency in primary hyperoxaluria type I. FEBS Lett. 1986; 201: 20–4
  • Matalon R., Michals K., Sebesta D., et al. Aspartoacylase deficiency and /V-acetylaspartic aciduria in patients with Canavan disease. Am J Med Genet 1988; 29: 463–71
  • Rhead W. J. Inborn errors of fatty acid oxidation in man. Clin Biochem. 1991; 24: 319–29
  • Vianey-Liaud C., Divry P., Gregersen N., et al. The inborn errors of mitochondrial fatty acid oxidation. J Inherited Metab Dis 1987; 10(suppl 1)159–98
  • Hale D. E., Bennett M. J. Fatty acid oxidation disorders: a new class of metabolic diseases. J Pediatr. 1992; 121: 1–11
  • Jackson S., Kler R. S., Bartlett K., et al. Combined enzyme defect of mitochondrial fatty acid oxidation. J Clin Invest 1992; 90: 1219–25
  • Morton D. H., Kelley R. I. Diagnosis of medium-chain acyl-coenzyme A dehydrogenase deficiency in the neonatal period by measurement of medium-chain fatty acids in plasma and filter paper blood samples. J Pediatr. 1990; 117: 439–42
  • Roe C. R., Coates P. M. Acyl-CoA dehydrogenase deficiencies. The metabolic basis of inherited disease, C. R. Scriver, A. L. Beaudet, W. S. Sly, et al. McGraw-Hill, New York 1989; 889–994
  • Stanley C. A., Hale D. E., Coates P. M., et al. Medium-chain acyl-CoA dehydrogenase deficiency in children with non-ketotic hypoglycemia and low carnitine levels. Pediatr Res. 1983; 17: 877–84
  • Taubman B., Hale DE, Kelley R. I. Familial Reye-like syndrome: a presentation of medium-chain acyl-coenzyme A deficiency. Pediatrics. 1987; 79: 382–5
  • Touma E. H., Charpentier C. Medium chain acyl-CoA dehydrogenase deficiency. Arch Dis Child. 1992; 67: 142–5
  • Treem W. R., Witzleben C. A., Piccoli C. A., et al. Medium-chain and long-chain acyl CoA dehydrogenase deficiency: clinical, pathologic, and ultrastructural differentiation from Reye's syndrome. Hepatology 1986; 6: 1270–8
  • Chitayat D. Sudden infant death and inherited disorders of fatty acid oxidation. Respiratory control disorders in infants and children, C. E. Hunt, R. T. Brouillette, R. C. Beckerman. Williams & Wilkins, Baltimore 1991; 277–293
  • Howat A. J., Bennett M. J., Variend S., et al. Defects of metabolism of fatty acids in the sudden infant death syndrome. Br Med J. 1985; 290: 1771–3
  • Greene C. L., Blitzer MG, Shapira E. Inborn errors of metabolism and Reye syndrome: differential diagnosis. J Pediatr. 1988; 113: 156–9
  • Duran M., Hofkamp M., Rhead W. J., et al. Sudden child death and “healthy” affected family members with medium-chain acyl-coenzyme A dehydrogenase deficiency. Pediatrics 1986; 78: 1052–7
  • Gregersen N., Koivraa S., Rasmussen K., et al. General (medium-chain) acyl-CoA dehydrogenase deficiency (non-ketotic dicarboxylic aciduria): quantitative urinary excretion pattern of 23 biologically significant organic acids in three cases. Clin Chim Acta. 1983; 132: 181–91
  • Duran M., Wadman SKD. Chemical diagnosis of inherited defects of fatty acid metabolism and ketogenesis. Recent advances in inborn errors of metabolism, K. Tada, J. P. Colombo, R. J. Desnick. S. Karger, Basel 1987; 115–23
  • Sweetman L., Hoffmann G, Aramaki S. New diagnostic techniques for the detection of organic acidemias. Recent advances in inborn errors of metabolism, K. Tada, J. P. Colombo, R. J. Desnick. S. Karger, Basel 1987; 124–31
