114
Views
33
CrossRef citations to date
0
Altmetric
Research Article

Clinical and Biological Aspects of Acid Phosphatase

, , &
Pages 431-467 | Published online: 27 Sep 2008

References

  • Hopkinson D. A., Spencer N., Harris H. Red cell acid phosphatase variants: a new human polymorphism. Nature 1963; 199: 969–971
  • Sur B. K., Moss D. W., King E. J. Starch gel electrophoresis of prostatic acid phosphatase. Proc Assoc Clin Biochem 1962; 2: 11–13
  • Lam K-W, Li C. Y., Yam L. T., et al. Comparison of prostatic and nonprostatic acid phosphatase. Ann NY Acad Sci 1982; 390: 1–15
  • Ostrowski W., Wasyl Z., Weber M., et al. The role of neuraminic acid in the heterogeneity of acid phosphomonoesterase from the human prostate gland. Biochim Biophys Acta 1970; 221: 297–306
  • Wo Y-YP, McCormack A. L., Shabanowitz J., et al. Sequencing, cloning and expression of human red cell-type acid phosphatase, a cytoplasmic protein phosphatase. J Biol Chem 1992; 267: 10856–65
  • Swallow D. M., Povey S., Harris H. Activity of the red 'cell' acid phosphatase locus in other tissues. Ann Hum Genet. 1973; 37: 31–8
  • Blake N. M., Kirk R. L., Barnes K. R., et al. Expression of red cell acid phosphatase activity in placenta and other tissues. Jpn J Hum Genet 1973; 18: 10–23
  • Pohlmann R., Krentler C., Schmidt B., et al. Human lysosomal acid phosphatase: cloning, expression and chromosomal assignment. EM BO J. 1988; 7: 2343–50
  • Lam K-W, Lee P., Eastlund T., et al. Antigenic and molecular relationship of human prostatic acid phosphatase isoenzymes. Invest Urol. 1980; 18: 209–11
  • Heller J. E. Prostatic acid phosphatase: its current clinical status. J Urol 1987; 137: 1091–3
  • Kaczmarek M. J. On the isoenzymes of human red cell acid phosphatase. Biochem Med. 1976; 16: 173–6
  • Kimura N., Sasano N. Prostate-specific acid phosphatase in carcinoid tumors. Virchows Arch (A) 1986; 410: 247–51
  • Drenckhahn D., Waheed A., Van Etten R. Demonstration of prostatic-type acid phosphatase in non-lysosomal granules in the crypt epithelium of the human duodenum. Histochemistry 1987; 88: 47–52
  • Epstein J. I., Kuhajda F. P., Lieberman P. H. Prostate-specific acid phosphatase immunoreactivity in adenocarcinomas of the urinary bladder. Hum Pathol 1986; 17: 939–42
  • Lord D. K., Cross NCP, Bevilacqua M. A., et al. Sequence, expression and chromosomal localization of a differentiation-associated protein of the human macrophage. Eur J Biochem. 1990; 189: 287–93
  • Behrendt H. Phosphatase activity of human erythrocytes. Proc Soc Exp Biol Med 1943; 54: 268–70
  • Tsuboi K. K., Hudson P. B. Acid phosphatase. I. Human red cell phosphomonoesterase: general properties. Arch Biochem Biophys 1953; 43: 339–57
  • Tsuboi K. K., Hudson P. B. Acid phosphatase. II. Purification of human red cell phosphomonoesterase. Arch Biochem Biophys. 1954; 53: 341–7
  • Tsuboi K. K., Hudson P. B. Acid phosphatase. V. The nature of inactivation and stabilisation of purified human red cell phosphomonoesterase. Arch Biochem Biophys. 1955; 55: 206–18
  • Tsuboi K. K., Hudson P. B. Acid phosphatase. VI. Kinetic properties of purified yeast and red cell phosphomonoesterase. Arch Biochem Biophys 1956; 61: 197–210
  • Golden V. L., Sensabaugh G. F. Phenotypic variation in the phosphotransferase activity of human red cell acid phosphatase (ACP-1). Human Genet 1986; 72: 340–3
  • Sokal R. R., Oden N. L., Wilson C. Genetic evidence for the spread of agriculture in Europe by demic diffusion. Nature 1991; 351: 143–5
  • Ferguson-Smith M. A., Newman B. F., Ellis P. M., et al. Assignment by deletion of human red cell acid phosphatase gene locus to the short arm of chromosome 2. Nature New Biol. 1973; 243: 271–4
  • Dissing J., Svensmark O. Human red cell acid phosphatase: purification and properties of A, B and C isozymes. Biochim Biophys Acta. 1990; 1041: 232–42
  • White INH, Butterworth P. J. Isoenzymes of human erythrocyte acid phosphatase. Biochim Biophys Acta. 1971; 229: 193–201
  • Dissing J., Sensabaugh G. F. Human red cell acid phosphatase (ACP 1): differences in the primary structure of the two isoenzymes encoded by the ACP*B allele. Biochem Genet. 1987; 25: 919–27
  • Dissing J., Johnsen A. H., Sensabaugh G. F. Human red cell acid phosphatase (ACP 1). J Biol Chem. 1991; 266: 20619–25
  • Dissing J., Dahl O., Svensmark O. Phosphoric and arsonic acids as inhibitors of human red cell acid phosphatase and their use in affinity chromatography. Biochim Biophys Acta. 1979; 569: 159–76
  • Zhang Z. Y., Van Etten R. L. Purification and characterisation of a low molecular weight acid phosphatase – a phosphotyrosyl protein from bovine heart. Arch Biochem Biophys 1990; 282: 39–49
  • Di Pietro D. L., Zengerle F. S. Separation and properties of three acid phosphatases from human placenta. J Biol Chem. 1967; 242: 3391–5
  • Waheed A., Laidler P. M., Wo Y-YP, et al. Purification and physicochemical characterisation of a human placental acid phosphatase possessing phosphotyrosyl protein phosphatase activity. Biochemistry 1988; 27: 4265–73
  • Heinrikson R. L. Purification and characterisation of a low molecular weight acid phosphatase from bovine liver. J Biol Chem. 1969; 244: 299–307
  • Fujimoto S., Murakami K., Ishikawa A., et al. Two distinct low molecular weight acid phosphatases from rat liver. Chem Pharm Bull (Tokyo) 1988; 36: 3020–6
  • Luffnian J. E., Harris H. A comparison of some properties of human red cell acid phosphatase in different phenotypes. Ann Hum Genet. 1967; 30: 387–401
  • Taga E. M., Van Etten R. L. Human liver acid phosphatases: purification and properties of a low molecular weight isoenzyme. Arch Biochem Biophys. 1982; 214: 505–15
  • Chaimovich H., Nome F. Purification and properties of an acid phosphatase from bovine brain. Arch Biochem Biophys. 1970; 139: 9–16
