191
Views
103
CrossRef citations to date
0
Altmetric
Research Article

Progress in Myocardial Damage Detection: New Biochemical Markers for Clinicians

&
Pages 1-66 | Published online: 27 Sep 2008

References

  • Rude F E, Poole W K, Muller J E, et al. Electrocardiographic and clinical criteria for recognition of acute myocardial infarction based on analysis of 3697 patients. Am J Cardiol 1983; 52: 936–42
  • Graff L, Joseph T, Andelman R, et al. American college of emergency physicians information paper: chest pain units in emergency departments—a report from the short-term observation services section. Am J Cardiol 1995; 76: 1036–9
  • Tunstall-Pedoe H, Kuulasmaa K, Amouyel P, et al. (WHO MONICA Project). Myocardial infarction and coronary death in the World Health Organization MONICA Project—registration procedures, event rates, and case fatality rates in 38 populations from 21 countries in 4 continents. Circulation 1994; 90: 583–611
  • Jennings R B, Reimer K. A. The cell biology of acute myocardial ischemia. Annu Rev Med 1991; 42: 225–46
  • Di Lisa F, De Tullio R, Salamino F, et al. Specific degradation of troponin T and I by μ-calpain and its modulation by substrate phosphorylation. Biochem J 1995; 308: 57–61
  • Trump B F, Berezesky I. K. Calcium-mediated cell injury and cell death. FASEB J 1995; 9: 219–28
  • Gebhard M M, Denkhaus H, Sakai K, et al. Energy metabolism and enzyme release. J Mol Med 1977; 2: 271–83
  • Piper H M, Schwartz P, Spahr R, et al. Early enzyme release from myocardial cells is not due to irreversible cell damage. J Mol Cell Cardiol 1984; 16: 385–8
  • Wienen W, Kammermeier H. Intra- and extracellular markers in interstitial transudate of perfused rat hearts. Am J Physiol 1988; 254: H785–94
  • Heyndrickx G R, Amano J, Kennat, et al. Creatine kinase release not associated with myocardial necrosis after short periods of coronary artery occlusion in conscious baboons. J Am Coll Cardiol 1985; 6: 1299–1305
  • Michael L H, Hunt JR, Weilbach D. Creatine kinase and phosphorylase in cardiac lymph: coronary occlusion and reperfusion. Am J Physiol 1985; 248: 350–9
  • Remppis A, Scheffold T, Greten J, et al. Intracellular compartmentation of troponin T: release kinetics after global ischemia and calcium paradox in the isolated perfused rat heart. J Mol Cell Cardiol 1995; 27: 793–803
  • Spiekermann P G, Nordbeck H, Preusse CJ. From heart to plasma. Enzymes in cardiology: diagnosis and research, D J Hearse, J De Leiris. John Wiley, New York 1979; 59–79
  • Van Kreel B, Van der Veen F H, Willems G M, et al. Circulatory models in assessment of cardiac enzyme release in dogs. Am J Physiol 1993; 264: H747–54
  • Asayama J, Yamahara Y, Ohta B, et al. Release kinetics of cardiac troponin T in coronary effluent from isolated rat hearts during hypoxia and reoxygenation. Basic Res Cardiol 1992; 87: 428–36
  • Vorderwinkler K P, Mair J, Puschendorf B, et al. Cardiac troponin I increases in parallel to cardiac troponin T, creatine kinase and lactate dehydrogenase in effluents from isolated perfused rat hearts after hypoxia-reoxygenation-induced myocardial injury. Clin Chim Acta 1996; 251: 113–7
  • Vork M M, Glatz J F, Surtel D A, et al. Release of fatty acid binding protein and lactate dehydrogenase from isolated rat heart during normoxia, low-flow ischemia, and reperfusion. Can J Physiol Pharmacol 1993; 71: 952–8
  • Sunnergreen K P, Rovetto M. J. Microvascular permeability characteristics of isolated perfused ischemic rat heart. J Mol Cell Cardiol 1980; 12: 1011–31
  • Dauber I M, VanBenthuysen K M, McMurty I F, et al. Functional coronary microvascular injury evident as increased permeability due to brief ischemia and reperfusion. Circ Res 1990; 66: 986–98