  • Duran M., Bruinvis L., Ketting D., et al. Cis-4-decenoic acid in plasma: a characteristic metabolite in medium chain acyl-CoA dehydrogenase deficiency. Clin Chem 1988; 34: 548–51
  • Morton D. H., Kelley R. I. Diagnosis of medium-chain acyl-coenzyme A dehydrogenase deficiency in the neonatal period by measurement of medium-chain fatty acids in plasma and filter paper blood samples. J Pediatr. 1990; 117: 439–42
  • Heales SJR, Woolf D. A., Robinson P., et al. Rapid diagnosis of medium-chain acyl-CoA dehydrogenase- deficiency by measurement of cw-4-decenoic acid in plasma. J. Inherited Metab Dis 1991; 14: 661–7
  • Heales SJR, Leonard J. V. Diagnosis of medium-chain acyl CoA dehydrogenase deficiency by measurement of m-4-decenoic acid in dried blood spots. Clin Chim Acta. 1992; 209: 61–6
  • Bennett M. J., Ragni M. C., Ostfeld R. J., et al. Population screening for medium-chain acyl CoA dehydrogenase deficiency: analysis of medium-chain fatty acids and acylglycines in blood spots. Ann Clin Biochem 1994; 31: 72–7
  • Gregersen N., Andersen B. S., Bross P., et al. Molecular characterization of medium-chain acyl-CoA dehydrogenase (MCAD) deficiency: identification of a lys329to glu mutation in the MCAD gene, and expression of inactive mutant enzyme protein in E. coli. Hum Genet 1991; 86: 545–51
  • Curtis D., Blakemore A. F., Engel P. C., et al. Medium-chain acyl-CoA dehydrogenase deficiency in the United Kingdom. Prog Clin Biol Res 1992; 375: 489–94
  • Koivraa S., Gregersen N., Blakemore A., et al. The most common mutation causing medium-chain acyl-CoA dehydrogenase (MCAD) deficiency is strongly associated with a particular haplotype in the region of the gene. Hum Genet. 1991; 87: 425–9
  • Lundemose J. B., Gregersen N., Koivraa N., et al. The frequency of a disease-causing point mutation in the gene coding for medium-chain acyl-CoA dehydrogenase in sudden infant death syndrome. Acta Pediatr. 1993; 82: 544–6
  • Matsubara Y., Narisawa K., Tada K., et al. Prevalence of the K329E mutation in medium-chain acyl-CoA dehydrogenase gene determined from guthrie cards. Lancet. 1991; 338: 552–3
  • Hale D. E., Stanley CA, Coates P. M. The long-chain acyl-CoA dehydrogenase deficiency. Prog Clin Biol Res. 1990; 321: 303–11
  • Hale D. E., Batshaw M. L., Coates P. M., et al. Long-chain acyl coenzyme A dehydrogenase deficiency: an inherited cause of non-ketotic hypoglycemia. Pediatr Res 1985; 19: 666–71
  • Treem W. R., Stanley C. A., Hale D. E., et al. Hypoglycemia, hypotonia, and cardiomyopathy: the evolving clinical picture of long-chain acyl-CoA dehydrogenase deficiency. Pediatrics. 1991; 87: 328–33
  • Amendt B. A., Breene C., Sweetman L., et al. Short-chain acyl-Coenzyme A dehydrogenase deficiency. Clinical and biochemical studies in two patients. J Clin Invest. 1987; 79: 1303–9
  • Coates P. M., Hale D. E., Finocchiaro G., et al. Genetic deficiency of short-chain acyl-coenzyme A dehydrogenase deficiency in cultured fibroblasts from a patient with muscle carnitine deficiency and severe skeletal muscle weakness. J Clin Invest 1988; 81: 171–5
  • Hoffmann G. F., Hunneman D. H., Jacobs C., et al. Progressive fatal pancytopenia, psychomotor retardation, and muscle carnitine deficiency in a child with ethylmalonic aciduria and ethylmalonic acidemia. J Inherited Metab Dis 1990; 13: 337–40
