72
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Biochemical Tests in Diseases of the Intestinal Tract: Their Contributions to Diagnosis, Management, and Understanding the Pathophysiology of Specific Disease States

&
Pages 141-223 | Published online: 27 Sep 2008

References

  • Phillips M. Breath tests in medicine. Sci Am July, 1992; 74–9
  • Levitt MD. Production and excretion of hydrogen gas in man. N Engl J Med 1969; 281: 122–7
  • Bartlett K, Dobson JV, Eastham E. A new method for the detection of hydrogen in breath and its application to acquired and inborn sugar malabsorption. Clin Chim Acta 1980; 108: 189–94
  • Berg A, Eriksson M, Barany F, et al. Hydrogen concentration in expired air analyzed with a new hydrogen sensor, plasma glucose rise, and symptoms of lactose intolerance after oral administration of 100 grams lactose. Scand J Gastroenterol 1985; 20: 814–22
  • McLean WC, Fink BB. Lactose malabsorption by premature infants: magnitude and clinical significance. J Pediatr 1980; 97: 383–8
  • Perman JA. Clinical application of breath measurements. Can J Physiol Pharmacol 1991; 69: 111–15
  • Gearhart HL, Bose DP, Smith CA, et al. Determination of lactose malabsorption by breath analysis with gas chromatography. Anal Chem 1976; 48: 393–8
  • Fernandes J, Vos CE, Douwes AC, et al. Respiratory hydrogen secretion as a parameter for lactose malabsorption in children. Am J Clin Nutr 1978; 31: 597–602
  • Maffei H V. L, Metz G, Bampoe V, et al. Lactose intolerance, detected by the hydrogen breath test, in infants and children with chronic diarhoea. Arch Dis Child 1977; 52: 766–71
  • Ford R P. K, Barnes GL. Breath hydrogen test and sucrase isomaltase deficiency. Arch Dis Child 1983; 58: 595–7
  • Douwes AC, Fernandes J, Degenhart HJ. Improved accuracy of lactose tolerance test in children, using expired hydrogen measurements. Arch Dis Child 1978; 53: 939–42
  • Barr RG, Watkins JB, Perman JA. Mucosal function and breath hydrogen excretion; comparative studies in the clinical evaluation of children with nonspecific abdominal complaints. Pediatrics 1981; 68: 526–33
  • Goldberg DM. The noninvasive biochemical diagnosis of gastrointestinal disease with special reference to children. Clin Physiol Biochem 1984; 2: 249–68
  • Goldberg DM. The enzymology of intestinal disease. Clin Biochem 1987; 20: 63–72
  • Froesh ER, Wolf HP, Baitsch H, et al. Hereditary fructose intolerance: an inborn defect of hepatic fructose-1-phosphate splitting aldolase. Am J Med 1963; 34: 151–67
  • Chambers RA, Pratt R T. C. Idiosyncrasy to fructose. Lancet 1956; 2: 340
  • Gitzelmann R, Steinmann B, van de Bergue G. Essential fructosuria, hereditary fructose intolerance, and fructose 1,6 diphosphatase deficiency. The metabolic basis of inherited disease5th ed., JB Standbury, JB Wyngaarden, DS Fredrickson. McGraw-Hill, New York 1983; 118–40
  • Baerlocher K, Gitzelmann R, Sterinmann B, et al. Hereditary fructose intolerance in early childhood: a major diagnostic challenge: survey of 20 symptomatic cases. Helv Pediatr Acta 1978; 33: 465–87
  • Hoekstra JH, Van Kempen AA, Bij L S. B, et al. Fructose breath hydrogen tests. Arch Dis Child 1993; 68: 136–8
  • Kneepkens CM, Vonk RJ, Fernandes J. Incomplete intestinal absorption of fructose. Arch Dis Child 1984; 59: 735–8
  • Rhodes JM, Middleton P, Jewell D P. The lactulose hydrogen breath test as a diagnostic test for small bowel bacterial overgrowth. Scand J Gastroenterol 1979; 14: 333–6
  • Davidson GP, Robb TA, Kirubakaran C P. Bacterial contamination of the small intestine as an important cause of chronic diarrhea and abdominal pain: diagnosis by breath hydrogen test. Pediatrics 1984; 74: 229–35
  • Kerlin P, Wong L. Breath hydrogen testing in bacterial overgrowth of the small intestine. Gastroenterology 1988; 95: 982–8
  • Perman JA, Modler S, Barr RG, et al. Fasting breath hydrogen concentration: normal values and clinical applications. Gastroenterology 1984; 87: 1358–63
  • Bond JH, Levitt M D. Use of breath hydrogen to quantitate small bowel transit time following partial gastrectomy. J Lab Clin Med 1987; 90: 30–6
  • Matsumoto T, Iida M, Hirakawa M, et al. Breath hydrogen test using water-diluted lactulose in patients with gastrointestinal amyloidosis. Dig Dis Sci 1991; 36: 1756–60
  • Yolken RH, Hart W, Oung I, et al. Gastrointestinal dysfunction and disaccharide intolerance in children infected with human immunodeficiency virus. J Pediatr 1991; 118: 359–63
  • Levitt MD, Donaldson R M. Use of respiratory hydrogen (H2) excretion to detect carbohydrate malabsorption. J Lab Clin Med 1970; 75: 937–45
  • Cook G C. Breath hydrogen after oral D-xylose in tropical malabsorption. Am J Clin Nutr 1980; 33: 555–60
  • Ishikawa M, Takahashi T, Tada H, et al. Assessment of intestinal absorptive capacity for sugar by measurement of breath hydrogen and transmucosal potential difference. Stomach Intest 1985; 20: 789–95
  • Breiter HC, Craig RM, Levee G, et al. Use of kinetic methods to evaluate D-xylose malabsorption in patients. J Lab Clin Med 1988; 112: 533–43
  • Casellas F, Chicharro L, Malagelada J R. Potential usefulness of hydrogen breath test with D-xylose in clinical management of intestinal malabsorption. Dig Dis Sci 1993; 38: 321–7
  • Bond JH, Levitt M D. Use of breath hydrogen in the study of carbohydrate absorption. Am J Dig Dis 1977; 22: 379–82
  • Gilat T, Ben Hur H, Gelman-Malachi E, et al. Alterations of the colonic flora and their effect on the hydrogen breath test. Gut 1978; 19: 602–5
  • Pereira SP, Bolin TD Khin-Maung-U, et al. A pattern of breath hydrogen excretion suggesting small bowel bacterial overgrowth in Burmese village children. J Pediatr Gastroenterol Nutr 1991; 13: 32–8
  • Thompson DG, Binfield P, DeBelder A, et al. Extraintestinal influences on exhaled breath hydrogen measurements during the investigation of gastrointestinal disease. Gut 1985; 26: 1349–52
  • Corazza G, Strocchi A, Sorge M, et al. Prevalence and consistency of low breath H2 excretion following lactulose ingestion: possible implications for the clinical use of the H2 breath test. Dig Dis Sci 1993; 38: 2010–16
  • Strocchi A, Corazza G, Ellis CJ, et al. Detection of malabsorption of low doses of carbohydrate: accuracy of various breath H2 criteria. Gastroenterology 1993; 105: 1404–10
  • Welsh JD, Griffiths W J. Breath hydrogen test after oral lactose in post-gastrectomy patients. Am J Clin Nutr 1980; 35: 2324–7
  • Flatz G, Bemsau I, Behrens A. Lactose absorption and malabsorption in healthy German children: improved phenotypic resolution by simultaneous determination of breath hydrogen and carbon dioxide. Eur J Pediatr 1982; 138: 304–6
  • Broadbent R, Robb TA, Davidson G P. Reproducibility of expired breath hydrogen levels in the neonate: a comparison of two methods for sample collection. Clin Chim Acta 1983; 127: 337–42
  • Nose O, Iida Y, Kai H, et al. Breath hydrogen test for detecting lactose malabsorption in infants and children. Prevalence of lactose malabsorption in Japanese children and adults. Arch Dis Child 1979; 54: 436–40
  • Bjorneklett A, Jenssen E. Relationships between hydrogen and methane production in man. Stand J Gastroenterol 1982; 17: 985–92
  • Weaver GA, Krause JA, Miller TL, et al. Incidence of methanogenic bacteria in a sigmoidoscopy population: an association of methanogenic bacteria and diverticulosis. Gut 1986; 27: 698–704