  • Mair J, Thome-Kromer B, Wagner I, et al. Concentration time courses of troponin and myosin subunits after acute myocardial infarction. Coronary Artery Dis 1994; 5: 865–72
  • Ladue J S, Wroblewski F, Karmen A. Serum glutamic oxaloacetic transaminase activity in human acute myocardial infarction. Science 1954; 120: 497–9
  • Goldmann Lee Th L. Serum enzyme assays in the diagnosis of acute myocardial infarction. Ann Intern Med 1986; 105: 221–33
  • Adams JE, III, Abendschein DR, Jaffe AS. Biochemical markers of myocardial injury. Is MB creatine kinase the choice for the 1990s?. Circulation 1993; 88: 750–63
  • Mair J, Puschendorf B, Michel G. Clinical significance of cardiac contractile proteins for the diagnosis of myocardial injury. Adv Clin Chem 1994; 31: 63–98
  • Wemer M, Brooks S H, Mohrbacher R J, et al. Diagnostic performance of enzymes in the discrimination of myocardial infarction. Clin Chem 1982; 28: 1297–1302
  • van Kreel B K, van der Veen F H, Willems G M, et al. Circulatory models in assessment of cardiac enzyme release in dogs. Am J Physiol 1993; 264: H747–54
  • van der Laarse A, Hermens W T, Hollaar L, et al. Assessment of myocardial damage in patients with acute myocardial infarction by serial measurement of serum alpha-hydroxybutyrate dehydrogenase levels. Am Heart J 1984; 107: 248–60
  • van der Laarse A, Kerkhof P LM, Verneer F, et al. Relation between infarct size and left ventricular performance assessed in patients with first acute myocardial infarction randomized to intracoronary thrombolytic therapy or to conventional treatment. Am J Cardiol 1988; 61: 1–7
  • Lee K N, Csako G, Bernhardt P, et al. Relevance of macro creatine kinase type 1 and 2 isoenzymes to laboratory and clinical data. Clin Chem 1994; 40: 1278–83
  • Neumaier D. Tissue specific distribution of creatine kinase isoenzymes. Creatine kinase isoenzymes—pathophysiology and clinical application, H Lang. Springer-Verlag, Berlin 1981; 31–83
  • Ingwall J S, Kramer M F, Fifer M A, et al. The creatine kinase system in normal and diseased human myocardium. N Engl J Med 1985; 313: 1050–4
  • Apple F S, Rogers M A, Shermann W M, et al. Profile of creatine kinase isoenzymes in skeletal muscle of marathon runners. Clin Chem 1984; 30: 413–6
  • Somer H, Duboeitz V, Donner M. Creatine kinase isoenzymes in neuromuscular diseases. J Neurol Sci 1976; 29: 129–36
  • Chan K M, Ladenson J H, Pierce G F, et al. Increased creatine kinase MB in the absence of acute myocardial infarction. Clin Chem 1986; 32: 2044–51
  • Mair J, Artner-Dworzak E, Dienstl A, et al. Early detection of acute myocardial infarction by measurement of mass concentration of creatine kinase-MB. Am J Cardiol 1991; 68: 1545–50
  • Mair J, Morandell D, Genser N, et al. Equivalent early sensitivities of myoglobin, creatine kinase MB mass, creatine kinase isoform ratios, and cardiac troponins I and T for acute myocardial infarction. Clin Chem 1995; 41: 1266–72
  • Gibler W B, Runyon J P, Levy R C, et al. A rapid diagnostic and treatment center for patients with chest pain in the emergency department. Ann Emerg Med 1995; 25: 1–8
  • Laperche T, Steg P G, Dehoux M, et al. A study of biochemical markers of reperfusion early after thrombolysis for acute myocardial infarction. Circulation 1995; 92: 2079–86
  • Ravkilde J, Nissen H, Horder M, et al. Independent prognostic value of serum creatine kinase isoenzyme MB mass, cardiac troponin T and myosin light chain levels in suspected myocardial infarction. J Am Coll Cardiol 1995; 25: 574–81