  • Tumbull D. M., Bartlett K., Stevens D. L., et al. Short-chain acyl-CoA dehydrogenase deficiency associated with a lipid storage myopathy and secondary carnitine deficiency. N Engl J Med. 1984; 311: 1232–7
  • Carpenter K., Pollitt PJ, Middleton B. Human liver long-chain 3-hydroxyacyl-coenzyme A dehydrogenase is a multifunctional membrane-bound beta-oxidation enzyme of mitochondria. Biochem Biophys Res Commun. 1992; 183: 443–8
  • Uchida Y., Izai K., Orii T., et al. Novel fatty acid β-oxidation enzymes in rat liver mitochondria. II. Purification and properties of enoyl-coenzyme A (CoA) hydratase/3-hydroxyacyI-CoA dehy-drogenase/3-ketoacyl-CoA thiolase trifunctional protein. J Biol Chem. 1992; 267: 1034–41
  • Duran M., Wanders RJA, De Jager J. P., et al. 3-Hydroxydicarboxylic aciduria due to long-chain 3-hydroxyacyl-coenzyme A dehydrogenase deficiency associated with sudden neonatal death: protective effect of medium-chain triglyceride treatment. Eur J Pediatr. 1991; 150: 190–5
  • Hagenfeldt L., von Dobeln U., Holme E., et al. 3-Hydroxydicarboxylic aciduria – a fatty acid oxidation defect with severe prognosis. J Pediatr. 1990; 116: 387–92
  • Glasgow A. M., Engel A. G., Bier D. M., et al. Hypoglycemia, hepatic dysfunction, muscle weakness, cardiomyopathy, free carnitine deficiency and long-chain acylcarnitine excess responsive to medium chain triglyceride diet. Pediatr Res 1983; 17: 319–26
  • Jackson S., Bartlett K., Land J., et al. Long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency. Pediatr Res 1991; 29: 406–11
  • Pollitt R. J. Clinical and biochemical presentation in 20 cases of hydroxydicarbocyclic aciduria. Prog Clin Biol Res 1990; 321: 495–502
  • Wanders RJA, Ijlst L., van Gennip A. H., et al. Long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency: identification of a new inborn error of mitochondrial fatty acid p-oxidation. J Inherited Metab Dis 1990; 13: 311–4
  • Rocchiccioli F., Wanders RJA, Aubourg P., et al. Deficiency of long-chain 3-hydroxyacyl-CoA dehydrogenase: a cause of lethal myopathy and cardiomyopathy in early childhood. Pediatr Res 1990; 28: 657–62
  • Bertini E., Sabatelli M., Garavaglia B., et al. Myopathy and sensory-motor polyneuropathy in long chain 3-OH-acyl CoA dehydrogenase deficiency. J Neurol Sci 1990; 98(Suppl)273
  • Dionisi-Vici C. D., Burlina A. B., Bertini E., et al. Progressive neuropathy and recurrent myoglobinuria in a child with long-chain 3-hydroxyacyl-coenzyme A dehydrogenase deficiency. J Pediatr. 1991; 118: 744–6
  • Jackson S., Kler R. S., Bartlett K., et al. Combined enzyme defect of mitochondrial fatty acid oxidation. J Clin Invest 1992; 90: 1219–25
  • Treem W. R., Rinaldo P., Hale D. E., et al. Acute fatty liver of pregnancy and long-chain 3-hydroxyacyl-coenzyme A dehydrogenase deficiency. Hepatology 1994; 19: 339–45
  • Wilcken B., Leung K. C., Hammond J., et al. Pregnancy and fetal long-chain 3-hydroxyacyl coenzyme A dehydrogenase deficiency. Lancet. 1993; 341: 407–8
  • Tein I., De Vivo D. C., Hale D. E., et al. Short-chain L-3-hydroxyacyl-CoA dehydrogenase deficiency in muscle: a new cause for recurrent myoglobinuria and encephalopathy. Ann Neurol 1991; 30: 415–9