  • Haines A, Metza G, Dilawari J, et al. Breath methane in patients with cancer of the large bowel. Lancet 1977; 2: 481–3
  • Pique JM, Pallares M, Cuso E, et al. Methane production and colon cancer. Gastroenterology 1984; 87: 601–5
  • Karlin DA, Jones RD, Stroehlein JR, et al. Breath methane excretion in patients with unresected colorectal cancer. J Natl Cancer Inst 1982; 69: 573–6
  • McKay LF, Eastwood MA, Brydon W G. Methane excretion in man: a study of breath, flatus, and feces. Gut 1985; 26: 69–74
  • Sivertsen SM, Bjomeklett A, Gullestad HP, et al. Breath methane and colorectal cancer. Scand J Gastroenterol 1992; 27: 25–8
  • Babior BM, Kipness RS, Curnutte J T. The production by leukocytes of superoxide, a potential bactericidal agent. J Clin Invest 1973; 52: 741–4
  • Riely CA, Cohen G, Lieberman M. Ethane evolution: a new index of lipid peroxidation. Science 1974; 1983: 208–10
  • Kokoszka J, Nelson RL, Swedler WI, et al. Determination of inflammatory bowel disease activity by breath pentane analysis. Dis Colon Rectum 1993; 36: 597–601
  • Thaysen E H. Diagnostic value of the 14C cholylglycine breath test. Clin Gastroenterol 1977; 6: 227–15
  • Rauws E A. J, Langeberg W, Houthoff HJ, et al. Campylobacter pyloridis-asso-ciated chronic active antral gastritis: a prospective study of its prevalence and the effects of antibacterial and antiulcer treatment. Gastroenterology 1988; 94: 33–40
  • Graham DY, Klein PD, Evans DJ, et al. Campylobacter pylori detected by the 13C urea test. Lancet 1987; 1: 1174–7
  • Klein PD, Graham D Y. Campylobacter pylori detection by the 14C urea breath test. Campylobacter pylori and gastrointestinal disease, B Rathbone, V Heatley. Blackwell Scientific, Oxford 1989; 94–106
  • Debongnie JC, Pauwels S, Raat A, et al. Quantification of Helicobacter pylori infection in gastritis and ulcer disease using a simple and rapid carbon-14-urea breath test. J Nucl Med 1991; 32: 1192–8
  • Rauws EA, Royen EA, Langeberg W, et al. 14C urea breath tests in C. pylori gastritis. Gut 1989; 30: 789–803
  • Vandenplas Y, Blecker U, Devreker T, et al. Contribution of the 13C-urea breath test to the detection of Helicobacter pylori gastritis in children. Pediatrics 1992; 90: 608–11
  • Graham DY, Klein P O. What you should know about the methods, problems, interpretations, and uses of urea breath tests. Am J Gastroenterol 1991; 86: 1118–22
  • Caspary W F. Breath tests. Clin Gastroenterol 1978; 7: 351–70
  • Valdovinos MA, Camilleri M, Thomforde GM, et al. Reduced accuracy of 13C-D-xylose breath test for detecting bacterial overgrowth in gastrointestinal motility disorders. Scand J Gastroenterol 1993; 28: 963–8
  • Bjorkman DJ, Moore JG, Klein PD, et al. 13C-bicarbonate breath test as a measure of gastric emptying. Am J Gastroenterol 1991; 86: 821–3
  • Pedersen NT, Andersen BN, Marqversen J. Estimation of 14C triolein assimilation as a test of lipid assimilation: breath test or measurement of serum radioactivity?. Scand J Gastroenterol 1982; 17: 309–16
  • Benini L, Scuro LA, Menini E, et al. 14C-triolein breath test useful in the assessment of malabsorption in clinical practice?. Digestion 1984; 29: 91–7
  • Pedersen NT, Jorgensen BB, Rannem T. The 14C-triolein breath test is not valid as a test of fat absorption. Scand J Clin Lab Invest 1991; 51: 699–703
  • Sharp H L. The current status of α-1-antitrypsin, a protease inhibitor, in gastrointestinal disease. Gastroenterology 1976; 70: 611–21
  • Brantly M, Nukiwa T, Crystal R G. Molecular basis of alpha-1-antitrypsin deficiency. Am J Med 1988; 84(6A)13–31
  • Florent C, L'Hirondel C, Desmazures C, et al. Intestinal clearance of alpha-1-antitrypsin a sensitive method for the detection of protein-losing enteropathy. Gastroenterology 1981; 81: 777–80
  • Buffone GJ, Shulman R J. Characterization and evaluation of immunochemical methods for the measurement of fecal α1-antitrypsin. Am J Clin Pathol 1985; 83: 326–30
  • Crossley JR, Elliot R B. Simple method for diagnosing protein-losing enteropathies. Br Med J 1977; 1: 428–9
  • Hill RE, Hercz A, Corey ML, et al. Fecal clearance of alpha-1-antitrypsin: a reliable measure of enteric protein loss in children. J Pediatr 1981; 99: 416–8
  • Keaney NP, Kelleher J. Faecal excretion of α1-antitrypsin in protein-losing enteropathy. Lancet 1980; 1: 711
  • Perlmutter DH, Daniels JD, Auerbach HS, et al. The α1-antitrypsin gene is expressed in a human intestinal epithelial cell line. J Biol Chem 1989; 264: 9485–90
  • Strygler B, Nicar MJ, Santangelo WC, et al. α1-Antitrypsin excretion in stool in normal subjects and in patients with gastrointestinal disorders. Gastroenterology 1990; 99: 1380–7
  • López A, Hinojosa J, Miralles A, et al. Fecal excretion of α1-antitrypsin in patients with Crohn's disease. A comparison of nephelometry and radial immunodiffusion. Dig Dis Sci 1994; 39: 507–12
  • Arndt B, Schurmann G, Betzler M, et al. Assessment of Crohn's disease activity and α1-antitrypsin in faeces. Lancet 1992; 340: 1037
  • Boirivant M, Pallone F, Ciaco A, et al. Usefulness of fecal α1-antitrypsin clearance and fecal concentration as early indicators of postoperative asymptomatic recurrence in Crohn's disease. Dig Dis Sci 1991; 36: 347–52
  • El Yamani J, Soudan B, Mizon C, et al. A simple method for the measurement of different forms of alpha-1-proteinase inhibitor in the faeces of patients with Crohn's disease. Ann Clin Biochem 1992; 29: 418–21
  • Bai JC, Sambuelli A, Niveloni S, et al. α1-Antitrypsin clearance as an aid in the management of patients with celiac disease. Am J Gastroenterol 1991; 86: 986–91
  • Moran A, Radley S, Neoptolemos J, et al. Detection of colorectal cancer by faecal α1-antitrypsin. Ann Clin Biochem 1993; 30: 28–33
  • Hoffman H, Hanekom C. Random faecal alpha-1-antitrypsin excretion in children with acute diarrhea. J Trop Pediatr 1987; 33: 299–301
  • Fontana M, Zuin G, Galli L, et al. Fecal alpha-1-antitrypsin excretion in acute diarrhea: relationship with causative pathogens. Helv Paediatr Acta 1988; 43: 211–18
  • Zuin G, Fontana M, Nicoli S, et al. Persistence of protein loss in acute diarrhoea. A follow-up study by fecal alpha-1-antitrypsin measurement. Acta Paediatr Scand 1991; 80: 961–3
  • Van de kamer JH, Ten Bokkel Huinin H, Weyers H A. Rapid method for the determination of fat in feces. J Biol Chem 1949; 177: 347–55
  • Phuapradit P, Narang A, Mendonca P, et al. The steatocrit: a simple method for estimating stool fat content in newborn infants. Arch Dis Child 1981; 56: 725–7
  • Guarino A, Tarallo L, Greco L, et al. Reference values of the steatocrit and its modifications in diarrheal diseases. J Pediatr Gastroenterol Nutr 1992; 14: 268–74
  • Iacono G, Carroccio A, Montalto G, et al. Steatocrit test after a standard fatty meal: a new simple and sensitive test to detect malabsorption. J Pediatr Gastroenterol Nutr 1991; 13: 161–7
  • Carbini A, Burlina A, Olivieri D, et al. Evaluation of rapid tests for fat absorption: serum triglyceride test and serum turbidity test. Int J Gastroenterol 1982; 14: 80–5
  • Walters MP, Kelleher J, Gilbert J, et al. Clinical monitoring of steatorrhea in cystic fibrosis. Arch Dis Child 1990; 65: 99–102
  • Brown GA, Booth I W. Clinical monitoring of steatorrhea in cystic fibrosis. Arch Dis Child 1990; 65: 913