  • Puleo P R, Guadagno P A, Roberts R, et al. Early diagnosis of acute myocardial infarction based on assay for subforms of creatine kinase-MB. Circulation 1990; 82: 759–64
  • Kanemitsu F, Okigaki T. A combination assay of MB and MM isoforms of serum creatine kinase in acute myocardial infarction. Clin Chim Acta 1994; 229: 161–9
  • Bhayana V, Cohoe S, Leung F Y, et al. Diagnostic evaluation of creatine kinase-2 mass and creatine kinase-3 and -2 isoform ratios in early diagnosis of acute myocardial infarction. Clin Chem 1993; 39: 488–95
  • Erdös E G, Skidgel R. A. More on subforms of creatine kinase MB (letter). N Engl J Med 1995; 333: 390
  • Wu J T, Pieper R K, Wu L H, et al. Isolation and characterization of myoglobin and its two major isoforms from sheep heart. Clin Chem 1989; 35: 778–782
  • Stone M J, Willerson J T, Gomez-Sanchez C E, et al. Radioimmunoassay of myoglobin in human serum. Results in patients with acute myocardial infarction. J Clin Invest 1975; 56: 1334–9
  • Delanghe J, Chapelle JP, Vanderschueren S. Quantitative nephelometric assay for determining myoglobin evaluated. Clin Chem 1990; 36: 1675–8
  • Mair J, Artner-Dworzak E, Lechleitner P, et al. Early diagnosis of acute myocardial infarction by a newly developed rapid immunoturbidimetric assay for myoglobin. Br Heart J 1992; 68: 462–8
  • de Winter R J, Koster R W, Sturk A, et al. Value of myoglobin, troponin T, and CKMB mass in ruling out an acute myocardial infarction in the emergency room. Circulation 1995; 92: 3401–8
  • Klocke F J, Copley D P, Krawczyk J A, et al. Rapid renal clearance of immunoreactive canine plasma myoglobin. Circulation 1982; 65: 1522–8
  • Honda Y, Katayama T. Detection of myocardial infarction extension or reattack by serum myoglobin radioimmunoassay. Int J Cardiol 1984; 6: 325–35
  • Mair P, Mair J, Seibt I, et al. Early and rapid diagnosis of perioperative myocardial infarction in aortocoronary bypass surgery by immunoturbidimetric myoglobin measurements. Chest 1993; 103: 1508–11
  • Cooke R. The actomyosin engine. FASEB J 1995; 9: 636–42
  • Farah C S, Reinach F. C. The troponin complex and regulation of muscle contraction. FASEB J 1995; 9: 755–67
  • Raggi A, Grand R JA, Moir A JG, et al. Structure-function relationships in cardiac troponin T. Biochim Biophys Acta 1989; 997: 135–43
  • Pharmacek M S, Leiden JM. Structure, function and regulation of troponin C. Circulation 1991; 84: 991–1003
  • Yamauchi-Takihara K, Sole M J, Liew J., et al. Characterization of human cardiac myosin heavy chain genes. Proc Natl Acad Sci USA 1989; 86: 3504–8
  • Barton P JR, Cohen A, Robert B, et al. The myosin alkali light chains of mouse ventricular and slow skeletal muscle are indistinguishable and are encoded by the same gene. J Biol Chem 1984; 260: 8578–84
  • Collins J H, Theibert JL, Libera LD. Amino acid sequence of rabbit ventricular myosin light chain-2: identity with slow skeletal muscle isoform. Biosci Rep 1986; 6: 655–71
  • Schwartz K, Boheler K R, de la Bastie D, et al. Switches in cardiac muscle gene expression as a result of pressure and volume overload. Am J Physiol 1992; 262: R364–9
  • Cummins P. The homology of the alpha chains of cardiac and skeletal rabbit tropomyosin. J Mol Cell Cardiol 1979; 11: 109–14
  • Pearlstone J, Carpenter M, Smillie L. Amino acid sequences of rabbit cardiac troponin. T. J Biol Chem 1986; 261: 16795–810
  • Wilkinson J M, Grand R JA. Comparison of amino acid sequence of troponin I from different striated muscles. Nature 1978; 271: 31–5
  • Anderson P AW, Malouf N N, Oakeley A E, et al. Troponin T isoform expression in humans. A comparison among normal and failing adult heart, fetal heart, and adult and fetal skeletal muscle. Circ Res 1991; 69: 1226–33