  • Bergoffen J., Kaplan P., Hale D. E., et al. Marked elevation of urinary 3-hydroxydecanedioic acid in a malnourished infant with glycogen storage disease, mimicking long-chain L-3-hydroxyacyl-CoA dehydrogenase deficiency. J Inherited Metab Dis 1993; 16: 851–6
  • Bennett M. J., Weinberger M. J., Sherwood W. G., et al. Secondary 3-hydroxydicarboxylic aciduria mimicking long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency. J Inherited Metab Dis 1994; 17: 283–6
  • La Du B. N., Gjessing L. R. Tyrosinosis and tyrosinemia. The molecular basis of inherited disease, J. B. Stanbury, J. B. Wyngaarden, D. S. Fredrickson. McGraw-Hill, New York 1978; 256
  • Giardini O., Cantani A., Kennaway N. G., et al. Chronic tyrosinemia associated with 4-hydroxyphenylpyruvate dioxigenase deficiency with acute intermittent ataxia and without visceral bone involvement. Pediatr Res 1983; 17: 25–9
  • Endo F., Kitano A., Uehara I., et al. 4-Hydroxyphenylpyruvic acid oxidase deficiency with normal fumarylacetoacetase: a new variant form of hereditary hypertyrosinemia. Pediatr Res 1983; 17: 92–6
  • Goldsmith L. A., Laberge C. Tyrosinemia and related disorders. The metabolic basis of inherited disease, C. R. Scriver, A. L. Beaudet, W. S. Sly, et al. McGraw-Hill, New York 1989; 572–62
  • La Du, Alcaptonuria B. N. The metabolic basis of inherited disease, C. R. Scriver, A. L. Beaudet, W. S. Sly, et al. McGraw-Hill, New York 1989; 775–90
  • Tada K., Yokoyama Y., Nakagawa H., et al. Vitamin B6dependent xanthurenic aciduria. Tohoku J Exp Med 1967; 93: 115–24
  • Komrower G. M., Wilson V., Clamp J. R., et al. Hydroxykynureinuria. A case of abnormal tryptophane metabolism probably due to a deficiency of kynureninase. Arch Dis Child 1964; 39: 250–6
  • Cohen R. D., Woods H. F. Clinical and biochemical aspects of lactic acidosis. Blackwell Scientific, Oxford 1976
  • Teyssier G. Carbohydrate infusion inducing lactic acidosis. Role of thiamine in an infant with malnutrition. Presse Med. 1986; 15: 120–1
  • Saudubray J-M, Barbier M-L. Thiamine. Les vitamines, A. Munnich, M. Ogier, J-M Saudubray. Masson, Paris 1987; 107–42
  • Stacpoole P. W. Lactic acidosis. Endocrinol Metab Clin North Am 1993; 22: 221–45
  • Pettersen J. E., Landaas S., Eldjarn L. The occurrence of 2-hydroxybutyric acid in urine from patients with lactic acidosis. Clin Chim Acta 1973; 48: 213–9
  • Mason P. D. Metabolic acidosis due to D-lactate. Br Med J. 1986; 292: 1105–6
  • Hudson M., Pocknee R, Mowat NAG. D-Lactic acidosis in short bowel syndrome – an examination of possible mechanisms. Q J Med 1990; 74: 157–63
  • Gurevitch J., Sela B., Jonas A., et al. D-Lactic acidosis: a treatable encephalopathy in pediatric patients. Acta Pediatr 1993; 82: 119–21
  • Thum J. R., Pierpont G. L., Ludvigsen C. W., et al. D-Lactate encephalopathy. Am J Med 1985; 79: 717–21
  • Meister A., Larsson A. Glutathione synthetase deficiency and other disorders of the gamma-glutamyl cycle. The metabolic basis of inherited disease, C. R. Scriver, A. L. Beaudet, WS Sly, et al. McGraw-Hill, New York 1989; 855–68
  • Pitt JJ, Brown G. K., Clift V., et al. Atypical pyroglutamic aciduria: possible role of paracetamol. J Inherited Metab Dis 1990; 13: 755–6
  • Bonham J. R., Rattenburg J. M., Meeks A., et al. Pyroglutamic aciduria from vigabatrin. Lancet. 1989; 1: 1452–3