  • Walters MP, Kelleher J, Littlewood G J. Comments to the letter of Brown and Booth. Arch Dis Child 1990; 65: 913
  • Peuchant E, Salles C, Jensen R. Value of a spectroscopic “Fecalogram” in determining the etiology of steatorrhea. Clin Chem 1988; 34: 5–8
  • Benini L, Caliari S, Guidi GC, et al. Near infrared spectrometry for fecal fat measurements: comparison with conventional gravimetic and titrimetric methods. Gut 1989; 30: 1344–7
  • Benini L, Caliari S, Bonfante F, et al. Fecal fat concentration in the screening of steatorrhea. Digestion 1992; 53: 94–100
  • Murch SH, Lamkin VA, Savage MO, et al. Serum concentrations of tumor necrosis factor a in childhood chronic inflammatory bowel disease. Gut 1991; 32: 913–17
  • MacDonald TT, Choy MY, Hutchings PA, et al. Tumor necrosis factor-alpha and interferon-gamma production measured at a single cell level in normal and inflamed human intestine. Clin Exp Immunol 1990; 81: 301–5
  • Braegger CP, Nicholls S, Murch SH, et al. Tumor necrosis factor alpha in stool as a marker of intestinal inflammation. Lancet 1992; 339: 89–91
  • Nicholls S, Stephens S, Braegger CP, et al. Cytokines in stools of children with inflammatory bowel disease or infective diarrhoea. J Clin Pathol 1993; 46: 757–60
  • Lanfranchi GA, Tragnone A. Serum and fecal tumour necrosis factor alpha as marker of intestinal inflammation. Lancet 1992; 339: 1053
  • Reddy BS, Wynder E L. Metabolic epidemiology of colon cancer: fecal bile acids and neutral sterols in colon cancer patients and patients with adenomatous polyps. Cancer 1977; 39: 2533–9
  • Hill MJ, Drasar BS, Williams R E. O, et al. Fecal bile acids and Clostridia in patients with cancer of the large bowel. Lancet 1975; 1: 535–9
  • Moskovitz M, White C, Bamett RN, et al. Diet, fecal bile acids and neutral sterols in carcinoma of the colon. Dig Dis Sci 1979; 24: 746–51
  • Mudd DG, McKelvey ST, Norwood W, et al. Fecal bile acid concentrations in patients with carcinoma or at increased risk of carcinoma of the large bowel. Gut 1980; 21: 587–90
  • Setchell K D. R, Street JM, Sjovall J. Fecal bile acids. The bile acids, chemistry, physiology, and metabolism Vol 4. Methods and applications, K D. R Setchell, D Kritchevsky, PP Nair. Plenum Press, New York 1988; 441–575
  • Owen RW, Henly PJ, Thompson MH, et al. Steroids and cancer: fecal bile acid screening for early detection of cancer risk. J Steroid Biochem 1986; 24: 391–4
  • Owen RW, Dodo M, Thompson MH, et al. Fecal steroids and colorectal cancer. Nutr Cancer 1987; 9: 73–80
  • Imray CH, Radley S, Davis A, et al. Faecal unconjugated bile acids in patients with colorectal cancer or polyps. Gut 1992; 33: 1239–45
  • Ejderhamn J, Rafter JJ, Strandvik B. Faecal bile acid excretion in children with inflammatory bowel disease. Gut 1991; 32: 1346–51
  • Dubrow R, Yannielli L. Fecal protein markers of colorectal cancer. Am J Gastroenterol 1992; 87: 854–8
  • Uchida K, Matsuse R, Tomita S, et al. Immunochemical detection of human lactoferrin in feces as a new marker for inflammatory gastrointestinal disorders and colon cancer. Clin Biochem 1994; 27: 259–64
  • Denizot Y, Chaussade S, Nathan N, et al. PAF-acether and acetylhydrolase in stool of patients with Crohn's disease. Dig Dis Sci 1992; 37: 432–7
  • Chaussade S, Denizot Y, Valleur P, et al. Presence of PAF-acether in stool of patients with pouch ileoanal anastomosis and pouchitis. Gastroenterology 1991; 100: 1509–14
  • Denizot Y, Chaussade S, Benveniste J, et al. Presence of PAF-acether in stool of patients with infectious diarrhea. J Infect Dis 1991; 163: 1168
  • Denizot Y, Chaussade S, Colombel JF, et al. Presence of PAF-acether in stools of patients suffering from inflammatory bowel disease. C R Acad Sci Paris Ser 3 1991; 312: 329–33
  • Schmid E, Bauchinger M, Braselmann H, et al. Dose-response relationship for chromosome aberrations induced by fecapentaene-12 in human lymphocytes. Mutat Res 1987; 191: 5–7
  • Curren RD, Putman DL, Yang LL, et al. Genotoxicity of fecapentaene-12 in bacterial and mammalian cell assay systems. Carcinogenesis 1987; 8: 349–52
  • Schiffman MH, Van Tassell RL, Robinson A, et al. Case-control study of colorectal cancer and fecapentaene excretion. Cancer Res 1989; 49: 1322–6
  • De Kok TM, Van Faassen A, Bausch-Goldbohm RA, et al. Fecapentaene excretion and fecal mutagenicity in relation to nutrient intake and fecal parameters in humans on omnivorous and vegetarian diets. Cancer Lett 1992; 62: 11–21
  • De Kok TM, Pachen D, van Iersel ML, et al. Case-control study on fecapentaene excretion and adenomatous polyps in the colon and rectum. J Natl Cancer Inst 1993; 85: 1241–4
  • Samloff I M. Slow moving protease and the seven pepsinogens. Gastroenterology 1969; 57: 659–69
  • Samloff IM, Townes P L. Electrophoretic heterogeneity and relationships of pepsingens in human urine, serum, and gastric mucosa. Gastroenterology 1970; 58: 462–9
  • Yamaguchi T, Takahashi T, Yokota T, et al. Urinary pepsinogen I as a tumour marker of stomach cancer after total gastrectomy. Cancer 1991; 68: 906–9
  • Cross M, Dexter T M. Growth factors in development, transformation, and tumorigenesis. Cell 1991; 64: 271–80
  • Manila AL, Saario I, Viinikka L, et al. Urinary epidermal growth factor concentrations in various human malignancies. Br J Cancer 1988; 57: 139–41
  • Chuang LY, Tsai JH, Yeh YC, et al. Epidermal growth factor-related transforming growth factors in the urine of patients with hepatocellular carcinoma. Hepatology 1991; 13: 1112–6
  • Yeh YC, Tsai JF, Chuag LY, et al. Elevations of transforming growth factor alpha and its relationship to the epidermal growth factor and alpha-fetoprotein levels in patients with hepatocellular carcinoma. Cancer Res 1987; 47: 896–901
  • Sweetenham JW, Davies DE, Wames DS, et al. Urinary epidermal growth factor (hEGF) levels in patients with carcinomas of the breast, colon, and rectum. Br J Cancer 1990; 62: 459–61
  • Nickoloff E. Schilling test: physiologic basis for and use as a diagnostic test. Crit Rev Clin Lab Sci 1988; 26: 263–76
  • Fairbanks VF, Wahner HW, Phyliky RL, et al. Tests for pernicious anemia: the Schilling test. Mayo Clin Proc 1983; 58: 541–4
  • Brugge WR, Goff JS, Allen NC, et al. Development of a dual label Schilling test for pancreatic exocrine function based on the differential absorption of cobalamin bound to intrinsic factor and R protein. Gastroenterology 1980; 78: 937–49
  • Chen W, Morishita R, Eguchi T, et al. Clinical usefulness of dual label Schilling test for pancreatic exocrine function. Gastroenterology 1989; 96: 1337–45
  • Taylor KB, Truelove SC, Thomson DL, et al. An immunological study of coeliac disease and idiopathic steatorrhea: serological reactions to gluten and milk proteins. Br Med J 1961; 2: 1727–31
  • Savilahti E, Viander M, Perkkio M, et al. IgA antigliadin antibodies: a marker of mucosal damage in childhood celiac disease. Lancet 1983; 1: 320–2
  • Weiss JB, Austin RK, Schanfield MS, et al. Gluten sensitive enteropathy. Immunoglobulin G heavy-chain (Gm) allotypes and the immune response to wheat gliadin. J Clin Invest 1983; 72: 96–101
  • Mearin ML, Koninckx CR, Biemond I, et al. Influence of genetic factors on the serum levels of antigliadin antibodies in celiac disease. J Pediatr Gastroenterol Nutr 1984; 3: 373–7