  • Katus H A, Looser S, Hallermayer K, et al. Development and in vitro characterization of a new immunoassay of cardiac troponin T. Clin Chem 1992; 38: 386–93
  • Katus H A, Remppis A, Scheffold T, et al. Intracellular compartmentation of cardiac troponin T and its release kinetics in patients with reperfused and nonreperfused myocardial infarction. Am J Cardiol 1991; 67: 1360–7
  • Kragten J A, Hermens WT, Dieijen-Visser MP. Cardiac troponin T release into plasma after acute myocardial infarction: only fractional recovery compared with enzymes. Ann Clin Biochem 1996; 33: 314–23
  • Saggin L, Gorza L, Ausoni S, et al. Cardiac troponin T in developing, regenerating and denerved rat skeletal muscle. Development 1990; 110: 547–54
  • Bodor G, Porterfield D, Voss E, et al. Cardiac troponin T composition in regenerating human skeletal muscle tissue (Abstr.). Clin Chem 1995; 41: 148
  • Mair J, Artner-Dworzak E, Lechleitner P, et al. Cardiac troponin T in diagnosis of acute myocardial infarction. Clin Chem 1991; 37: 845–52
  • Katus H A, Remppis A, Neumann F L, et al. Diagnostic efficiency of troponin T measurements in acute myocardial infarction. Circulation 1991; 83: 902–12
  • Westfall M V, Solaro RJ. Alterations in myofibrillar function and protein profiles after complete global ischemia in rat hearts. Circ Res 1990; 70: 302–13
  • Wagner I, Mair J, Fridrich L, et al. Cardiac troponin T release in acute myocardial infarction is associated with scintigraphic estimates of myocardial scar. Coronary Artery Dis 1993; 4: 537–44
  • Omura T, Teragaki M, Tani T, et al. Estimation of infarct size using serum troponin T concentration in patients with acute myocardial infarction. Jpn Circ J 1993; 57: 1062–70
  • Lee T H, Thomas E J, Ludwig L E, et al. Troponin T as a marker for myocardial ischemia in patients undergoing major noncardiac surgery. Am J Cardiol 1996; 77: 1031–6
  • Mair P, Mair J, Seibt I, et al. Cardiac troponin T: a new marker of myocardial tissue damage in bypass surgery. J Cardiothorac Vase Anesth 1993; 7: 674–8
  • Hake U, Schmid F X, Iversen S, et al. Troponin T — a reliable marker of perioperative myocardial infarction. Eur J Cardiothorac Surg 1993; 7: 628–33
  • Hamm C W, Ravkilde J, Gerhardt W, et al. The prognostic value of serum troponin T in unstable angina. N Engl J Med 1992; 327: 146–50
  • Lindahl B, Venge P, Wallentin L, et al. Relation between troponin T and the risk of subsequent cardiac events in unstable coronary artery disease. Circulation 1996; 93: 1651–7
  • Genser N, Mair J, Friedrich G, et al. Uncomplicated successful percutaneous transluminal coronary angioplasty does not affect cardiac troponin T plasma concentrations (letter). Am J Cardiol 1996; 78: 127–8
  • Ravkilde J, Nissen H, Mickley H, et al. Cardiac troponin T and CKMB mass release after visually successful percutaneous transluminal coronary angioplasty in stable angina pectoris. Am Heart J 1994; 127: 13–20
  • Bachmaier K, Mair J, Offner F, et al. Serum cardiac troponin T and creatine kinase-MB elevations in murine autoimmune myocarditis. Circulation 1995; 92: 1927–32
  • Franz W M, Remppis A, Kandolf R, et al. Serum troponin T: diagnostic marker for acute myocarditis (letter). Clin Chem 1996; 42: 340–1
  • Walpoth B H, Tschopp A, Perheim E, et al. Assessment of troponin T for detection of cardiac rejection in a rat model. Transplant Proc 1995; 27: 2084–7
  • Zimmermann R, Baki S, Dengler T J, et al. Troponin T release after heart transplantation. Br Heart J 1993; 69: 395–8
  • Riou B, Dreux S, Roche S, et al. Circulating cardiac troponin T in potential heart transplant donors. Circulation 1995; 92: 409–14