  • Hoffmann G. F., Charpentier C., Mayatepek E., et al. Clinical and biochemical phenotype in 11 patients with mevalonic aciduria. Pediatrics 1993; 91: 915–21
  • Niederwieser A., Wadman SK, Danks D. M. Excretion of cis- and trans-4-hydroxycyclohexylacetic acid in addition to hawkinsin in a family with a postulated defect of 4-hydroxyphenylpyruvate dioxygenase. Clin Chim Acta 1978; 90: 195–200
  • Wilcken B., Hammond J. W., Howard N., et al. Hawkinsinuria. A dominantly inherited defect of tyrosine metabolism wim severe effects in infancy. N Engl J Med. 1981; 305: 865–9
  • Cotariu D., Zaidman J. L. Valproic acid and the liver. Clin Chem 1988; 34: 890–7
  • Becker C. M., Harris R. A. Influence of valproic acid on hepatic carbohydrate and lipid metabolism. Arch Biochem Biophys. 1983; 223: 381–92
  • Kukino K., Mineura K., Deguchi T., et al. Studies on a new anticonvulsant drug, sodium dipropylacetate. Assay for metabolites and metabolic pathway. J Pharm Soc Jpn 1972; 92: 869–900
  • Abbott F. S., Kassam J., Orr J. M., et al. The effect of aspirin on valproic acid metabolism. Clin Pharmacol Ther 1986; 40: 94–100
  • Anderson G. D., Acheampong AA, Levy R. H. Interaction between valproate and branched-chain amino acid metabolism. Neurology 1994; 44: 742–4
  • Turnbull D. M., Bone A. J., Bartlett K., et al. The effects of valproate on intermediary metabolism in isolated hepatocytes and intact rats. Biochem Pharmacol 1983; 32: 1887–92
  • Ohtani Y., Endo F, Matsuda I. Carnitine deficiency and hyperammonemia associated with valproic acid therapy. J Pediatr 1982; 101: 782–5
  • Thurston J. H., Caroll J. E., Dodson W. E., et al. Chronic valproate administration reduces fasting ketonemia in children. Neurology 1983; 33: 1348–50
  • Rettie A. E., Rettenmeier A. W., Howald W. N., et al. Cytochrome P-450-catalyzed formation of 4-en-VPA, a toxic metabolite of valproic acid. Science 1987; 235: 890–3
  • Granneman GR, Wang S. I., Kesterton J. W., et al. The hepatotoxicity of valproic acid and its metabolites in rats. II. Intermediary and valproic acid metabolism. Hepatology 1984; 4: 1153–8
  • Dreifuss F. E., Santilli N., Langer D. H., et al. Valproic acid hepatic fatalities. A retrospective review. Neurology 1987; 37: 379–85
  • Rettenmeier A. W., Howald W. N., Levy R. H., et al. Quantitative metabolic profiling of valproic acid in humans using automated gas chromatographic/mass spectrometric techniques. Biomed Environ Mass Spectrom 1989; 18: 192–9
  • Bartlett K. Sodium valproate and hyperglycinaemia, [Letter]. Lancet. 1977; 2: 716
  • Cherruau B., Mangeot M., Demelier J. F., et al. Metabolic abnormalities observed in the rat after administration of sodium dipropylacetate. Toxicol Lett. 1981; 8: 39–42
  • Schmidt-Sommerfeld E., Perm D., Rinaldo P., et al. Urinary medium-chain acylcarnitines in medium-chain acyl-CoA dehydrogenase deficiency, medium-chain triglyceride feeding and valproic acid therapy: sensitivity and specificity of the radioisotopic exchange/high performance liquid chromatography method. Pediatr Res 1992; 31: 545–51
  • Kossak B. D., Schmidt-Sommerfeld E., Scholler D. A., et al. Impaired fatty acid oxidation in children on valproic acid and the effect of L-carnitine. Neurology 1993; 43: 2362–8