  • Lai L., Revo S., Steinberg A. G. Acid phosphatases of human red cells: predicted phenotype conforms to a genetic hypothesis. Science 1964; 145: 1187–8
  • Karp G. W., Sutton H. E. Some new phenotypes of human red cell acid phosphatase. Am J Hum Genet. 1967; 19: 54–62
  • Giblett E. R., Scott N. M. Red cell acid phosphatase: racial distribution and report of a new phenotype. Am J Hum Genet 1965; 17: 425–32
  • Fuhrmann W., Lichte K. H. Human red cell acid phosphatase polymorphisms. Humangenetik 1966; 3: 121–6
  • Hopkinson D. A., Spencer N., Harris H. Genetic studies on human red cell acid phosphatase. Am J Hum Genet 1964; 16: 141–54
  • Modiano G., Filippi G., Brunelli F., et al. Studies on red cell acid phosphatases in Sardinia and Rome. Absence of correlation with past malarial morbidity. Acta Genet 1967; 17: 17–28
  • Lai LYC. Hereditary red cell acid phosphatase types in Australian white and New Guinea native populations. Acta Genet 1966; 16: 313–20
  • Lai LYC, Kwa S. B. Red cell acid phosphatase types in some populations of south-east Asia. Acta Genet 1968; 18: 45–54
  • Tashian R. E., Brewer G. J., Lehmann H., et al. Further studies on the Xavante Indians. V. Genetic variability in some serum and erythrocyte enzymes, hemoglobin, and the urinary excretion of β-amino-isobutyric acid. Am J Hum Genet. 1967; 19: 524–31
  • Shinoda T. Red cell acid phosphatase types in a Japanese population. Jpn J Hum Genet. 1967; 11: 252–6
  • Brewer G. J., Bowbeer D. F., Tashian R. E. The electrophoretic phenotypes of red cell phosphoglu-comutase, adenylate kinase, and acid phosphatase in the American Negro. Acta Genet Stat Med 1967; 17: 97–103
  • Scott E. M., Duncan L. W., Ekstrand V., et al. Frequency of polymorphic types of red cell enzymes and serum factors in Alaskan Eskimos and Indians. Am J Hum Genet 1966; 18: 408–11
  • Dissing J. Immunochemical characterisation of human red cell acid phosphatase isozymes. Biochem Genet. 1987; 25: 901–18
  • Spencer N., Hopkinson D. A., Harris H. Quantitative difference and gene dosage in the human red cell acid phosphatase polymorphism. Nature 1964; 201: 299–300
  • Mansfield E., Sensabaugh G. F. The red cell, G. J. Brewer. Alan R. Liss, New York 1978; Vol 4: 233–44
  • Sensabaugh G. F., Golden V. L. Phenotype dependence in the inhibition of red cell acid phosphatase (ACP) by folates. Am J Hum Genet 1978; 30: 553–60
  • Wurzinger K. H., Novotny J. E., Mohrenweiser H. W. Studies of the purine analog associated modulation of human erythrocyte acid phosphatase activity. Mol Cell Biochem. 1985; 66: 127–36
  • Boivin P., Galand C. The human red cell acid phosphatase is a phosphotyrosine protein phosphatase which dephosphorylates the membrane protein band 3. Biochem Biophys Res Commun. 1986; 134: 557–64
  • Harrison M. L., Rathinavelu P., Arese P., et al. Role of band 3 tyrosine phosphorylation in the regulation of erythrocyte glycolysis. J Biol Chem 1991; 266: 4106–11
  • Naidu J. M., Mohrenweiser H. W. Erythrocyte acid phosphatase – species specificity in activity modulation by purine analogs. Comp Biochem Physiol B. 1985; 81: 615–9
  • Panara F., Angiolillo A., Secca T., et al. Acid phosphatases in the frog (Rana esculenta) skeletal muscle. Purification and some properties of the low molecular weight enzyme. lnt J Biochem 1991; 23: 1115–22
  • Baxter J. H., Suelter C. H. Resolution of the low molecular weight acid phosphatase in avian pectoral muscle into two distinct enzyme forms. Arch Biochem Biophys. 1985; 239: 29–37
  • Saeed A., Tremori E., Manao G., et al. Bovine brain low Mracid phosphatase: purification and properties. Physiol Chem Phys Med NMR. 1990; 22: 81–94
  • Manao G., Pazzagli L., Cirri P., et al. Rat liver low M(r) phosphotyrosine protein phosphatase isoenzymes: purification and amino acid sequences. Prot Chem 1992; 11: 333–45
  • Dissing J., Johnsen A. H. Human red cell acid phosphatase (ACP 1): the primary structure of the two pairs of isozymes encoded by the ACPIA and ACP1C alleles. Biochim Biophys Acta. 1992; 1121: 261–8
  • Divall G. B. Studies on the use of isoelectric focusing as a method of phenotyping erythrocyte acid phosphatase. Forensic Sci lnt. 1976; 18: 67–78
  • Harris H., Hopkinson D. A., Loffman J. E., et al. Electrophoretic variation in erythrocyte enzymes. Hereditary disorders of erythrocyte metabolism, E. Beutler. Grune & Stratton, New York 1968; 1–20
  • Ayer K.D. Lazaruk, Dissing J. M., Sensabaugh G. F. Exon structure at the human ACPI locus supports alternative splicing model for f and s isozyme generation. Biochim Biophys Res Commun. 1993; 296: 440–6
  • Ruskin B., Greene J. M., Green M. R. Cryptic branch point activation allows accurate in vitro splicing of human beta-globulin intron mutants. Cell. 1985; 41: 833–44
  • Gilman J. F. Haemoglobin (3-chain structural variation in mice – evolutionary and functional implications. Science 1972; 178: 873–4
  • Doolittle R. F. The protein.3rd ed., H. Neurath, R. L. Hill. Academic Press, New York 1979; Vol 4: 1–18
  • Nadley H. L., Egan T. J. Deficiency of lysosomal acid phosphatase. A new familial metabolic disorder. N Engl J Med. 1970; 282: 302–7
  • Geier C., Figura K., Pohlmann K. Structure of the human lysosomal phosphatase gene. Eur J Biochem 1989; 183: 611–6
  • De Duve C. Lysosomes revisited. Eur J Biochem. 1983; 137: 391–7
  • Tsuboi K. K., Hudson P. B. Acid phosphatase. II. Purification of human red cell phosphomo-noesterase. Arch Biochem Biophys 1954; 53: 341–4
  • Gieselmann V., Hasilik A., von Figura K. Tartrate-inhibitable acid phosphatase. Purification from placenta, characterisation and subcellular distribution in fibroblasts. Hoppe-Seylers' Z Physiol Chem. 1984; 365: 651–60
  • Komfield S. Trafficking of lysosomal enzymes. FASEB J. 1987; 5: 462–8
  • Kornfield D., Hellman I. The biogenesis of lysosomes. Annu Rev Cell Biol. 1989; 5: 483–525