  • Levenson SD, Austin RK, Dietler MD, et al. Specificity of antigliadin antibodies in celiac disease. Gastroenterology 1985; 89: 1–5
  • Kumar V, Jain N, Lerner A, et al. Comparative studies of different gliadin preparations in detecting antigliadin antibodies. J Pediatr Gastroenterol Nutr 1986; 5: 730–4
  • Troncone R, Ferguson A. Anti-gliadin antibodies. J Pediatr Gastroenterol Nutr 1991; 12: 150–8
  • Lebenthal E, Heitlinger L A. Gliadin antibodies in celiac disease. J Pediatr 1983; 102: 711–2
  • Kumar V, Lerner A, Jain N, et al. Are antigliadin antibodies specific for celiac disease?. J Pediatr Gastroenterol Nutr 1984; 3: 815
  • Tucker NT, Barghuthy FS, Prihoda TJ, et al. Antigliadin antibodies detected by enzyme-linked immunosorbent assay as a marker of childhood celiac disease. J Pediatr 1988; 113: 286–9
  • Lerner A, Lebenthal E. The controversy of antigluten antibody (AGA) as a diagnostic tool in celiac disease. J Pediatr Gastroenterol Nutr 1991; 12: 407–9
  • Unsworth DJ, Kieffer M, Holborow EJ, et al. IgA anti-gliadin antibodies in coeliac disease. Clin Exp Immunol 1981; 46: 286–93
  • Burgin-Wolff A, Bertele RM, Berger R, et al. A reliable screening test for childhood celiac disease: fluorescent immunosorbent test for gliadin antibodies. A prospective multicenter study. J Pediatr 1983; 102: 655–60
  • Kelly J, O'Farrelly C, Rees JP, et al. Humoral response to alpha gliadin as serological screening test for coeliac disease. Arch Dis Child 1987; 62: 469–73
  • Hed J, Lieden G, Ottosson E, et al. IgA antigliadin antibodies and jejunal mucosal lesions in healthy blood donors. Lancet 1986; 2: 215
  • Scott H, Brandtzaeg P. Gluten IgA antibodies and coeliac disease. Lancet 1989; 1: 382–3
  • Unsworth DJ, Walker-Smith JA, Holborow E J. Gliadin and reticulin antibodies in childhood coeliac disease. Lancet 1983; 1: 874–5
  • Unsworth DJ, Leonard JN, McMinn RM, et al. Antigliadin antibodies and small intestinal mucosal damage in dermatitis herpetiformis. Br J Dermatol 1981; 105: 653–8
  • Kilander AF, Gillberg RE, Kastrup W, et al. Serum antibodies to gliadin and small intestinal morphology in dermatitis herpetiformis. A controlled clinical study of the effect of treatment with a gluten free diet. Scand J Gastroeenterol 1985; 20: 951–8
  • Finn R, Harvey MM, Johnson PM, et al. Serum IgG antibodies to gliadin and other dietary antigens in adults with atopic eczema. Clin Exp Dermatol 1985; 10: 222–8
  • Kumar V, Jain N, Beutner EH, et al. Detection of antigliadin antibodies in bullous diseases and their recognition of similar antigenic polypeptides. Int Arch Allergy Appl Immunol 1987; 83: 155–9
  • Kieffer M, Bametson R S. Increased gliadin antibodies in dermatitis herpetiformis and pemphigoid. Br J Dermatol 1983; 108: 673–8
  • Teppo AM, Maury C P. Antibodies to gliadin, gluten, and reticulin glycoprotein in rheumatic diseases: elevated levels in Sjogren's syndrome. Clin Exp Immunol 1984; 57: 73–8
  • McCormick PA, Feighery C, Dolan C, et al. Altered gastrointestinal immune response in sarcoidosis. Gut 1988; 29: 1628–31
  • Maki N, Hollstrom O, Vesikari T, et al. Evaluation of a serum IgA-class reticulin antibody test for the detection of childhood celiac disease. J Pediatr 1984; 105: 901–5
  • Lazzari R, Volta U, Bianchi FB, et al. R1 reticulin antibodies: marker of celiac disease in children on a normal diet and on gluten challenge. J Pediatr Gastroenterol Nutr 1984; 3: 516–22
  • Khoshoo V, Bhan MK, Unsworth DJ, et al. Antireticulin antibodies: useful adjunct to histopathology in diagnosing celiac disease, especially in a developing country. J Pediatr Gastroenterol Nutr 1988; 7: 864–6
  • Kumar V, Lerner A, Valeski JE, et al. Relative sensitivity and specificity of serodiagnostic tests for gluten sensitive enteropathy. A comparative study on IgA class endomysial (IgA-EMA) and IgA class antireticulin antibodies (IgA-ARA) in celiac disease. Serologic diagnosis of celiac disease, TP Chorzelski, EH Beutner, V Kumar, TK Zalewski. CRC Press, Boca Raton 1990; 127–36
  • Chorzelski TP, Sulej J, Tchorzewska H, et al. IgA class endomysium antibodies in dermatitis herpetiformis and coeliac disease. Ann NY Acad Sci 1983; 420: 325–34
  • Kapuscinska A, Zalcwski T, Chorzelski TP, et al. Disease specificity and dynamics of changes in IgA class anti-endomysial antibodies in celiac disease. J Pediatr Gastroenterol Nutr 1987; 6: 529–34
  • Rossi TM, Kumar V, Lerner A, et al. Relationship of endomysial antibodies to jejunal mucosal pathology: specificity toward both symptomatic and asymptomatic celiaes. J Pediatr Gastroenterol Nutr 1988; 7: 858–63
  • Rostoker G, Andre C, Branellec A, et al. Lack of antireticulin and IgA antiendomysium antibodies in sera of patients with primary IgA nephropathy associated with circulating IgA antibodies to gliadin. Nephron 1988; 48: 81
  • Kumar V, Lerner A, Valeski JE, et al. Endomysial antibodies in the diagnosis of celiac disease and the effect of gluten on antibody titres. Immunol Invest 1989; 18: 533–4
  • Hallstrom O. Comparison of IgA-class reticulin and endomysium antibodies in coeliac disease and dermatitis herpetiformis. Gut 1989; 30: 1225–32
  • Valeski JE, Kumar V, Beutner EH, et al. Immunology of celiac disease: tissue and species specificity of endomysial and reticulin antibodies. Int Arch Allergy Appl Immunol 1990; 93: 1–7
  • Lerner A, Kumar V, Iancu T C. Immunological diagnosis of childhood coeliac disease: comparison between antigliadin, antireticulin and antiendomysial antibodies. Clin Exp Immunol 1994; 95: 78–82
  • Calbuig M, Torregosa R, Polo P, et al. Serological markers and celiac disease: a new diagnostic approach?. J Pediatr Gastroenterol Nutr 1990; 10: 435–42
  • Ferreira M, Davies SL, Butler M, et al. Endomysial antibody: is it the best screening test for coeliac disease?. Gut 1992; 33: 1633–7
  • Bodé S, Weile B, Krasilnikoff PA, et al. The diagnostic value of the gliadin antibody test in celiac disease in children: a prospective study. J Pediatr Gastroenterol Nutr 1993; 17: 260–4
  • Carroccio A, Iacono G, Montalto F, et al. Immunologic and absorptive tests in celiac disease: can they replace intestinal biopsies?. Scand J Gastroenterol 1993; 28: 673–6
  • Rich EJ, Christie D L. Anti-gliadin antibody panel and xylose absorption test in screening for celiac disease. J Pediatr Gastroenterol Nutr 1990; 10: 174–8
  • McMillan SA, Haughton DJ, Biggart JD, et al. Predictive value for coeliac disease of antibodies to gliadin, endomysium, and jejunum in patients attending for jejunal biopsy. Br Med J 1991; 303: 1163–5
  • Uibo O, Maaroos H I. Hospital screening of coeliac disease in Estonian children by anti-gliadin antibodies of IgA class. Acta Pazdiatr 1993; 82: 233–4
  • Sategna-Guidetti C, Pulitanó R, Grosso S, et al. Serum IgA antiendomysium antibody titers as a marker of intestinal involvement and diet compliance in adult celiac sprue. J Clin Gastroenterol 1993; 17: 123–7
  • Hallstrom O. Comparison of IgA-class reticulin and endomysial antibodies in coeliac disease and dermatitis herpetiformis. Gut 1989; 30: 1225–32
  • Collin P, Helin H, Maki M, et al. Follow-up of patients positive in reticulin and gliadin antibody tests with normal small-bowel biopsy findings. Scand J Gastroenterol 1993; 28: 595–8