  • Mair P, Mair J, Koller J, et al. Cardiac troponin T release in multiple injured patients. Injury 1995; 26: 439–43
  • Katus H A, Müller-Bardorff M, Hallermayer K, et al. The second generation of the cardiac troponin T ELISA: improved specificity (Abstr.). Clin Chem 1995; 41: S79
  • Kobayashi S, Tanaka M, Tamura N, et al. Serum cardiac troponin T in polymyositis/dermatomyositis (letter). Lancet 1992; 340: 726
  • Thome-Kromer B, Michel G. Human cardiac troponin I — detectability after myocardial infarction and severe skeletal muscle damage (Abstr.). Clin Chem 1993; 39: 1248
  • Hafner G, Thome-Kromer B, Schaube J, et al. Cardiac troponins in serum in chronic renal failure (letter). Clin Chem 1994; 40: 1790–1
  • Collinson P O, Stubbs PJ, Rosalki SB. Cardiac troponin T in renal disease (letter). Clin Chem 1995; 41: 1671–3
  • Vallins W J, Brand N J, Dabjade N, et al. Molecular cloning of human troponin I using polymerase chain reaction. FEBS Lett 1990; 270: 57–61
  • Saggin L, Gorza L, Ausoni S, et al. Troponin I switching in the developing heart. J Biol Chem 1989; 264: 16299–302
  • Bhavsar P, Dhoot G K, Cumming D VE, et al. Developmental expression of troponin I isoforms in fetal human heart. FEBS Lett 1991; 292: 5–8
  • Cummins B, Auckland ML, Cummins P. Cardiac-specific troponin-I radioimmunoassay in the diagnosis of acute myocardial infarction. Am Heart J 1987; 113: 1333–44
  • Bodor G S, Porterfield D, Voss E M, et al. Cardiac troponin I is not expressed in fetal and healthy and diseased adult human skeletal muscle tissue. Clin Chem 1995; 41: 1710–5
  • Adams JE, III, Schechtman K B, Landt Y, et al. Comparable detection of acute myocardial infarction by creatine kinase MB isoenzyme and cardiac troponin I. Clin Chem 1994; 40: 1291–5
  • Mair J, Genser N, Morandell D, et al. Cardiac troponin I in the diagnosis of myocardial injury and infarction. Clin Chim Acta 1996; 245: 19–38
  • Larue C, Calzolari C, Bertinchant J P, et al. Cardiac-specific immunoenzymometric assay of troponin I in the early phase of acute myocardial infarction. Clin Chem 1993; 39: 972–9
  • Apple F S, Henry T D, Berger C R, et al. Early monitoring of serum cardiac troponin I for assessment of coronary reperfusion following thrombolytic therapy. Am J Clin Pathol 1996; 105: 6–10
  • Mair J, Wagner I, Morass B, et al. Cardiac troponin I release correlates with myocardial infarction size. Eur J Clin Chem Clin Biochem 1995; 33: 869–72
  • Wu A HB, Feng YI, Contois JH. Prognostic value of cardiac troponin I in chest pain patients (letter). Clin Chem 1996; 42: 651–2
  • Hunt A C, Chow S L, Shiu M F, et al. Release of creatine kinase-MB and cardiac specific troponin-I following percutaneous transluminal coronary angioplasty. Eur Heart J 1991; 12: 690–4
  • Adams JE, III, Sicard G A, Allen B T, et al. Diagnosis of perioperative myocardial infarction with measurement of cardiac troponin I. N Engl J Med 1994; 330: 670–4
  • Mair J, Larue C, Mair P, et al. Use of cardiac troponin I to diagnose perioperative myocardial infarction in coronary artery bypass grafting. Clin Chem 1994; 40: 2066–70
  • Smith S C, Ladenson J H, Mason J W, et al. Detection of myocarditis by cardiac troponin I (Abstr.). Circulation 1994; 90: 547, Suppl. I
  • Grant J W, Canter C E, Spray T L, et al. Elevated donor cardiac troponin I — a marker of acute graft failure in infant heart recipients. Circulation 1994; 90: 2618–21
  • Adams JE, III, Davila-Roman V G, Bossey P Q, et al. Improved detection of cardiac contusion with cardiac troponin I. Am Heart J 1996; 131: 308–12
  • Adams JE, III, Bodor G S, Davila-Roman V G, et al. Cardiac troponin I — a marker with high specificity for cardiac injury. Circulation 1993; 88: 101–6