  • Nolan C. M., Sly W. S. I-cell disease and pseudoHurler polydystrophy: disorders of lysosomal enzyme phosphorylation and localisation. The metabolic basis of inherited disease, C. R. Scriver, A. L. Beaudet, W. S. Sly, D. Valle. McGraw-Hill, New York 1989; 1589–603
  • Leroy J. G., Wan Ho M., Macbrinn M. C., et al. I-cell disease: biochemical studies. Pediatr Res. 1972; 6: 752–7
  • Reitman M. L., Kornfield S. UDP-A'-acetylglucosamine: glycoprotein ALacetylglucosamine-l-phosphotransferase. Proposed enzyme for the phosphorylation of the high mannose oligosaccharide units of lysosomal enzymes. J Biol Chem. 1981; 256: 4275–81
  • Waheed A., Hasibh A., von Figura K. Processing of the phosphorylated recognition marker in lysosomal enzymes. Characterisation and partial purification of a microsomala-N-acetyloglucosaminyl phosphotransferase. J Biol Chem. 1981; 256: 5717–21
  • Gottschalk S., Waheed A., Schmidt B., et al. Sequential processing of lysosomal acid phosphatase by a cytoplasmic thiol proteinase and a lysosomal aspartyl proteinase. EMBO J. 1989; 8: 3215–19
  • Van Dongen J. M., Willemsen R., Ginns E. I., et al. The subcellular localisation of soluble and membrane-bound lysosomal enzymes in I-cell fibroblasts: a comparative immunocytochemi-cal study. Eur J Cell Biol 1985; 39: 179–89
  • Willemsen R., Briiken R., Sorber CWJ, et al. A semiquantitative immunoelectro-microscopic study on soluble, membrane associated and membrane-bound lysosomal enzymes in human intestinal epithelial cells. Histochem J. 1991; 23: 467–73
  • Fambrough D. M., Takayasu K., Lippincott-Schwartz J., et al. Structure of LEP 100, a glycoprotein that shuttles between lysosomes and the plasma membrane, deduced from the nucleotide sequence of the encoding c-DNA. J Cell Biol. 1988; 106: 61–7
  • Viitala J., Carlsson S. R., Siebert P. D., et al. Molecular cloning of c-DNAs encoding lamp A, a human lysosomal membrane glycoprotein with apparent Mr= 120.000. Proc Natl Acad Sci USA 1988; 85: 3743–7
  • Howe C. L., Granger B. L., Hull M., et al. Derived protein sequence, oligosaccharides and membrane insertion of the 120 kDa lysosomal membrane glycosylation (lgp 120) identification of a highly conserved family of lysosomal membrane glycoproteins. Proc Natl Acad Sci USA 1988; 85: 7577–81
  • Peters C., Braun M., Weber B., et al. Targeting of a lysosomal membrane protein: a tyrosine-containing endocytosis signal in the cytoplasmic tail of lysosomal acid phosphatase is necessary and sufficient for targeting to lysosomes. EMBO J. 1990; 9: 3497–3506
  • Braun M., Waheed A., von Figura K. Lysosomal acid phosphatase is transported to lysosomes via the cell surface. EMBO J. 1989; 8: 3633–40
  • Waheed A., Gottschalk S., Hille A., et al. Human lysosomal acid phosphatase is transported as a transmembrane protein to lysosomes in transfected baby hamster kidney cells. EMBO J. 1988; 7: 2351–8
  • Sharief F. S., Lee H., Leuderman M. M., et al. Human prostatic acid phosphatase: cDNA cloning, gene mapping and protein sequence homology with lysosomal acid phosphatase. Biochem Biophys Res Commun. 1989; 160: 70–86
  • Yam L. T., Li C-Y, Lam K. W. The non-prostatic acid phosphatases. Male accessory sex glands, E. Spring-Mills, ESE Hafez. Elsevier/North-Holland, Amsterdam 1980; 183–96
  • Yeh L-CC, Lee A. J., Lee N. E., Kam K. W., et al. Molecular cloning of cDNA for human prostatic acid phosphatase. Genet. 1987; 60: 191–6
  • Vihko P., Virkkunen P., Henttu P., et al. Molecular cloning and sequence analysis of cDNA encoding human prostatic acid phosphatase. FEBS Lett. 1988; 236: 275–81
  • Sharief F. S., Li SS-L. Structure of human prostatic acid phosphatase gene. Biochem Biophys Res Commun. 1992; 184: 1468–4
  • Lin C-T, Liu J. W., Song G. X., et al. Immunoultrastructural demonstration of prostatic acid phosphatase isoenzyme 2 in prostatic carcinoma. J Urol. 1986; 136: 173–80
  • Van Etten R. L., Davidson R., Stevis P. E., et al. Covalent structure, disulfide bonding and identification of reactive surface and active site residues of human prostatic acid phosphatase. J Biol Chem. 1991; 266: 2313–9
  • Tailor P. G., Govindan M. V., Patel P. C. Nucleotide sequence of human prostatic acid phosphatase determined from a full-length c-DNA clone. Nucleic Acids Res. 1990; 18: 4928
  • Derechin M., Ostrowski W., Galka M., et al. Acid phosphomonoesterase of human prostate: molecular weight, dissociation and chemical composition. Biochim Biophys Acta. 1971; 250: 143–54
  • Luchter-Wasyl E., Ostrowski W. Subunit structure of human prostatic acid phosphatase. Biochim Biophys Acta 1974; 365: 349–59
  • Ostrowski W., Bhargava A. K., Dziembor E., et al. Acid phosphomonoesterase of human prostate: carbohydrate content and optical properties. Biochim Biophys Acta. 1976; 453: 262–9
  • Risley J. M., Van Etten R. L. Structures of the carbohydrate moieties of human prostatic acid phosphatase elucidated by H, nuclear magnetic resonance spectroscopy. Arch Biochem Biophys. 1987; 258: 404–12
  • Peters C., Geier C., Pohlmann R., et al. High degree of homology between primary structure of human lysosomal acid phosphatase and human prostatic acid phosphatase. Biol Chem Hoppe Seyler. 1989; 370: 177–81
  • Roiko P., Jänne O. A., Vihko P. Primary structure of rat secretory acid phosphatase and comparison to other acid phosphatases. Gene. 1990; 89: 223–9
  • Vihko P., Kurkela R., Porvari K., et al. Rat acid phosphatase: overexpression of active, secreted enzyme by recombinant baculovirus infected insect cells, molecular properties and crystallization. Proc Natl Acad Sci USA 1993; 90: 799–803
  • Morris M. F., Waheed A., Risley J. M., et al. Carbohydrate removal fails to eliminate the heterogeneity of human prostatic acid phosphatase. Clin Chim Acta. 1989; 182: 9–20
  • Lam K-W, Li CY, Yam L. T., et al. Comparison of prostatic and nonprostatic acid phosphatase. Ann NY Acad Sci. 1982; 390: 1–15