  • Rossi TM, Albini CH, Kumar V. Incidence of celiac disease identified by the presence of serum endomysial antibodies in children with chronic diarrhea, short stature, or insulin-dependent diabetes mellitus. J Pediatr 1993; 123: 262–4
  • Valletta EA, Trevisiol D, Mastella G. IgA anti-gliadin antibodies in the monitoring of gluten challenge in celiac disease. J Pediatr Gastroenterol Nutr 1990; 10: 169–73
  • Wauters E A. K, Jansen J, Houwen RH, et al. Serum IgG and IgA anti-gliadin antibodies as markers of mucosal damage in children with suspected celiac disease upon gluten challenge. J Pediatr Gastroenterol Nutr 1991; 13: 192–6
  • Khoshoo V, Bhan MK, Puri S, et al. Serum anti-gliadin antibody profile in childhood protracted diarrhoea due to coeliac disease and other causes in a developing country. Scand J Gastroenterol 1989; 24: 1212–6
  • Arnason JA, Gudjonsson H, Freysdóttir J, et al. Do adults with high gliadin antibody concentrations have subclinical gluten intolerance?. Gut 1992; 33: 194–7
  • Unsworth DJ, Brown D L. Serological screening suggests that adult coeliac disease is underdiagnosed in the UK and increases the incidence by up to 12%. Gut 1994; 35: 61–4
  • Casero J, Coronas M, Beneitez C, et al. Xylose, anti-gliadin, and anti-endomysium antibodies in adult celiac disease. Clin Chem 1993; 39: 1753
  • Uibo O, Uibo R, Kleimola V, et al. Serum IgA anti-gliadin antibodies in an adult population sample. High prevalence without celiac disease. Dig Dis Sci 1993; 38: 2034–7
  • Corazza G, Valentini RA, Frison M, et al. Gliadin immune reactivity is associated with overt and latent enteropathy in relatives of celiac patients. Gastroenterology 1992; 103: 1517–22
  • Greenfield SM, Soloway RD, Carithers RL, Jr, et al. Evaluation of postprandial serum bile acid response as a test of hepatic function. Dig Dis Sci 1986; 31: 785–91
  • Mannes GA, Stellaard F, Paumgartner G. Diagnostic sensitivity of fasting and post prandial serum bile acids determined by different methods. Clin Chim Acta 1987; 162: 147–54
  • La Russo NF, Korman MG, Hoffman NE, et al. Dynamics of the enterohepatic circulation of bile acids. N Engl J Med 1974; 291: 689–92
  • La Russo NF, Hoffman NE, Korman MG, et al. Determinants of fasting and post prandial serum bile acid levels in healthy man. Am J Dig Dis 1978; 23: 385–91
  • Issacs P E. T, Murphy GM, Mathews LM, et al. Serum bile acid concentrations in gastrointestinal disease. Clin Sci 1979; 56: 28
  • Spiller RC, Frost PF, Stewart JS, et al. Delayed post prandial plasma bile acid response in coeliac patients with slow mouth-caecun transit. Clin Sci 1987; 72: 217–23
  • Ejderhamn J, Samuelson K, Strandvik B. Serum primary bile acids in the course of celiac disease in children. J Pediatr Gastroenterol Nutr 1992; 14: 443–9
  • Farivar S, Fromm H, Schindler D, et al. Tests of bile acid and vitamin B12 metabolism in ileal Crohn's disease. Am J Clin Pathol 1980; 73: 69–74
  • Scarpello JH, Salden G E. 13C glycocholate test in Crohn's disease - its value in assessment and treatment. Gut 1977; 18: 742–8
  • Merick MV, Eastwood MA, Anderson JR, et al. Enterohepatic circulation in man of a gamma-emitting bile-acid conjugate, 23-selena-25-homotaurocholate. J Nucl Med 1982; 23: 126–30
  • Nyhlin H, Merrick MV, Eastwood MA, et al. Evaluation of ileal function using 23-selena-25-homotaurocholate, a gamma-labeled conjugated bile acid. Initial clinical assessment. Gastroenterology 1983; 84: 63–8
  • Nyhlin H, Merrick MV, Eastwood M A. Bile acid malabsorption in Crohn's disease and indications for its assessment using SeHCAT. Gut 1994; 35: 90–3
  • Jennings RC, Brocklehurst D, Hirst M. A comparative study of alkaline phosphatase enzymes using starch-gel electrophoresis and Sephadex gel filtration with special reference to high molecular weight enzymes. Clin Chim Acta 1970; 30: 509–17
  • Brocklehurst D, Lathe GH, Aparicio S R. Serum alkaline phosphatase, nucleotide pyrophosphatase, 5° nucleotidase, and lipoprotein x in cholestasis. Clin Chim Acta 1976; 67: 269–76
  • Price CP, Sammons H G. The nature of the serum alkaline phosphatases in liver diseases. J Clin Pathol 1974; 27: 392–8
  • Siede WH, Seiffert U B. Quantitative alkaline phosphatase isoenzyme determination by electrophoresis on cellulose acetate membranes. Clin Chem 1977; 23: 28–34
  • Fritsche HA, Jr, Adams-Park H R. High molecular weight isoenzymes of alkaline phosphatase in human serum: demonstration by cellulose acetate electrophoresis and physicochemical characterization. Clin Chim Acta 1974; 52: 81–9
  • Wolf P. High-molecular-weight alkaline phosphatase and alkaline phosphatase lipoprotein x complex in cholestasis and hepatic malignancy. Arch Pathol Lab Med 1990; 114: 577–9
  • Siede WH, Seiffert U B. Relative merits of biliary alkaline phosphatase isoenzyme and lipoprotein-x in diagnosis of cholestasis. Clin Chem 1983; 29: 698–700
  • Rasmuson T, Bjork GR, Damber L, et al. Tumour markers in mammary carcinoma. An evaluation of carcinoembryonic antigen, placental alkaline phosphatase, pseudouridine, and CA-50. Acta Oncol 1987; 26: 261–7
  • Wei JS, Chung NC, Wei LL, et al. High-molecular-mass alkaline phosphatase as a tumor marker for colorectal cancer: comparison of two test methods. Clin Chem 1993; 39: 540–3
  • Vatn MH, Tjora S, Arva PH, et al. Enzymatic characteristics of tubular adenomas and carcinomas of the large intestine. Gut 1982; 23: 194–7
  • Vatn MH, Tjora S, Elgjo K, et al. Lactate dehydrogenase isoenzymes in mucosal biopsy specimens from patients with ulcerative colitis. Scand J Gastroenterol 1985; 20: 929–32
  • Shakin K M. M, Margolis S, Baylin S B. Localization of histaminase (diamine oxidase) in rat small bowel intestinal mucosa: site of release by heparin. Biochem Pharmacol 1977; 26: 2343–7
  • D'Agostino L, Daniele B, Pallone F, et al. Postheparin plasma diamine oxidase in patients with small bowel Crohn's disease. Gastroenterology 1988; 95: 1503–9
  • Daniele B, Quaroni A. Polarized secretion of diamine oxidase by intestinal epithelial cells and its stimulation by heparin. Gastroenterology 1990; 99: 1675–87
  • Rokkas T, Vaja S, Murphy GM, et al. Postheparin plasma diamine oxidase: a non-invasive marker of active ileal Crohn's disease?. Gut 1986; 27 A: 630
  • Thompson JS, Burnett DA, Cormier RA, et al. Plasma postheparin diamine oxidase: development of a simple technique of assessing Crohn's disease. Dis Colon Rectum 1988; 31: 529–32
  • Rokkas T, Sashi V, Murphy GM, et al. Postheparin plasma diamine oxidase in health and intestinal disease. Gastroenterology 1990; 98: 1493–1501
  • Thompson JS, Burnett DA, Vaughan W P. Factors affecting plasma postheparin diamine oxidase activity. Dig Dis Sci 1991; 36: 1582–8
  • D'Agostino LD, Contegiacomo A, Pignata S, et al. Plasma postheparin diamine oxidase in patients with small intestinal lymphoma. Cancer 1991; 67: 511–5
  • Plebani M. Pepsinogens in health and disease. Crit Rev Clin Lab Sci 1993; 30: 273–328
  • Basso D, Brigato L, Di Mario F, et al. Helicobacter pylori infection and serum IgG avidity. Clin Chim Acta 1996; 245: 129–32
  • Plebani M, Basso D, Scrigner M, et al. Serum Pepsinogen C: a useful marker of Helicobacter pylori eradication. J Clin Lab Anal 1996; 10: 1–5
  • Plebani M, Basso D, Cassard M, et al. Helicobacter pylori serology in patients with chronic gastritis. Am J Gastroenterol 1996; 91: 954–8