  • Trinquier S, Flecheux O, Bullenger M, et al. Highly specific immunoassay for cardiac troponin I assessed in noninfarct patients with chronic renal failure or severe polytrauma (letter). Clin Chem 1995; 41: 1676
  • Khaw BA, Gold H K, Fallon J T, et al. Detection of serum cardiac myosin light chains in acute experimental myocardial infarction: radioimmunoassay of cardiac myosin light chains. Circulation 1978; 58: 1130–6
  • Gere J B, Kxauth G H, Trahem C A, et al. A radioimmunoassay for the measurement of human cardiac light chains. Am J Clin Pathol 1979; 71: 309–18
  • Mair J, Puschendorf B. Myocardial injury: laboratory diagnosis. Springer, Heidelberg 1996; 114–8
  • Mair J, Wagner I, Jakob G, et al. Different time courses of cardiac contractile proteins after acute myocardial infarction. Clin Chim Acta 1994; 231: 47–60
  • Katus H A, Yasada T, Gold H K, et al. Diagnosis of acute myocardial infarction by detection of circulating cardiac myosin light chains. Am J Cardiol 1984; 54: 964–70
  • Katus HA, Diederich K W, Schwarz F, et al. Influence of reperfusion on serum concentrations of cytosolic creatine kinase and structural myosin light chains in acute myocardial infarction. Am J Cardiol 1987; 60: 440–5
  • Isobe M, Nagai R, Ueda S, et al. Quantitative relationship between left ventricular function and serum cardiac myosin light chain I levels after coronary reperfusion in patients with acute myocardial infarction. Circulation 1987; 76: 1251–61
  • Mair J, Wagner I, Fridrich L, et al. Cardiac myosin light chain-1 release in acute myocardial infarction is associated with scintigraphic estimates of myocardial scar. Clin Chim Acta 1994; 229: 153–9
  • Omura T, Teregaki M, Tagaki M, et al. Myocardial infarct size by serum troponin T and myosin light chain-1 concentration. Jpn Circ J 1995; 59: 154–9
  • Nakai K, Itoh C, Kikuchi M, et al. Increased serum levels of human cardiac myosin light chain 1 in patients with renal failure. Rinsho Byori 1992; 40: 529–34
  • Fukunaga H, Higuchi I, Usuki F, et al. Clinical significance of serum cardiac myosin light chain 1 in patients with Duchenne muscular dystrophy. No To Shinkei 1992; 44: 131–5
  • Diederich K W, Eisele I, Ried T, et al. Isolation and characterization of the complete human beta-myosin heavy chain gene. Hum Genet 1989; 81: 214–20
  • Bredman J J, Wessels A, Weijs W A, et al. Demonstration of “cardiac-specific” myosin heavy chain in masticatory muscles of human and rabbit. Histochem J 1991; 23: 160–70
  • Larue C, Calzolari C, Leger J, et al. Immunoradiometric assay of myosin heavy chain fragments in plasma for investigation of myocardial infarction. Clin Chem 1991; 37: 78–82
  • Simeonova P P, Kehayov IR, Kyurkchiev SD. Identification of human ventricular myosin heavy chain fragments with monoclonal antibody 2F4 in human sera after myocardial necrosis. Clin Chim Acta 1991; 201: 207–22
  • Leger J OC, Larue C, Ming T, et al. Assay of serum cardiac myosin heavy chain fragments in patients with acute myocardial infarction: determination of infarct size and long-term follow-up. Am Heart J 1990; 120: 781–90
  • Mair J, Puschendorf B. Myocardial injury: laboratory diagnosis. Springer, Heidelberg 1996; 110–4
  • Mair J, Puschendorf B. Myocardial injury: laboratory diagnosis. Springer, Heidelberg 1996; 79–80
  • Rabitzsch G, Mair J, Lechleitner P, et al. Immunoenzymometric assay of human glycogen phosphorylase isoenzyme BB in diagnosis of ischemic myocardial injury. Clin Chem 1995; 41: 966–78
  • Krause E G, Rabitzsch G, Noll F, et al. Glycogen phosphorylase isoenzyme BB in diagnosis of myocardial ischaemic injury and infarction. 1996, Mol Cell Biochem (in press)