  • Lam WKW, Lai L. C., Yam L. T. Tartrate-resistant (band 5) acid phosphatase activity measured by electrophoresis on acrylamide gel. Clin Chem. 1978; 24: 309–12
  • Hibbard M. D., McCarthy R. C., Markowitz H. Isolation and characterisation of electrophoretic variants of human prostatic acid phosphatase. Clin Chem. 1983; 29: 1886–9
  • Bais R., Huxtable A., Edwards J. B. Human prostatic acid phosphatase: properties of the native enzyme, and the enzyme antibody complex. Ann Clin Biochem. 1983; 20: 374–80
  • Taga E. M., Moore D. L., Van Etten R. L. Studies on the structural basis of the heterogeneity of human prostatic and seminal acid phosphatases. Prostate. 1983; 4: 141–50
  • McTigue J. J., Van Etten R. L. Isolation, characterisation and spontaneous interconversion of two forms of human prostatic acid phosphatase. Prostate. 1982; 3: 165–81
  • Smith J. K., Whitby L. G. The heterogeneity of prostatic acid phosphatase. Biochim Biophys Acta 1968; 151: 607–18
  • Lam W. K., Yam L. T., Wilbur H. J., et al. Comparison of acid phosphatase isoenzymes of human seminal fluid, prostate, and leukocytes. Clin Chem. 1979; 25: 1285–9
  • Ostrowski W., Wasyl Z., Weber M., et al. The role of neuramic acid in the heterogeneity of acid phosphomonoesterase from the human prostate gland. Biochim Biophys Acta. 1970; 221: 297–306
  • Lin M. F., Lee C-L, Li SS-L, et al. Purification and characterisation of a new human prostatic acid phosphatase isoenzyme. Biochemistry 1983; 22: 1055–62
  • Lad P. M., Leam D. B., Cooper J. F., et al. Distribution of prostatic acid phosphatase isoenzymes in normal and cancerous states. Clin Chim Acta. 1984; 151: 51–65
  • Pais V. M., Mangold A. W., Mahoney S. A. Fractionation and purification of prostatic acid phosphatase. Invest Urol 1974; 12: 13–6
  • McTigue J. J., Van Etten R. L. An essential arginine residue in human prostatic acid phosphatase. Biochim Biophys Acta. 1978; 523: 422–9
  • Saini M. S., Van Etten R. L. An essential carboxylic acid group in human prostatic acid phosphatase. Biochim Biophys Acta. 1979; 568: 370–6
  • Ostrowski W. Isolation of tau-phosphohistidine from a phosphoryl-enzyme intermediate of human prostatic acid. Biochim Biophys Acta. 1978; 523: 147–53
  • Davidson R. E. Structural aspects of human prostatic acid phosphatase and fast atom bombardment mass spectrometric analysis ofE. coliL-threonine deaminase. Ph.D. thesis, Purdue University, West Lafayette, IN, 1990. 1990
  • Ostanin K., Saeed A., Van Etten R. L. Heterologous expression of human prostatic acid phosphatase and site-directed mutagenesis of the enzyme active site. J Biol Chem 1974; 269: 8971–8
  • Ostanin K., Harms E. H., Stevis P. E., et al. Overexpression, site directed mutagenesis and mechanism-ofEscherichia coliacid phosphatase. J Biol Chem. 1992; 267: 22830–6
  • Ostanin K., Van Etten R. L. Asp 304 ofEscherichia coliacid phosphatase is involved in leaving group protonation. J Biol Chem. 1993; 268: 20778–84
  • Schneider G., Lindqvist Y., Vihko P. Three-dimensional structure of rat acid phosphatase. EMBO J 1993; 12: 2609–15
  • Lindqvist Y., Schneider G., Vihko P. Three-dimensional structure of rat acid phosphatase in complex with L(+) tartrate. J Biol Chem. 1993; 268: 20744–6
  • Lindqvist Y., Schneider G., Vihko P. Crystal structures of rat acid phosphatase complexed with the transition-state analogs vanadate and molybdate. Implications for the reaction mechanism. EurJBiochem. 1994; 221: 139–42
  • Hillmann G. Fortlaufende photometrische Messund der sauren Prostataphosphatase-activitat. Z. Klin Chem Klin Biochem. 1971; 9: 273–4
  • Warren R. J., Moss D. W. An automated continuous monitoring procedure for the determination of acid phosphatase activity in serum. Clin Chim Acta. 1977; 77: 179–88
  • Fabing-Byrd D. L., Ertingshausen G. Kinetic method for determining acid phosphatase activity in serum with use of the “CentrifiChem”. Clin Chem. 1972; 18: 841–4
  • Valcour A. A., Bowers G. N., McComb R. B. Evaluation of a kinetic method for prostatic acid phosphatase with use of self-indicating substrate, 2,6-dichloro-4-nitrophenyl phosphate. Clin Chem. 1989; 35: 939–45
  • Appleyard J. The effect of alcohol on the hydrolysis of sodium phenolphthalein diphosphate by prostatic extracts. Biochem J 1948; 42: 596–7
  • Gallati H., Roth M. Aktivierung der sauren Prostataphosphatase durch 1-pentanol. J Clin Chem Clin Biochem 1976; 14: 581–7
  • Poindexter C., Ervin K., Rice E. G. A kinetic acid phosphatase (Hillmann) procedure of improved sensitivity. Clin Chem. 1980; 26: 1009
  • Vihko P. Characterisation of the principal human prostatic acid phosphatase isoenzyme, purified by affinity chromatography and isoelectric focussing. II. Clin Chem 1978; 24: 1783–7
  • McCarthy R. C., Jakubowski H. V., Markowitz H. Human prostatic acid phosphatase: purification, characterisation, and optimisation of conditions for radioimmunoassay. Clin Chem Acta. 1983; 132: 287–99
  • Roy A. V., Brower M. E., Hayden J. E. Sodium thymolphthalein monophosphate: a new acid phosphatase substrate with greater specificity for the prostatic enzyme in serum. Clin Chem 1971; 17: 1093–1102
  • Bais R., Edwards J. B. An optimized continuous-monitoring procedure for semi-automated determination of serum acid phosphatase activity. Clin Chem 1976; 22: 2025–8
  • Crans D. N., Simone C. M., Saha A. K., et al. Vanadate monomers and dimers both inhibit the human prostatic acid phosphatase. Biochem Biophys Res Commun. 1989; 165: 246–50
  • Taga E. M., Moore D. L., Van Etten R. L. Studies on the structural basis of the heterogeneity of human prostatic and seminal acid phosphatases. Prostate. 1983; 4: 141–50
  • Yam LT. Clinical significance of the human acid phosphatases. Am J Med. 1981; 56: 604–16
  • Van Etten R. L. Human prostatic acid phosphatase: a histidine phosphatase. Ann NY Acad Sci. 1982; 390: 27–51