  • Lindberg T, Berg NO, Borulf S, et al. Liver damage in celiac disease or other food intolerance in childhood. Lancet 1978; 1: 390–1
  • Jacobsen MB, Fausa O, Elgjo K, et al. Hepatic lesions in adult celiac disease. Scand J Gastroenterol 1990; 25: 656–62
  • Leonardi S, Bottaro G, Patanè R, et al. Hypertransaminasemia as the first symptom in infant celiac disease. J Pediatr Gastroenterol Nutr 1990; 11: 404–6
  • Vajro P, Fontanella A, Mayer M, et al. Elevated serum aminotransferase activity as an early manifestation of gluten-sensitive enteropathy. J Pediatr 1993; 122: 416–19
  • Fried MW, Murthy UK, Hassig SR, et al. Creatine kinase isoenzymes in the diagnosis of intestinal infarction. Dig Dis Sci 1991; 36: 1589–93
  • Ya-Xiong S, Cheng-Ren S, Jia-Zhou C, et al. Observations on erythrocyte AChE activity of infants and children in Hirschsprung's disease. J Pediatr Surg 1984; 19: 281–4
  • Okasora T, Okamoto E, Kuwata K, et al. Serum and erythrocyte AChE in Hirschsprung's disease. Z Kinderchirurg 1983; 38: 298–300
  • Atias BO, Finaly R, Meyerstein N, et al. Erythrocyte acetylcholinesterase activity in Hirschsprung's disease in Israel. J Pediatr Surg 1991; 26: 190–1
  • Talmo RC, Langley CE, Reed CE, et al. α1-Antitrypsin deficiency: a variant with no detectable α1-antitrypsin. Science 1973; 181: 70–1
  • Lieberman J. Emphysema, cirrhosis and hepatoma with α1-antitrypsin deficiency. Ann Intern Med 1974; 81: 850–2
  • Dycaico MJ, Felts K, Nichols SW, et al. Neonatal growth delay in α1-antitrypsin deficiency. Mol Biol Med 1989; 6: 137–41
  • Novis BH, Banks B, Young GO, et al. Chronic pancreatitis and α1-antitrypisn. Lancet 1975; 2: 748–9
  • Kishore N. α1-Antitrypsin deficiency in duodenal ulcer. Trop Gastroenterol 1980; 1: 193–6
  • Shahid A, Siddiqui AA, Zuberi SJ, et al. Alimentary tract and pancreas. J Gastroenterol Hepatol 1993; 8: 505–7
  • Teppo AM, Maury C P. J. Radioimmunoassay of tumour necrosis factor in serum. Clin Chem 1987; 33: 2024–7
  • Cybulsky MI, McComb J, Movat H Z. Neutrophil leukocyte emigration induced by endotoxin. J Immunol 1988; 140: 3144–9
  • Bendtzen K. Immune hormones (cytokines): pathogenetic role in autoimmune rheumatic and endocrine disease. Autoimmunity 1989; 2: 177–89
  • Satsangi I, Wolstencroft RA, Cason I, et al. Interleukin 1 in Crohn's disease. Clin Exp Immunol 1987; 67: 594–605
  • Suzuki Y, Quinn DG, Tobin A, et al. Production of interleukin 1 by highly purified monocytes in inflammatory bowel disease. Eur J Gastroenterol Hepatol 1991; 3: 45–9
  • Nielson OH, Brynskov J, Bendtzen K. Circulating and mucosal concentrations of tumour necrosis factor and inhibitor(s) in chronic inflammatory bowel disease. Dan Med Bull 1993; 40: 247–9
  • Russell RI, Lee F D. Tests of small intestinal function. Clin Gastroenterol 1978; 7: 277–317
  • West PS, Levin GE, Griffin GE, et al. Comparison of simple screening tests for fat malabsorption. Br Med J 1981; 282: 1501–4
  • Turner JM, Lawrence S, Fellows IW, et al. 14C-triolein absorption: a useful test in the diagnosis of malabsorption. Gut 1987; 28: 694–700
  • Harper GD, Wheeler DC, Wicks A C. B. Butterfat absorption: a valuable screening test in malabsorption. Postgrad Med J 1994; 70: 23–6
  • Green P H. R, Tall AR, Glickman R M. Rat intestine secretes discoid high density lipoproteins. J Clin Invest 1978; 61: 528–34
  • Green P H. R, Glickman RM, Sandek CD, et al. Human intestinal lipoproteins: studies in chyluric subjects. J Clin Invest 1979; 64: 233–42
  • Mahley RW, Innerarity TL, Rall SC, et al. Plasma lipoproteins: apolipoprotein structure and function. J Lipid Res 1984; 25: 1277–94
  • Rosenthal E, Hoffman R, Aviram M, et al. Serum lipoprotein profile in children with celiac disease. J Pediatr Gastroenterol Nutr 1990; 11: 58–62
  • Lemer A, Gruener N, Lancu T C. Serum carnitine concentrations in coeliac disease. Gut 1993; 34: 933–5
  • Donowitz M. Arachidonic acid metabolites and their role in inflammatory bowel disease. Gastroenterology 1985; 88: 580–7
  • Lauritsen K, Laursen LS, Bukhave K, et al. In vivo profiles of eicosanoids in ulcerative colitis, Crohn's colitis, and Clostridium difficile colitis. Gastroenterology 1988; 95: 11–7
  • Rask-Madsen J. Eicosanoids in inflammatory bowel disease: advances, pitfalls and therapeutic consequences. Eur J Gastroenterol Hepatol 1989; 1: 133–65
  • Esteve-Comas M, Ramirez M, Femandez-Banares F, et al. Plasma polyunsaturated fatty acid pattern in active inflammatory bowel disease. Gut 1992; 33: 1365–9
  • Hawthorne AB, Daneshmend TK, Hawkey CJ, et al. Fish oil in ulcerative colitis: final results of a controlled clinical trial. Gastroenterology 1990; 98: A174
  • Tobin A, Suzuky Y, O'Morain C. Controlled double blind cross-over study of eicosapentanoic acid (EPA) in chronic ulcerative colitis (UC). Gastroenterology 1990; 98: A207
  • Helmer OM, Fonts P J. Gastrointestinal studies. VII. Excretion of xylose in pernicious anemia. J Clin Invest 1937; 16: 343–9
  • Fourman L P. R. The absorption of D-xylose in steatorhea. Clin Sci 1948; 6: 289–94
  • Benson IA, Culver PJ, Ragland S, et al. The D-xylose absorption test in malabsorption syndromes. N Engl J Med 1957; 256: 335–9
  • Shammaa MH, Ghazanfar S A. S. D-Xylose test in enteric fever, cirrhosis, and malabsorptive states. Br Med J 1960; 1: 836–8
  • Hawkins K I. Pediatric xylose absorption test: measurements in blood preferable to measurements in urine. Clin Chem 1970; 16: 749–52
  • Buts JP, Morin CL, Roy CC, et al. One-hour blood xylose test: a reliable index of small intestinal function. J Pediatr 1978; 90: 729–33
  • Finlay JM, Hogarth J, Wightman K J. R. A clinical evaluation of the D-xylose tolerance test. Ann Intern Med 1964; 61: 411–22
  • Peled Y, Doron O, Laufer H, et al. D-xylose absorption test: urine or blood?. Dig Dis Sci 1991; 36: 188–92
  • Labib M, Gama R, Marks V. Predictive value of D-xylose absorption test and erythrocyte folate in adult celiac disease: a parallel approach. Ann Clin Biochem 1990; 27: 75–7
  • Sutherland LR, Deirdre L, Church DL, et al. Gastrointestinal function and structure in HIV-positive patients. Can Med Assoc J 1990; 143: 641–6
  • Ehrenpreis ED, Ganger DR, Kochvar GT, et al. D-Xylose malabsorption: characteristic finding in patients with the AIDS wasting syndrome and chronic diarrhea. J Acquired Immun Def Synd 1992; 5: 1047–50
  • Fleming SC, Kynaston JA, Laker MF, et al. Analysis of multiple sugar probes in urine and plasma by high-performance anion-exchange chromatography with pulsed electrochemical detection. Applications in the assessment of intestinal permeability in human immunodeficiency virus infection. J Chromatogr B 1993; 640: 293–7
  • Troncone R, Starita A, Coletta S, et al. Antigliadin antibody, D-xylose, and cellobiose/mannitol permeability tests as indicators of mucosal damage in children with celiac disease. Scand J Gastroenterol 1992; 27: 703–6
  • Andre C, Descos L, Minaire Y. Comparison between lactulose-mannitol test and Cr-labeled ethylenediamine tetra-acetate test in inflammatory bowel diseases. Hepatogastroenterology 1990; 37(Suppl 11)113–7
  • Kingsnorth AN, Lumsden AB, Wallace H M. Polyamines in colorectal cancer. Br J Surg 1984; 71: 791–4
  • Tabor CW, Tabor H. Polyamines. Annu Rev Biochem 1984; 53: 749–90