  • Krause E G, Härtwig A, Rabitzsch G. On the release of glycogen phosphorylase from heart muscle: effect of substrate depletion, ischemia, and of imipramine. Biomed Biochim Acta 1989; 48: S77–S82
  • Newgard C B, Hwang PK, Fletterick RJ. The family of glycogenphosphorylases: structure and function. Crit Rev Biochem Mol Biol 1989; 24: 69–99
  • Mair J, Puschendorf B, Smidt J, et al. Early release of glycogen phosphorylase in patients with unstable angina and transient ST-T alterations. Br Heart J 1994; 72: 125–7
  • Mair P, Mair J, Krause E-G, et al. Glycogen phosphorylase isoenzyme BB mass release after coronary artery bypass grafting. Eur J Clin Chem Clin Biochem 1994; 34: 543–7
  • Kleine A H, Glatz J FK, van Nieuwenhoven F A, et al. Release of heart fatty acid-binding protein into plasma after acute myocardial infarction in man. Mol Cell Biochem 1992; 116: 155–62
  • Glatz J FC, van der Vusse GJ. Cellular fatty acid-binding proteins: current concepts and future directions. Mol Cell Biochem 1990; 98: 237–51
  • Kragten J A, van Nieuwenhoven F A, van Dieijen-Visser M P, et al. Distribution of myoglobin and fatty acid binding protein in human heart (letter). Clin Chem 1996; 42: 337–8
  • Roos W, Eymann E, Symannek M, et al. Monoclonal antibodies to human heart fatty acid-binding protein. J Immunol Methods 1995; 183: 149–53
  • Ohkaru Y, Asayama K, Ishii H, et al. Developmental of a sandwich enzymelinked immunosorbent assay for the determination of human heart-type fatty acid-binding protein in plasma and urine by using two different monoclonal antibodies specific for human heart fatty acid-binding protein. J Immunol Methods 1995; 178: 99–111
  • Watanabe K, Wakabayashi H, Veerkamp J H, et al. Immunohistochemical distribution of heart-type fatty acid binding protein immunoreactivity in normal human tissues and in acute myocardial infarct. J Pathol 1993; 170: 59–65
  • Van Nieuwenhoven F A, Kleine A H, Wodzig K WH, et al. Discrimination between myocardial and skeletal muscle injury by assessment of plasma ratio of myoglobin over fatty acid binding protein. Circulation 1995; 92: 2848–54
  • Glatz J FC, Kleine A H, van Nieuwenhoven F A, et al. Fatty-acid binding protein as a plasma marker for the estimation of myocardial infarct size in humans. Br Heart J 1994; 71: 135–10
  • Tsuji R, Tanaka T, Sohmiya K, et al. Human heart-type cytoplasmic fatty acid binding protein in serum and urine during hyperacute myocardial infarction. Int J Cardiol 1993; 41: 209–17
  • Jeffery S, Carter N, Edwards Y. Distribution of CA III in fetal and adult human tissue. Biochem Genet 1980; 18: 843–9
  • Sly W S, Hu PY. Human carbonic anhydrases and carbonic anhydrase deficiencies. Annu Rev Biochem 1995; 64: 375–401
  • Väänänen H K, Syrjälä H, Rahkila P, et al. Serum carbonic anhydrase III and myoglobin concentrations in acute myocardial infarction. Clin Chem 1990; 36: 635–8
  • Vuori J, Syrjälä H, Väänänen HK. Myoglobin/carbonic anhydrase III ratio: highly specific and sensitive early indicator for myocardial damage in acute myocardial infarction. Clin Chem 1996; 42: 107–9
  • Kato K, Kimura S, Haimoto H, et al. S100a0 (αα) protein: distribution in muscle tissue of various animals and purification from human pectoral muscle. J Neurochem 1986; 46: 1555–60
  • Kato K, Kimura S. S100a0 protein is mainly located in the heart and striated muscles. Biochim Biophys Acta 1985; 842: 146–50
  • Usui A, Kato K, Sasa H, et al. S-100a0 protein in serum during acute myocardial infarction. Clin Chem 1990; 36: 639–41
  • Usui A, Kato K, Abe T, et al. S-100 protein in blood and urine during open heart surgery. Clin Chem 1989; 35: 1942–4