  • Coulter D. L., Allen R. J. Hyperammonemia with valproic acid therapy. J Pediatr 1981; 99: 317–9
  • Coude F., Rabier D., Cathelineau L., et al. A mechanism for valproate-induced hyperammonemia. Pediatr Res 1981; IS: 974–5
  • Melegh B., Kerner J, Bieber L. L. Pivampicillin-promoted excretion of pivaloylcarnitine in humans. Biochem Pharmacol 1987; 36: 3405–9
  • Holme E., Jacobson C. E., Nordin I., et al. Carnitine deficiency induced by pivampicillin and pivmecillinam therapy. Lancet. 1989; 2: 469–73
  • Selby P. L., Sherratt HSA. Substituted 2-oxiranecarboxylic acids: a new group of cardidate hypoglycaemic drugs. Trends Pharmacol Sci 1989; 10: 495–500
  • Wolf HPO. Aryl-substituted 2-oxiranecarboxylic acids: a new group of antidiabetic drugs. New antidiabetic drugs, C. J. Bailey, P. R. Flatt. Smith-Gordon, London 1990; 217–227
  • Kler R. S., Sherratt HSA, Turnbull D. M., et al. Organic aciduria in fasted rats caused by 2-[6-(4-chlorophenoxy)hexyl]oxirane-2-carboxylate (etomoxir). Biochem Pharmacol 1991; 42: 1637–9
  • Melde K., Jackson S., Bartlett K., et al. Metabolic consequences of methylenecyclopropylglycine poisoning in rats. Biochem. J. 1991; 274: 395–400
  • Veitch R. K., Sherratt HSA. Organic aciduria in rats made resistant to hypoglycin toxicity by pretreatment with clofibrate. Biochem J 1987; 246: 775–8
  • Tanaka K., Miller EM, Isselbacher K. J. Hypogycin a: a specific inhibitor of isovaleryl CoA dehydrogenase. Proc Natl Acad Sci USA 1971; 68: 20–4
  • Rhead W. J., Tanaka K. Demonstration of a specific mitochondrial isovaleryl-CoA dehydrogenase deficiency in fibroblasts from patients with isovaleric acidemia. Proc Natl Acad Sci USA 1980; 77: 580–3
  • Hine D. G., Tanaka K. Capillary gas chromatographic/mass spectrometric analysis of abnormal metabolites in hypoglycin-treated rat urine. Biomed Mass Spectrom. 1984; 11: 332–9
  • Giordano G., Murray W. J., Previs S. F., et al. Identification of 2-(2'-octenylsuccinic) acid in urine. Rapid Commun Mass Spectrom. 1990; 4: 170–2
  • Kelley R. I. Octenylsuccinic aciduria in children fed protein-hydrolysate formulas containing modified cornstarch. Pediatr Res. 1991; 30: 564–9
  • Giordano G., McMurray W. J., Previs S. F., et al. Identification of 2-(2'octenylsuccinic) acid metabolites in urine by GC/MS and GC/MS/MS. Proceeding of the 40th ASMS Conference on Mass Spectrometry and Allied Topics, Washington, DC May 31-June 5, 1992 910–11. May 31-June 5, 1992
  • McGarry J. D., Foster D. W. Regulation of hepatic fatty acid oxidation and ketone body production. Annu Rev Biochem 1980; 49: 395–420
  • Mortensen P. B., Gregersen N. Medium-chain triglyceride medication as a pitfall in the diagnosis of non-ketotic C6-C10-dicarboxylic acidurias. Clin Chim Acta. 1980; 103: 33–7
  • Shigematsu Y., Momoi T., Sudo M., et al. (ω-l)-Hydroxymonocarboxylic acids in urine of infants fed medium-chain triglycerides. Clin Chem 1981; 27: 1661
  • Brass E. P., Tserng K.Y, Eckel R. H. Urinary organic acid excretion during feeding of medium-chain or long-chain triglyceride diets in patients with non-insulin-dependent diabetes mellitus. Am J Clin Nutr 1990; 52: 923–6
  • Rubaltelli F. F., Orzali A., Rinaldo P., et al. Carnitine and the premature. Biol Neonate 1987; 52(Suppl 1)65–77