  • Francis J. M., Moss D. W., Colinet E., et al. A reference preparation of human prostatic acid phosphatase: purification, characterization and field trials. Ann Clin Biochem 1992; 29: 176
  • Lantz R. K., Eisenberg R. E. Preservation of acid phosphatase activity in medico-legal specimens. Clin Chem 1978; 24: 486–8
  • Vihko P., Kontturi M., Korhonen L. K. Purification of human prostatic acid phosphatase by affinity chromatography and isoelectric focusing. I. Clin Chem 1978; 24: 466–70
  • Van Etten R. L., Saini M. S. Selective purification of tartrate-inhibitable acid phosphatases: rapid and efficient purification (to homogeneity) of human and canine prostatic acid phosphatases. Clin Chem 1978; 24: 1525–30
  • Duncan P. H., Van Etten R. L., MacNeil M. L., et al. Development of a stable reference material for prostatic acid phosphatase. Clin Chem. 1984; 30: 1327–31
  • Francis J. M. A reference preparation of human prostatic acid phosphatase. Ph.D. thesis, University of London. 1992
  • Dang H., Lam K. W., Li C-Y, et al. Monoclonal antibody specific to acid phosphatase isoenzyme. Prostate 1986; 9: 47–55
  • Patel P. C., Aubin L., Cote J. Use of monoclonal and polyclonal antibodies to detect prostatic acid phosphatase by immunoblotting. Clin Chem 1986; 32: 1832–5
  • Hoyhtya M., Vihko P., Vaolas L., et al. High affinity monoclonal antibodies specific for human prostatic acid phosphatase. Clin Chem. 1987; 33: 103–7
  • Lee C-L, Li SSL, Chu T. M. Immunologically reactive tryptic fragments of human prostatic acid phosphatase. Biochem J. 1984; 223: 871–7
  • Lillehoj H., Choe B-K, Rose N. R. Monoclonal antibodies to human prostatic acid phosphatase: probes for antigenic study. Proc Natl Acad Sci USA 1982; 79: 5061–5065
  • Ostrowski W., Weber M., Rybarska J. Immunochemical properties of acid phosphomonoesterase from human prostate gland. Acta Biochim. Pol. 1966; 13: 343–52
  • Foti A. G., Glovsky M. M., Cooper J. F. The effect of antibody on human prostatic acid phosphatase activity. I. Temperature and pH stabilisation of acid phosphatase enzyme activity by rabbit antibody to acid phosphatase. Immunochemistry 1975; 12: 131–6
  • Choe B. K., Dong M. K., Walz D., et al. A single domain of human prostatic acid phosphatase shows antibody-mediated restoration of catalytic activity. Proc Natl Acad Sci USA 1982; 79: 6052–5
  • London M., McHugh R., Hudson P. B. On low acid phosphatase values of patients with known metastatic carcinoma of prostate. Cancer Res 1953; 14: 718–24
  • Wasylewska E., Dulinska J. T., Frubetskoy V. S., et al. Stabilisation of human prostate acid phosphatase by cross-linking with diimidoesters. Acta Biochim Pol 1987; 34: 145–56
  • Gutman E. B., Sproul E. E., Gutman A. B. Significance of increased phosphatase activity of bone at the site of osteoplastic metastases secondary to carcinoma of the prostate gland. Am J Cancer 1936; 28: 485–95
  • Chu T. M., Wang M. C., Lee C-L, et al. Prostatic acid phosphatase in human prostate cancer. Biochemical markers for cancer, TM Chu. Marcel Dekker, New York 1982; 117–36
  • Kutscher W., Wolbergs H. Prostataphosphatase. Hoppe Seyler's Z Physiol Chem. 1935; 236: 237–40
  • Gutman A. B., Gutman E. B. An acid phosphatase occurring in the serum of patients with metastasizing carcinoma of the prostate gland. J Clin Invest 1938; 17: 473–8
  • Huggins C., Hodges C. V. Studies on prostatic cancer. I. The effect of castration, of oestrogen and of androgen injection on serum phosphatases in metastatic carcinoma of the prostate. Cancer Res. 1941; 1: 293–7
  • Optenberg S A, Thompson I. M. Economics of screening of carcinoma of the prostate. Urol Clin North Am. 1990; 17: 719–37
  • Chodak G. W. Early detection and screening for prostatic cancer. Urology 1989; 34: 10–56
  • Gittes R. F. Prostate-specific antigen. N Engl J Med. 1987; 317: 954–5
  • Moncure C. W., Johnston C. L., Koontz W. W., et al. Investigation of specific antigens in prostatic cancer. Cancer Chemother Rep 1975; 59: 105–10
  • Nadji M., Tabei S. Z., Castro A, et al. Prostatic-specific antigen: an immunohistologic marker for prostatic neoplasms. Cancer. 1981; 48: 1229–32
  • Raynor R. H., Hazra T. A., Moncure C. W., et al. Biochemical nature of the prostate-associated antigen identified by the monoclonal antibody, KR-P8. Prostate. 1986; 9: 21–31
  • Guinan P., Bhatti R., Ray P. An evaluation of prostate specific antigen in prostatic cancer. J Urol. 1987; 137: 686–9
  • Brawer M. K., Koyanagi Y., Inoue T., et al. Some physicochemical characteristics of gamma-seminoprotein: antigenic component specific for human seminal plasma. Jpn J Legal Med 1971; 25: 322–4
  • Edson J. Pontes. Biological markers in prostate cancer. J Urol. 1983; 130: 1037–47
  • Merrick M. V., Ding C. L., Chisholm G. D., et al. Prognostic significance of alkaline and acid phosphatase and skeletal scintigraphy in carcinoma of the prostate. Br J Urol. 1985; 57: 715–20
  • DeVoogt H. J. Prognostic factors. Baillieres clinical oncology: prostatic cancer, BJA Furr, L. Denis. W. B. Saunders, Philadelphia 1988; Vol. 2: 521–26
  • Killian C. S., Emrich L. J., Vargas F. P., et al. Relative reliability of five serially measured markers for prognosis of progression of prostate cancer. J Natl Cancer Inst 1986; 76: 179–85
  • Ercole C. J., Lange P. H., Mathisen M., et al. Prostatic specific antigen and prostatic acid phosphatase in the monitoring and staging of patients with prostatic cancer. J Urol. 1987; 138: 1181–4
  • Salo J., Rannikko S. The value of acid phosphatase measurements in predicting extraprostatic cancer growth before prostatectomy. Br J Urol 1988; 62: 439–42
  • Armbruster D. A. Prostate-specific antigen: biochemistry, analytical methods and clinical application. Clin Chem 1993; 39: 181–95
  • Kontturi M. Is acid phosphatase (PAP) still justified in the management of prostatic cancer%. Acta Oncol 1992; 30: 169–70