  • Sayjari R, Townsend C, Jr, Barranco SC, et al. Polyamines in gastrointestinal cancer. Dig Dis Sci 1989; 34: 1629–36
  • Pegg AE, McCann P P. Polyamine metabolism and function. Am J Physiol 1982; 243: c212–21
  • Porter CW, Herrera-Ornelas L, Pera P, et al. Polyamine biosynthetic activity in normal and neoplastic human colorectal tissues. Cancer 1987; 60: 1275–81
  • McCormack SA, Johnson L R. Role of polyamines in gastrointestinal mucosal growth. Am J Physiol 1991; 260: G795–G806
  • Mennigen R, Kusche J, Krakamp B, et al. Large bowel tumors and diamine oxidase (DAO) activity in patients: a new approach for risk group identification. Agents Actions 1988; 23: 351–3
  • Mennigen R, Leisten L, Kusche J. Inhibition of polyamine metabolism and mucosal hyperproliferation as risk factors of large bowel cancer in rats. Eur Surg Res 1987; 19(Suppl)99
  • Luk GD, Baylin S B. Ornithine decaboxylase as a biologic marker in familial colonic polyposis. N Engl J Med 1984; 311: 80–3
  • Arlow FL, Colarian J, Calzada R, et al. Differential activation of ornithine decarboxylase and tyrosine kinase in the rectal mucosa of patients with hyperplastic and adenomatous polyps. Gastroenterology 1991; 100: 1528–32
  • Braverman DZ, Stankiewicz H, Goldstein R, et al. Ornithine decarboxylase: an unreliable marker for identification of population groups at risk for colonic neoplasia. Am J Gastroenterol 1990; 85: 723–6
  • Van Munster IP, Nagengast F M. Ornithine decarboxylase as a marker for colonic mucosal proliferation in patients at risk for large bowel cancer. Gastroenterology 1991; 100: A407
  • Desai TK, Parikh N, Bronstein JC, et al. Failure of rectal ornthine decarboxylase to identify adenomatous polyp status. Gastroenterology 1992; 103: 1562–1567
  • Sandler RS, Ulshen MH, Lyles CM, et al. Rectal mucosal ornithine decarboxylase activity is not a useful marker of risk for colorectal neoplasia. Dig Dis Sci 1992; 37: 1718–24
  • Van Munster IP, Nagengast F M. Ornithine decarboxylase activity in colonic biopsies is largely influenced by freezing and storage of tissues. Gastroenterology 1991; 100: A407
  • Garewal HS, Sloan D, Sampliner RE, et al. Omthine decarboxylase assay in human colorectal mucosa. Methodologic issues of importance to quality control. Int J Cancer 1992; 52: 355–8
  • O'Mahony S, Choudari CP, Barton JR, et al. Gut lavage fluid proteins as markers of activity of inflammatory bowel disease. Scand J Gastroenterol 1991; 26: 940–4
  • Lipkin EW, Bell S. Assessment of nutritional status. The clinical perspective. Clin Lab Med 1993; 132: 329–51
  • Seltzer MH, Bastidas JA, Cooper DM, et al. Instant nutritional assessment. J Parent Ent Nutr 1979; 3: 157–9
  • Ingenbleek Y, Van Den Schrieck HG, De Nayer P, et al. Albumin, transferrin and thyroxine binding prealbumin/retinol binding protein complex in assessment of malnutrition. Clin Chim Acta 1975; 63: 61–7
  • Roza AM, Tuitt D, Schizgal H M. Transferrin — a poor measure of nutritional status. J Parent Ent Nutr 1984; 8: 523–8
  • Rulin J, Derpas GD, Walsh D. Protein losses and tobramycin absorption in peritonitis treated by hourly peritoneal dialysis. Am J Kidney Dis 1986; 8: 124–7
  • Spiekerman A M. Proteins used in nutritional assessment. Clin Lab Med 1993; 13: 353–69
  • Gofferje H. Prealbumin and retinol-binding protein; highly sensitive parameters for the nutritional state in respect of protein. Med Lab 1978; 5: 38–44
  • Smith JE, Goodman D S. Retinol binding protein and the regulation of vitamin A transport. Fed Proc 1979; 38: 2504–9
  • Ingenbleek Y, DeVisscher M, De Nayer P. Measurement of prealbumin as an index of protein-calorie malnutrition. Lancet 1972; 2: 106–8
  • Large S, Neal G, Glover J, et al. The early changes in retinol-binding protein and prealbumin concentrations in plasma of protein-energy malnourished children after treatment with retinol and an improved diet. Br J Nutr 1980; 43: 393–402
  • Clemmons DR, Underwood LE, Dickerson RN, et al. Use of plasma somatome-din-C/insulin-like growth factor I measurements to monitor the response to nutritional repletion in malnourished patients. Am J Clin Nutr 1985; 41: 191–8
  • Scott RL, Sohmer PR, MacDonald M G. The effect of starvation and repletion on plasma fibronectin in man. JAMA 1982; 248: 2025–7
  • Cannon JG, Meydani SN, Fielding RA, et al. Acute phase response in exercise. II. Associations between vitamin E, cytokines, and muscle proteolysis. Am J Physiol 1991; 260: R1235–40
  • Herbert V. Making sense of laboratory tests of folate status: folate requirements to sustain normality. Am J Hematol 1987; 26: 199
  • Waldenlind L. An improved method for the determination of endogenous thiamin and its phosphate esters in biological material. Nutr Metab 1979; 23: 38
  • Sanders S, Hahn A, Stein J, et al. Comparative studies on the high-performance liquid chromatographic determination of thiamin and its phosphate esters with chloroethyl-thiamine as an internal standard using pre-column and post-column derivatization procedures. J Chromatogr A 1991; 558: 115
  • Takendi T, Nishino K, Itokawa Y. Improved determination of transketolase activity in erythrocytes. Clin Chem 1984; 30: 658
  • Morrow FD, Sahyoun N, Jacob RA, et al. Clinical assessment of the nutritional status of adults. Nutritional biochemistry and metabolism with clinical applications2nd ed, MC Linder. Elsevier, New York 1991; 391
  • Leklem J E. Vitamin B6: a status report. J Nutr 1990; 120(S11)1503–7
  • Skala J H. Biochemical criteria for evaluating vitamin B6 nutritional status. Nutritional status assessment of the individual, GE Livingstone. Food and Nutrition, Tumbull, CT 1989; 313
  • Jacob RA, Milne D B. Biochemical assessment of vitamins and trace metals. Clin Lab Med 1993; 13: 371–85
  • Boushey CJ, Beresford S A. A, Omenn GS, et al. A quantitative assessment of plasma homocysteine as a risk factor for vascular disease. JAMA 1995; 274: 1049–57
  • Jacob RA, Skala JH, Amaye S T. Biochemical methods for assessing vitamin C status of the individual. Nutritional status assessment of the individual, GE Livingstone. Food and Nutrition, Turnbull, CT 1989; 323
  • Barga G, Hernanz A. Vitamin C, dehydroascorbate, and uric acid in tissues and serum: high performance liquid chromatography. Methods Enzymol 1994; 234: 331–7
  • Olson J A. Assessment of vitamins A., D., E., and K. Nutritional status assessment of the individual, GE Livingstone. Food and Nutrition, Tumbull, CT 1989; 275
  • Holick M F. The use and interpretation of assays for vitamin D and its metabolites. J Nutr 1990; 120(S11)1464
  • Taylor A. Usefulness of measurements of trace elements in hair. Ann Clin Biochem 1986; 23: 364–78
  • Sky-Peck H H. Distribution of trace elements in human hair. Clin Physiol Biochem 1990; 8: 70–80
  • Nuttall KL, Gordon WH, Ash K O. Inductively coupled plasma mass spectrometry for trace element analysis in the clinical laboratory. Ann Clin Lab Sci 1995; 25: 264–71
  • Börjesson J, Mattsson S. Toxicology: in vivo X-ray fluorescence for the assessment of heavy metal concentrations in man. Appl Radiat Isot 1995; 46: 571–6
  • Versieck J. Neutron activation analysis for the determination of trace elements in biological materials. Biol Trace Elem Res 1994; 43–45: 407–13
  • Goldberg DM, Durie P R. Biochemical tests in the diagnosis of chronic pancre atitis and in the evaluation of pancreatic insufficiency. Clin Biochem 1993; 26: 253–75