  • Kuhara T., Matsumoto I., Ohno M., et al. Identification and quantification of octanoyl glucu-ronide in the urine of children who ingested medium-chain triglycerides. Biomed Environ Mass Spectrom. 1986; 13: 595–8
  • Norman E. J. New urinary methylmalonic acid test is a sensitive indicator of cobalamine (vitamin Bl2) deficiency: a solution for a major unrecognized medical problem. J Lab Clin Med 1987; 110: 369–70
  • Ledley F. D., Levy H. L., Shih V. E., et al. Benign methylmalonic aciduria. N Engl J Med. 1984; 311: 1015–8
  • Carmen R., Sinow RM, Kamaze D. S. Atypical cobalamine deficiency. J Lab Clin Med. 1987; 109: 454–63
  • Higginbottom M. C., Sweetman L, Nyhan W. L. A syndrome of methylmalonic aciduria, homocystinuria, megaloblastic anemia and neurologic abnormalities in a vitamin B12-deficient breast-fed infant of a strict vegetarian. N Engl J Med. 1979; 299: 317–23
  • Specker B. L., Miller D., Norman E. J., et al. Increased urinary methylmalonic acid excretion in breast-fed infants of vegetarian mothers and identification of an acceptable dietary source of vitamin B-12. Am J Clin Nutr 1988; 47: 89–92
  • Close G. C. Rastafarianism and the vegans syndrome. Br Med J 1983; 286: 473
  • Goodman S. I. Organic aciduria in the riboflavin deficient rat. Am J Clin Nutr 1981; 34: 2434–7
  • Gregersen N., Kolvraa S. The occurrence of C6-C0-dicarboxylic acids, ethylmalonic acid, 5-hydroxycaproic acid, butyrylglycine, isovalerylglycine, isobutyrylglycine, 2-methyl-butyrylglycine and glutaric acid in the urine of riboflavin-deficient rats. J Inherited Metab Dis 1982; 5(Suppl 1)17–18
  • Gromisch D. S., Lopez R., Cole H. S., et al. Light (phototherapy)-induced riboflavin deficiency in the neonate. J Pediatr. 1977; 90: 118–22
  • Tan K. L., Chow MT, Karim SMM. Effect of phototherapy on neonatal riboflavin status. J Pediatr. 1978; 93: 494–7
  • Amin H. J., Shukla A. K., Snyder F., et al. Significance of phototherapy-induced riboflavin deficiency in the full-term neonate. Biol Neonate 1992; 61: 76–81
  • Oriot D., Wood C., Gottesman R., et al. Severe lactic acidosis related to acute thiamine deficiency. J Parenter Enter Nutr 1991; 15: 105–9
  • Penn D, Ludwigs B, Schmidt-Sommerfeld E., et al. Effect of nutrition on tissue carnitine concentrations in infants of different gestational ages. Biol Neonate 1985; 47: 130–5
  • Penn D, Schmidt-Sommerfeldt E, Wolf H. Carnitine deficiency in premature infants receiving total parenteral nutrition. Early Hum Dev. 1980; 4: 23–34
  • Schmidt-Sommerfeldt E., Penn D., Bieber L. L., et al. Carnitine ester excretion in pediatric patients receiving parenteral nutrition. Pediatr Res 1990; 28: 158–65
  • Schmidt-Sommerfeld E., Penn D. Role of carnitine in children receiving total parenteral nutrition. L-Carnitine and its role in medicine, R. Ferrari, S. Dimauro, G. Sherwood. Academic Press, London 1992; 117–36
  • Worthley L. I., Fishlock RC, Snoswel A. M. Carnitine balance and effects of intravenous L-carnitine in two patients receiving long-term parenteral nutrition. J Parenter Enter Nutr. 1983; 8: 717–9
  • Pichard C., Roulet M., Schutz Y., et al. Clinical relevance of L-camitine-supplemented total parenteral nutrition in post-operative trauma. Am J Clin Nutr 1989; 49: 283–9
  • Iapichino G., Radrizzani D., Colombo A., et al. Carnitine excretion: a catabolic index of injury. J Parenter Enteral Nutr. 1988; 12: 35–6