  • Maatman T. J. The role of prostate specific antigen as a marker in men with advanced adenocarcinoma of the prostate. J Urol. 1989; 141: 1378–80
  • Oesterling J. E. Prostate specific antigen: a crucial assessment of the most useful tumor marker for adenocarcinoma of the prostate. J Urol. 1991; 145: 907–23
  • Sharma S., Gupta M. K., Medendorp S., et al. PAP and PSA measurement in prostate cancer: indication to discontinue PAP testing (abstract). Clin Chem 1990; 36: 1048–9
  • Drago J. R., Badalament R. A., Wientjes M. G., et al. Relative value of prostate-specific antigen and prostatic acid phosphatase in diagnosis and management of adenocarcinoma of the prostate. Urology 1989; 34: 187–92
  • Barak M., Macz Y., Lurie A., et al. Evaluation of prostate-specific antigen as a marker for adenocarcinoma of the prostate. J Lab Clin Med. 1989; 113: 598–603
  • Arai Y., Yoshiki T., Okada K-I, et al. Multiple marker evaluation in prostate cancer using prostatic specific antigen, gamma-seminoprotein and prostatic acid phosphatase. Urol Int. 1989; 44: 135–40
  • Arai Y., Yoshiki T., Oishi K., et al. The role of prostatic specific antigen in monitoring prostatic cancer and its prognostic importance. Urol Res 1990; 18: 331–6
  • Stamey T. A., Kabalin J. N., Ferradi M., et al. Prostate specific antigen in the diagnosis and treatment of adenocarcinoma of the prostate. Urol 1989; 141: 1070–5
  • Oesterling J. E., Chan D. W., Epstein J. I., et al. Prostate specific antigen in the preoperative and postoperative evaluation of localized prostatic cancer treated with radical prostatectomy. J Urol. 1988; 139: 766–72
  • Schmid H. P., McNeal J. E., Stamey T. A. Observations on the doubling time of prostate cancer: the use of serial prostate-specific antigen in patients with untreated diseases as a measure of increasing cancer volume. Cancer 1993; 71: 2031–4
  • Lloyd AJI, Formby M. R. Conditions associated with normal levels of prostate-specific antigen and elevation of prostatic acid phosphatase. Am J Clin Oncol. 1992; 15: 487–9
  • Gomella L. G., White J. L., McCue P. A., et al. Screening for occult nodal metastasis in localized carcinoma of the prostate. J Urol. 1993; 149: 776–8
  • Cohen R. J., Glezerson G. Prostate-specific antigen and prostate-specific acid phosphatase in neuroendocrine cells of prostate cancer. Arch Pathol Lab Med. 1992; 116: 65–6
  • Gabby T., Winkleby W., Boyce T., et al. Sexual abuse of children: the detection of semen on skin. Am J Dis Child. 1992; 146: 700–3
  • Roach B. A., Vladutiu A. O. Prostatic specific antigen and prostatic acid phosphatase measured by radioimmunoassay in vaginal washings from cases of suspected sexual assault. Clin Chim Acta. 1993; 216: 199–201
  • Vihko P., Lukkarinen O., Kontturi M., et al. The effect of manipulation of the prostate gland on serum prostate-specific acid phosphatase measured by radioimmunoassay. Invest Urol 1981; 18: 334–6
  • Johnson C. D., Costa D., Castro J. E. Acid phosphatase after examination of the prostate. Br J Urol. 1979; 51: 218–23
  • Bannerjee S. K., Barker I. F., Waterworth T. A. Does rectal examination affect serum acid phosphatase levels%. Br J Surg 1979; 66: 512–3
  • Pollen J. J., Dreilinger A. Immunohistochemical identification of prostatic acid phosphatase and prostate specific antigen in female periurethral glands. Urology 1984; 23: 303–4
  • Wernert N., Albrech M., Sesterhenn I. The female prostate: location, morphology, immunohistochemical characteristics and significance. Eur Urol. 1992; 22: 64–9
  • Korenchevsky V. The female prostatic gland and its reaction to male sexual compounds. J Physiol 1937; 90: 371–6
  • Bruning E. J. Die Pathologie der weiblichen urethra und des Paraurethriums. Z. Geburtshilfe Gynaekol. 1959; 152: 1–111
  • Huffman J. W. Clinical significance of the paraurethral ducts and glands. Arch Surg. 1951; 62: 615–26
  • Glenn J. F. Malignancy of the female urethra. NC Med J. 1953; 14: 201
  • Knoblich R. Primary adenocarcinoma of the female urethra. Am J Obstet Gynecol 1950; 80: 353–64
  • Sobin L. H., Hjermstad B. M., Sesterhenn I. A., et al. Prostatic acid phosphatase activity in carcinoid tumors. Cancer 1986; 58: 136–8
  • Peters O., Gorus F., De Boeck M., et al. Increased prostate-type acid phosphatase activity in serum and typical bone lesions stimulating the presence of prostatic carcinoma. Clin Chem 1984; 30: 803–4
  • Klastersky J., Coune A. High serum acid phosphatase values in a case of lymphoblastic leukaemia. Br Med J. 1970; 4: 537–8
  • Barracchia A., Vecce R., Lari R. An unusual increase in prostatic acid phosphatase not associated with prostate cancer (letter to editor). Haematologica 1988; 73: 249
  • Lam KW, Li O., Li C. Y., Yam L. T. Biochemical properties of human prostatic acid phosphatase. Clin Chem. 1973; 19: 483–7
  • Efstratiadis T., Moss D. W. Tamate-resistant acid phosphatase of human lung: apparent identity with osteoclastic acid phosphatase. Enzyme. 1985; 33: 34–40
  • Ketcham C. M., Baumbach G. A., Bazer F. W., et al. The type 5, acid phosphatase from spleen of humans with hairy cell leukemia. Purification, properties, immunological characterization and comparison with porcine uteroferrin. J Biol Chem. 1985; 260: 5768–76
  • Hayman A. R., Warburton M. J., Pringle JAS, et al. Purification and characterization of a tartrate-resistant acid phosphatase from human osteoclastomas. Biochem J. 1989; 261: 601–9
  • Burstone M. S. Histochemical demonstration of acid phosphatases with naphthol AS-phos-phates. J Natl Cancer Inst. 1958; 21: 523–39
  • Eggert F. M. Stable acid phosphatase. II. Effects of pH and inhibitors. Histochemistry 1980; 66: 319–29
  • Minkin C. Bone acid phosphatase: tartrate-resistant acid phosphatase as a marker of osteoclast function. CalcifTiss Int. 1982; 34: 285–90