  • Goldberg D M. Enzymes and isoenzymes in the evaluation of diseases of the pancreas. Clinical and analytical concepts in enzymology, HA Homburger. College of American Pathologists, Skokie, IL 1983; 31–55
  • Goldberg D M. Recent clinical aspects of pancreatic enzymes. Clinical enzymology symposia, A Burlina, L Galzigna. L. Piccin, Milan 1984; Vol. 4: 199–221
  • Goldberg D M. Strategies in the enzymological diagnosis of pancreatic disease. Selected topics in clinical enzymology, M Werner, DM Goldberg. Walter de Gruyter, Berlin 1984; Vol. 2: 171–97
  • Goldberg D M. Biochemical tests in the diagnosis of chronic pancreatic insufficiency. Clin Biochem Rev 1985; 5: 110–20
  • Durie PR, Goldberg D M. Biochemical tests of pancreatic function in infancy and childhood. Advances in clinical enzymology, DW Moss, E Schmidt, FW Schmidt. Karger, Basel 1986; Vol. 4: 77–92
  • Goldberg D M. Enzymes as indices of organ function in health and disease. Highlights of modern biochemistry, A Kotyk, J Skoda, V Paces, V Kostka. VSP International, ZeistNetherlands 1989; 1571–81
  • Goldberg D M. Biochemical tests in pancreatic disease. Curr Opinion Gastroenterol 1990; 6: 739–49
  • Berk JE, Ayulo JA, Fridhandler L. Value of pancreatic-type isoamylase assay as an index of pancreatic insufficiency. Dig Dis Sci 1979; 23: 214–8
  • Koop H, Lankisch PG, Stockmann F, et al. Trypsin radioimmunoassay in the diagnosis of chronic pancreatitis. Digestion 1980; 20: 151–6
  • Andriulli A, Masoero G, Felder M, et al. Circulating trypsin-like immunoreac-tivity in chronic pancreatitis. Dig Dis Sci 1981; 26: 532–7
  • Adriaenssens K, Van Riel L. Serum pancreatic lipase as a screening test for cystic fibrosis. Arch Dis Child 1982; 57: 553–5
  • Steinberg WM, Goldstein SS, Davis ND, et al. Predictive value of a low serum trypsinogen. Dig Dis Sci 1985; 30: 547–51
  • Cleghorn G, Benjamin L, Corey M, et al. Serum immunoreactive pancreatic lipase and cationic trypsinogen for the assessment of exocrine pancreatic function in older patients with cystic fibrosis. Pediatrics 1986; 77: 301–6
  • Remtulla MA, Durie PR, Goldberg D M. Stool chymotrypsin activity measured by a spectrophotometric procedure to identify pancreatic disease in infants. Clin Biochem 1986; 19: 341–7
  • Remtulla MA, Durie PR, Goldberg D M. Is chymotrypsin output a better diagnostic index than the measurement of chymotrypsin in random stool?. Enzyme 1988; 39: 190–8
  • Thorsgaard Pedersen N. Estimation of assimilation of simultaneously ingested 14C-triolein and 3H-oleic acid as a test of pancreatic digestive function. Scand J Gastroenterol 1984; 19: 161–6
  • Thorsgaard Pedersen N, Halgreen H. Simultaneous assessment of fat maldigestion and fat malabsorption by a double-isotope method using fecal radioactivity. Gastroenterology 1985; 88: 47–54
  • Einarsson K, Bjorkhem I, Eklof F, et al. 14C-triolein breath test as a rapid and convenient screening test for fat malabsorption. Breath test or measurement of serum radioactivity?. Scand J Gastroenterol 1983; 18: 9–12
  • Vantrappen GR, Rutgeerts PJ, Ghoos YF, et al. Mixed triglyceride breath test: a noninvasive test of pancreatic lipase activity in the duodenum. Gastroenterology 1989; 96: 1126–34
  • Goff J S. Two-stage triolein breath test differentiates pancreatic insufficiency from other causes of malabsorption. Gastroenterology 1982; 83: 44–6
  • Leung J W. C, Frost RA, Burgess R, et al. Modified dual-label Schilling test for pancreatic exocrine function. Clin Chim Acta 1988; 174: 93–100
  • Chen W-L, Morishita R, Eguchi T, et al. Clinical usefulness of dual-label Schilling test for pancreatic exocrine function. Gastroenterology 1989; 96: 1337–45
  • Nousia-Arvanitakis S, Arvanitakis C, Desai N, et al. Diagnosis of exocrine pancreatic insufficiency in cystic fibrosis by the synthetic peptide N-benzyol-L-tyrosyl-p-aminobenzoic acid. J Pediatr 1978; 92: 734–7
  • Mitchell CJ, Humphrey CS, Bullen AW, et al. Improved diagnostic accuracy of a modified oral pancreatic function test. Scand J Gastroenterol 1979; 14: 737–41
  • Mitchell CJ, Field HP, Simpson FG, et al. Preliminary evaluation of a single-day tubeless test of pancreatic function. Br Med J 1981; 282: 1753–3
  • Berg JD, Chesner IM, Allen-Narker R A. C, et al. Exocrine pancreatic function as determined in a same-day test with use of bentiromide and p-aminosalicylic acid. Clin Chem 1986; 32: 1010–2
  • Durie PR, Yung-Jato LY, Soldin SJ, et al. Bentiromide test using liquid-chro-matographic measurement of p-aminobenzoic acid and its metabolites for diagnosing pancreatic insufficiency in childhood. J Pediatr 1992; 121: 413–6
  • Foster PN, Mitchell CJ, Robertson D R. C, et al. Prospective comparison of three noninvasive tests for pancreatic disease. Br Med J 1984; 289: 13–6
  • Lankisch PG, Brauneis J, Otto J, et al. Pancreolauryl and NBT-PABA tests: are serum tests more practicable alternatives to urine tests in the diagnosis of exocrine pancreatic insufficiency?. Gastroenterology 1986; 90: 350–4
  • Cavallini G, Piubello W, Brocco G, et al. Serum PABA and fluorescein in the course of Bz-Ty-PABA and pancrealauryl test as an index of exocrine pancreatic insufficiency. Dig Dis Sci 1985; 30: 655–63
  • Lankisch PG, Otto J, Brauneis J, et al. Detection of pancreatic steatorrhea by oral pancreatic function tests. Dig Dis Sci 1988; 33: 1233–6
  • Wormsley KG, Goldberg D M. The interrelations of the pancreatic enzymes. Gut 1972; 13: 398–412
  • Goldberg DM, Sale JK, Fawcett AN, et al. Trypsin and chymotrypsin as aids in the diagnosis of pancreatic disease. Am J Dig Dis 1972; 17: 780–92
  • Goldberg DM, Sale JK, Wormsley K G. Ratio of chymotrypsin to trypsin in human duodenal aspirate. Digestion 1973; 8: 101–9
  • Sale JK, Goldberg DM, Thjodleifsson B, et al. Trypsin and chymotrypsin in duodenal aspirate and faeces in response to secretin and cholecystokinin-pancre-ozymin. Gut 1974; 15: 132–8
  • Lankisch P G. Exocrine pancreatic function tests. Gut 1982; 23: 777–98
  • The metabolic and molecular bases of inherited disease7th ed., CR Scriver, AL Beaudet, WS Sly, D Valle. McGraw-Hill, New York 1995; Vol. 2
  • Segal S, Thier S O. Cystinurea. The metabolic and molecular bases of inherited disease7th ed, CR Scriver, AL Beaudet, WS Sly, D Valle. McGraw-Hill, New York 1995; Vol. 2: 3581–3601
  • Levy H L. Hartnup disorder. The metabolic and molecular bases of inherited disease7th ed, CR Scriver, AL Beaudet, WS Sly, D Valle. McGraw-Hill, New York 1995; Vol. 2: 3629–12
  • Chesney R W. Iminoglycinurea. The metabolic and molecular bases of inherited disease7th ed, CR Scriver, AL Beaudet, WS Sly, D Valle. McGraw-Hill, New York 1995; Vol. 2: 3643–53
  • Danks D M. Disorders of copper transport. The metabolic and molecular bases of inherited disease7th ed, CR Scriver, AL Beaudet, WS Sly, D Valle. McGraw-Hill, New York 1995; Vol. 2: 2211–35
  • Shulman R J. Enzyme and transport defects. Principles and practice of pediatrics2nd ed, FA Oski. Lippincott, Philadelphia 1994; 1895–9
  • Bothwell TH, Charlton RW, Motulsky A G. Hemochromatosis. The metabolic and molecular bases of inherited disease7th ed, CR Scriver, AL Beaudet, WS Sly, D Valle. McGraw-Hill, New York 1995; Vol. 2: 2237–70

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.