  • Nanni G., Pittirut M., Giovannini I., et al. Plasma carnitine levels and urinary carnitine excretion during sepsis. J Parenter Enter Nutr. 1985; 9: 483–90
  • Cummings J. H. Fermentation in the human large intestine: evidence and implication for health. Lancet 1983; 1: 1206–9
  • Mortensen P. B., Holtug K., Bonnen H., et al. The degradation of amino acids, proteins, and blood to short-chain fatty acids in colon is prevented by lactulose. Gastroenterology 1990; 98: 353–60
  • McNeil N. I., Cummings JH, James WPT. Short chain fatty acid absorption by the human large intestine. Gut. 1978; 19: 819–22
  • Williams R. T. Toxicologic implications of biotransformation by intestinal microflora. Toxicol Appl Pharmacol 1972; 23: 769–81
  • Zieve L., Nicoloff D. M. Pathogenesis of hepatic coma. Annu Rev Med. 1975; 26: 143–57
  • Zieve L. The mechanism of hepatic coma. Hepatology 1981; 1: 360–5
  • Walter J. H., Leonard J. V., Thompson G. N., et al. Gut bacterial metabolism. Lancet. 1988; 2: 226
  • Pollitt R. J., Fowler B., Sardharwalla I. B., et al. Increased excretion of propan-l,3-diol and 3-hydroxypropionic acid apparently caused by abnormal bacterial metabolism in the gut. Clin ChimActa. 1987; 169: 151–8
  • Bain M. D., Jones M., Boriello S. P., et al. Contribution of gut bacterial metabolism to human metabolic disease. Lancet 1988; 1: 1078–9
  • Rinaldo P., O'Shea J. J., Welch R. D., et al. The enzymatic basis for the dehydrogenation of 3-phenylpropionic acid:. in vitro reaction of 3-phenylpropionyl-CoA with various acyl-CoA dehydrogenases. Pediatr Res. 1990; 27: 501–7
  • Permutter D. H., Boyle J. T., Compos J. M. D-Lactic acidosis in children: an unusual metabolic complication of small bowel resection. J Pediatr. 1983; 102: 234–8
  • Schoorel E. P., Giesbets MAH, Blom W., et al. D-Lactic acidosis in a boy with short bowel syndrome. Arch Dis Child 1980; 55: 810–2
  • Haan E., Brown G., Bankier A., et al. Severe illness caused by the products of bacterial metabolism in a child with a short gut. Eur J Pediatr. 1985; 144: 63–5
  • McCabe ERB, Goodman S. I., Fennessey P. V., et al. Glutaric, 3-hydroxypropionic and lactic aciduria with metabolic acidemia, following extensive small bowel resection. Biochim Med 1982; 28: 229–36
  • Kay M. A., O'Brien W., Kessler B., et al. Transient organic aciduria and methemoglobinemia with acute gastroenteritis. Pediatrics 1990; 85: 589–92
  • Walker V., Mills G. A. Urinary organic acid excretion by babies born before 33 weeks of gestation. Clin Chem 1989; 35: 1460–6
  • Rebouche C. J. Recent advances in carnitine biosynthesis and transport. Clinical aspects of human carnitine deficiency, P. Borum. Pergamon Press, New York 1986; 1–15
  • Ahmad S. Carnitine, kidney and renal dialysis. L-CAMITINE AND ITS ROLE IN MEDICINE, R. Ferrari, S. Dimauro, G. Sherwood. Academic Press, London 1992; 381–400
  • Walker V., Mills G. A. Effects of birth asphyxia on urinary organic acid excretion. Biol Neonate 1992; 61: 162–72
  • Ogier H., Charpentier C, Saudubray J-M. Organic acidemias. Inborn metabolic diseases: diagnosis and treatment, J. Femandes, J-M Saudubray, K. Tada. Springer-Verlag, Berlin 1990; 271–99

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.