  • Efstratiadis T., Moss D. W. Tartrate-resistant acid phosphatase in human alveolar macrophages. Enzyme. 1985; 34: 140–3
  • Moss D. W. Changes in enzyme expression related to differentiation and regulatory factors: the acid phosphatase of osteoclasts and other macrophages. Clin Chim Acta. 1992; 209: 131–8
  • Axline S. D. Isoenzymes of acid phosphatase in normal and Calmette-Guerin bacillus-induced rabbit alveolar macrophages. J Exp Med. 1968; 128: 1031–48
  • Li C. U., Yam L. T., Lam K. W. Studies of acid phosphatase isoenzymes in human leukocytes. Demonstration of isoenzyme cell specificity. J Histochem Cytochem. 1970; 18: 901–10
  • Cassady Al, King A. G., Cross NCP, et al. Isolation and characterization of the genes encoding mouse and human type-5 acid phosphatase. Gene. 1993; 130: 201–7
  • Antanaitis B., Aisen P. Uteroferrin and the purple acid phosphatases. Advances in inorganic biochemistry, E. C. Thiel, G. L. Eichhorn, L. Marzilli. Elsevier, New York 1983; 111–36
  • Hunt D. F., Yates J. R., III, Shabanowitz J., et al. Sequence homology in the metalloproteins: purple acid phosphatase from beef spleen and uteroferrin from porcine uterus. Biochem Biophys Res Commun 1987; 144: 1154–60
  • Murray F. A., Bazer F. W., Wallace H. D., et al. Quantitative and qualitative variation in the secretion of protein by the porcine uterus during the estrous cycle. Biol Reprod. 1972; 7: 314
  • Chen T. T., Bazer F. W., Gebhardt B., et al. Uterine secretion in mammals; synthesis and placental transport of a purple acid phosphatase in pigs. Biol Reprod. 1975; 13: 304–13
  • Bevilacqua M. A., Lord D. K., Cross NCP, et al. Regulation and expression of type V (tartrate-resistant) acid phosphatase in human mononuclear phagocytes. Mol Biol Med. 1991; 8: 135–40
  • Alcantara O., Reddy S. V., Roodman G. D., et al. Transcriptional regulation of the tartrate-resistant acid phosphatase (TRAP) gene by iron. Biochem J. 1994; 298: 421–5
  • Quesada T. R., Reuben J. R., Manning J. T., et al. Alpha interferon for induction of remission in hairy cell leukemia. N Engl J Med. 1984; 310: 15–8
  • Worman C. P., Catovsky D., Bevan P. C., et al. Interferon is effective in hairy cell leukaemia. Br J Haematol. 1985; 60: 757–63
  • Ratain M. J., Golomb H. M., Vardiman J. W., et al. Treatment of hairy cell leukemia with recombinant alpha interferon. Blood 1985; 65: 644–8
  • Griffiths S. D., Catovsky J. C. The beneficial effects of a interferon in hairy cell leukemia are not attributable to NK cell-mediated cytotoxicity. Leukemia. 1987; 1: 372–6
  • Totterman T. H., Nilsson K., Sundstrom C. Phoibol ester-induced differentiation of chronic erythrocytic leukemia cells. Nature 1980; 288: 176–8
  • Caligaris-Cappio F., Pizzolo G., Chilosi M., et al. Phorbol ester induces abnormal chronic lymphocytic leukemia cells to express features of hairy cell leukemia. Blood. 1985; 66: 1035–42
  • Lam WKW, Eastlund D. T., Li C. T., et al. Biochemical properties of tartrate-resistant acid phosphatase in serum of adults and children. Clin Chem. 1978; 24: 1105–8
  • Robinson D. B., Glew R. H. Acid phosphatase in Gaucher's disease. Clin Chem. 1980; 26: 371–82
  • Yam L. T., Li C-Y, Finkel H. E. Leukemic reticuloendotheliosis. Arch Intern Med. 1972; 130: 248–56
  • Korsmeyer S. J., Greene W. C., Cossman J., et al. Rearrangement and expression of immunoglobulin genes and expression of Tac antigen in hairy cell leukemia. Proc Natl Acad Sci USA 1983; 80: 4522–5
  • Ketcham C. M., Roberts R. M., Simmen RCM, et al. Molecular cloning of the type 5, iron-containing, tartrate-resistant acid phosphatase from human placenta. J Biol Chem. 1989; 264: 557–63
  • Lam K. W., Yam L. T. Biochemical characterization of tartrate-resistant acid phosphatase of human spleen with leukemic reticuloendotheliosis as a pyrophosphatase. Clin Chem. 1977; 23: 89–94
  • Echetebu Z. O., Cox T. M., Moss D. W. Antibodies to porcine uteroferrin used in measurement of human tartrate-resistant acid phosphatase. Clin Chem. 1987; 33: 1832–6
  • Chersi A., Bemardi A., Bemardi G. Studies on acid hydrolases. II. Isolation and properties of spleen acid phosphomonoesterase. Biochim Biophys Acta 1966; 129: 12–22
  • Lam K-W, Siemens M., Sun T., et al. Enzyme immunoassay for tartrate-resistant acid phosphatase. Clin Chem 1982; 28: 467–70
  • Zaidi M., Moonga B., Moss D. W., et al. Inhibition of osteoclastic acid phosphatase abolishes bone resorption. Biochem Biophys Res Commun. 1989; 159: 68–71
  • Hayman A. R., Cox T. M. Purple acid phosphatase of the human macrophage and osteoclast. Characterization, molecular properties, and crystallization of the recombinant di-iron-oxo protein secreted by baculovirus-infected insect cells. J Biol Chem. 1994; 269: 1294–1300
  • Vaes G. On the mechanisms of bone resorption. The action of parathyroid hormone on the excretion and synthesis of lysosomal enzymes and on the extracellular release of acid by bone cells. J Cell Biol. 1968; 39: 676–97
  • Chambers T. J., Fuller K., Darby J. A. Hormonal regulation of acid phosphatase release by osteoclasts disaggregated from neonatal rat bone. J Cell Physiol. 1987; 132: 90–7
  • Moss D. W., Henderson R. A., Kachmar J. F. Acid phosphatase. Textbook of clinical chemistry, N. W. Tietz. W. B. Saunders, Philadelphia 1986; 752–63
  • Bucher T., Durnwald M., Fuhrer S., et al. Quantitative evaluation of serum alkaline phosphatase isozyme patterns. Abstr commun, jt meet Assoc Clin Biochem, UK, Netherlands Soc Clin Chem, and German Soc for Clin Chem, Newcastle-upon-Tyne, UK. April, 1983
  • Rosalki S. B., Foo Y. A. Two new methods for separating and quantifying bone and liver isoenzymes in plasma. Clin Chem 1984; 30: 1182–6
  • Moss D. W., Edwards R. K. Improved electrophoretic resolution of bone and liver alkaline phosphatases resulting from partial digestion with neuraminidase. Clin Chim Acta. 1984; 143: 177–82