  • Kaneko N, Matsuda R, Hosoda S, et al. Measurement of plasma annexin V by ELISA in the early detection of acute myocardial infarction. Clin Chim Acta 1996; 251: 65–80
  • Kato K, Ishiguro Y, Ariyoshi Y. Enolase isoenzymes as disease markers: distribution of three enolase subunits (α, β and γ) in various human tissues. Dis Markers 1983; 1: 213–20
  • Nomura M, Kato K, Nagasaka A, et al. Serum β-enolase in acute myocardial infarction. Br Heart J 1987; 58: 29–33
  • Herraz-Dominguez M, Goldberg D, Anderson A, et al. Serum enolase and pyruvate kinase activities in the diagnosis of myocardial infarction. Enzyme 1976; 21: 211–24
  • Usui A, Kato K, Abe T, et al. β-Enolase in blood plasma during open heart surgery. Cardiovasc Res 1989; 23: 737–40
  • Uchida K, Kondoh K, Matuo Y. Recombinant M-, B-, and MB-type isozymes of human phosphoglyceric acid mutase: their large-scale production and preparation of polyclonal antibodies specific to M- and B-type isozymes. Clin Chim Acta 1995; 237: 43–58
  • Omenn G S, Cheung S CY. Phosphoglycerate mutase isozyme marker for tissue differentiation in man. Am J Hum Genet 1974; 26: 393–9
  • Stewart R E, O'Neill WW. Direct angioplasty for acute myocardial infarction. Curr Opin Cardiol 1995; 10: 367–71
  • Madias JE. Acute myocardial infarction: shifting paradigms of diagnosis and care in cost-conscous environment. Chest 1995; 108: 1483–5
  • Zabel M, Hohnloser S H, Köster W, et al. Analysis of creatine kinase, CK-MB, myoglobin, and troponin T time-activity curves for early assessment of coronary artery reperfusion after intravenous thrombolysis. Circulation 1993; 87: 1542–50
  • Grover A, Rihal CS. The importance of early patency after acute myocardial infarction. Curr Opin Cardiol 1995; 10: 361–6
  • Doevendans P A, Gorgels A P, van der Zee R, et al. Electrocardiographic diagnosis of reperfusion during thrombolytic therapy in acute myocardial infarction. Am J Cardiol 1995; 75: 1206–10
  • McKendall G R, Forman S, Sopko G, et al. Value of rescue percutaneous transluminal coronary angioplasty following unsuccessful thrombolytic therapy in patients with acute myocardial infarction. Am J Cardiol 1995; 76: 1108–11
  • Aguirre F V, Merritt RF, Carollo SC. The role of coronary angiography after thrombolysis. Curr Opin Cardiol 1995; 10: 381–8
  • Mair J, Smidt J, Lechleitner P, et al. A decision tree for the early diagnosis of acute myocardial infarction in non-traumatic chest pain patients at hospital admission. Chest 1995; 108: 1502–9
  • Bakker A J, Koelemay M JW, Gorgels J PMC, et al. Failure of new biochemical markers to exclude acute myocardial infarction at admission. Lancet 1993; 342: 1220–2
  • Roberts R, Kleiman NS. Earlier diagnosis and treatment of acute myocardial infarction necessitates the need for a “new diagnostic mind-set”. Circulation 1994; 89: 872–81
  • Ohman E M, Armstrong P, Califf R M, et al. Risk stratification in acute ischaemic syndromes using serum troponin T. J Am Coll Cardiol 1995; 25: 148A
  • Betriu A, Heras M, Cohen M, et al. Unstable angina: outcome according to clinical presentation. J Am Coll Cardiol 1992; 19: 1659–63
  • Rizik D, Healy G. S, Margulis A, et al. A new clinical classification for hospital prognosis of unstable angina pectoris. Am J Cardiol 1995; 75: 993–7
  • Feghali N T, Prisant ML. Blunt cardiac injury. Chest 1995; 108: 1673–7
  • Katus HA. Ischaemic myocardial damage early detection: biochemical markers. Oral communication. Eur Soc Cardiol Symp. Sophia AntipolisFrance February, 1996
  • Mair J., Unpublished results

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.