  • Moonga B. S., Moss D. W., Patchell A., et al. Intracellular regulation of enzyme secretion from rat osteoclasts and evidence for a functional role in bone resorption. J Physiol. 1990; 429: 29–45
  • Moonga B. S., Pazianas M., Towhidul Alam ASM, et al. Stimulation of a Gs-like G protein in the osteoclast inhibits bone resorption but enhances tartrate-resistant acid phosphatase secretion. Biochem Biophys Res Commun. 1993; 190: 496–501
  • Felix R., Russell RGG, Fleisch H. The effect of several diphosphonates on acid phosphohydrolases and other lysosomal enzymes. Biochim Biophys Acta. 1976; 429: 429–38
  • Tuchman L. R., Swick M. High acid phosphatase level indicating Gaucher's disease in patient with prostatism. JAMA 1957; 164: 2034–5
  • Matoth Y., Fried K. Chronic Gaucher's disease. hr J Med Sci 1965; 1: 521–30
  • Streifler C. Study of acid phosphatase in sera of Gaucher's disease patients, subcellular tissue fractions and platelet extracts. hr J Med Sci 1970; 6: 479–87
  • Bouroncle B. A., Wiseman B. K., Doan C. A. Leukemic reticuloendotheliosis. Blood. 1958; 13: 609–30
  • Katayama I., Finkel H. E. Leukemic reticuloendotheliosis. A clinicopathologic study with review of the literature. Am J Med 1974; 57: 115–26
  • Catovsky D. Hairy cell leukaemia and prolymphocytic leukaemia. Clin Haematol. 1977; 6: 245–68
  • Golomb H. M., Catovsky D., Golde D. W. Hairy cell leukemia: a clinical review based on 71 cases. Ann Intern Med 1978; 89: 677–83
  • Bouroncle B. A. Leukemic reticuloendotheliosis (hairy cell leukemia). Blood 1979; 53: 412–36
  • Pilon V. A., Davey F. R., Gordon G. B., et al. Splenic alterations in hairy cell leukemia. II. An electron microscopic study. Cancer 1982; 49: 1617–23
  • Golomb H. M., Vardiman J. W. Response to splenectomy in 65 patients with hairy cell leukemia: an evaluation of spleen weight and bone marrow involvement. Blood. 1983; 61: 349–52
  • Flandrin G., Sigaux F., Sebahoun G., et al. Hairy cell leukemia: clinical presentation and follow-up of 211 patients. Semin Oncol. 1984; 11: 458–71
  • Offerman M. R., Golomb H. M. Hairy cell leukemia. Curr Probl Cancer. 1984; 8: 1–39
  • Golomb H. M., Ratain M. J., Vardiman J. W. Sequential treatment of hairy cell leukemia: a new role for interferon. Important advances in oncology, V. T. Devitas, S. Hellman, S. A. Rosenberg. J. B. Lippincott, Philadelphia 1986; 311–21
  • Bouroncle B. A., Grever M. R., Kraut E. H. Treatment of hairy cell leukemia: the Ohio State experience with deoxycoformycin. Leukemia 1987; 1: 350–4
  • Yam L. T., Li C. Y., Finkel H. E. Leukemia reticuloendotheliosis. The role of tartrate-resistant acid phosphatase in diagnosis and splenectomy in treatment. Arch Intern Med. 1972; 130: 248–56
  • Yam L. T., Li C. Y., Lam K. W. Tartrate-resistant acid phosphatase isoenzyme in the reticulum cells of leukemic reticuloendotheliosis. N Engl J Med. 1971; 284: 357–60
  • Boesen A. M. Ultrastructural localization of acid phosphatase in immunologically defined neoplastic lymphocytic cells and hairy cells: a comparison between two different substrates. Scand J Haematol. 1984; 32: 245–52
  • Yam L. T., Janckila A. J., Li C. Y., et al. Cytochemistry of tartrate-resistant acid phosphatase: 15 years' experience. Leukemia 1987; 1: 285–8
  • Variakojis D., Vardiman J. W. Golomb H. M. Cytochemistry of hairy cells. Cancer 1980; 45: 72–7
  • Burns G. F., Cawley J. C., Worman C. P., et al. Multiple heavy chain isotypes on the surface of the cells of hairy cell leukemia. Blood 1978; 52: 1132–47
  • Golomb H. M., Davis S., Wilson C., et al. Surface immunoglobulins on hairy cells of 55 patients with hairy cell leukemia. Am J Hematol. 1982; 12: 397–401
  • Jansen J., Schuit H. R., Meijer C. J., et al. Cell markers in hairy cell leukemia studied in cells from 51 patients. Blood 1982; 59: 52–60
  • Jansen J., Le Bien T. W., Kersey J. H. The phenotype of the neoplastic cells of hairy cell leukemia studied with monoclonal antibodies. Blood 1982; 59: 609–14
  • Meijer C. J., van der Valk P., Jansen J. Hairy cell leukemia: an immunohistochemic and morphometric study. Semin Oncol. 1984; 11: 347–52
  • Jansen J., den Ottolander G. J., Schuit H. R., et al. Hairy cell leukemia: its place among the chronic B cell leukemias. Semin Oncol. 1984; 11: 386–93
  • Anderson K. C., Boyd A. W., Fisher D. C., et al. Hairy cell leukemia: a tumor of pre-plasma cells. Blood 1985; 65: 620–9
  • Gardner F. H., Pringle J. C., Jr. Androgens and erythropoiesis. Arch Intern Med. 1961; 107: 846–62
  • Spiers A. S., Parekh S. J. The treatment of hairy cell leukemia (HCL) with pentostatin (2'-deoxycoformycin, dCF). Bone Marrow Transpl. 1989; 4: 173–95
  • Johnston J. B., Glazer R. I., Pugh L., et al. The treatment of hairy cell leukemia with 2-deoxycoformycin. Br J Haematol. 1986; 63: 525–34
  • Kraut E. H., Bouroncle B. A., Grever M. R. Low dose deoxycoformycin in the treatment of hairy cell leukemia. Blood 1986; 68: 1119–22
  • Spiers ASD, Moore D., Cassileth P. A., et al. Remissions in hairy cell leukemia with pentostatin (2-deoxycoformycin). N Engl J Med. 1987; 316: 825–30
  • Johnston J. B., Eisenhauer E., Corbett W. E., et al. Efficacy of 2'-deoxycoformycin in hairy-cell leukemia: a study of the National Cancer Institute of Canada Clinical Trials Group. JNC1 1988; 80: 765–9
  • Piro L. D., Carrera C. J., Carson D. A., et al. Lasting remissions in hairy cell-leukemia induced by a single infusion of 2-chlorodeoxyadenosine. N Engl J Med. 1990; 322: 1117–21
  • Durrelman S., Grem J. L., Cheson B. D. 2'-Deoxycoformycin after failure of alpha interferon in hairy cell leukaemia. Eur J Haematol 1989; 43: 297–302
  • Capelli A., Lusuardi M., Carli S., et al. Acid phosphatase (EC 3.1.3.2). Activity in alveolar macrophages from patients with active sarcoidosis. Chest 1991; 99: 546–50

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.