595
Views
65
CrossRef citations to date
0
Altmetric
Review Article

Interaction among Arachis hypogaea L. (peanut) and beneficial soil microorganisms: how much is it known?

, , , , , , , & show all
Pages 179-194 | Received 05 Jun 2009, Accepted 29 Dec 2009, Published online: 09 Mar 2010

References

  • Aarons S R, P H Graham. (1991). Response of Rhizobium leguminosarum bv phaseoli to acidity. Plant Soil 134, 145–151.
  • Ampomah OY, E Ofori-Ayeh, B Solheim, MA Svenning. (2008). Host range, symbiotic effectiveness and nodulation competitiveness of some indigenous cowpea bradyrhizobia isolates from the transitional savanna zone of Ghana. Afr J Biotech 7: 988–996 .
  • Angelini J, S Castro, A Fabra. (2003). Alteration in root colonization and nodC gene induction in the peanut rhizobia interaction under acidic conditions. Plant Physiol Biochem 41: 289–294.
  • Angelini J, T Taurian, C Morgante, F Ibáñez S, Castro, S A, Fabra. (2005). Peanut nodulation kinetic in response to low pH and calcium. Plant Physiol Biochem 43: 754–759.
  • Arora NK, S C Kang, D K Maheshwari. (2001). Isolation of siderophore-producing strains of Rhizobium meliloti and their biocontrol potential against Macrophomina phaseolina that causes charcoal rot of groundnut. Curr Sci 25: 674–677.
  • Bal A. (1990). Localization of plant lipids for light microscopy using p–phenylenediamine in tissues of Arachis hypogaea. L Stain Technol 65: 91–94.
  • Bal A, D Sen, R Weaver. (1985). Cell wall (outer membrane) of bacteroids in nitrogen-fixing peanut nodules. Curr Microbiol 12: 353–356.
  • Bal A, S Hameed, S Jayaram. (1989). Ultrastructural characteristics of the host–symbiont interface in nitrogen–fixing peanut nodules. Protoplasma 150: 19–26.
  • Becker A, A Pühler. (1998). Production of exopolysaccharides In: H Spaink, A Kondorosi and J Hooykaas, eds. The Rhizobiaceae. Kluwer Academic Publishers, Dordrecht, the Netherlands.
  • Bhagwat A A, S K Apte. (1989). Comparative analysis of proteins induced by heat shock salinity and osmotic stress in the nitrogen-fixing Cyanobacterium anabaena-sp strain. J Bacteriol 171: 5187–5189.
  • Bhatia S, DK Maheshwari, RC Dubey, DS Arora, VK Bajpai, SC Kang. (2008). Beneficial effects of fluorescent Pseudomonas on seed germination, growth promotion and suppression of charcoal rot in groundnut. (Arachis hypogaea L). J Microbiol Biotechnol 18: 1578–1583.
  • Bianucci E, A Fabra, S Castro. (2008a). Growth of Bradyrhizobium sp SEMIA 6144 in response to methylglyoxal, role of glutathione. Curr Microbiol 56: 371–375.
  • Bianucci E, MC Tordable, A Fabra, S Castro. (2008b). Importance of glutathione in the nodulation process of peanut. (Arachis hypogaea L). Physiol Plant 134: 342–347.
  • Bogino P, E Banchio, L Rinaudi, G Cerioni, C Bonfiglio, W Giordano. (2005). Peanut. (Arachis hypogaea). response to inoculation with Bradyrhizobium sp in soils of Argentina. Ann Appl Biol 148: 207–212.
  • Borthakur D, C Baker, J Lamb, M Daniels, J Downie, A Johnston. (1986). A mutation that blocks exopolysaccharide synthesis prevents nodulation of peas by Rhizobium leguminosarum but not of beans by Rhizobium phaseoli and is corrected by cloned DNA from Rhizobium or the phytopathogen Xanthomonas. Mol Gen Genet 203: 320–323.
  • Botsford JL. (1983). Effect of saline and alkaline conditions on growth of peanut. (Arachis hypogaea). Rhizobia. Microbios Lett 24: 75–80.
  • Boogerd F C, D van Rossum. (1997). Nodulation of groundnut by Bradyrhizobium, a simple infection process by crack entry. FEMS Microbiol Rev 21: 5–27.
  • Brewin N. (2004). Plant cell wall remodeling in the Rhizobium-legume symbiosis. Crit Rev Plant Sci 23:293–316.
  • Broughton WJ, S Jabbouri, X Perret. (2000). Keys to symbiotic harmony. J Bacteriol 182: 5641–5652.
  • Burril T J, R Hansen. (1917). Is symbiosis possible between legume bacteria and non-legume plants? Illinois Agr Exp Sta Bull 202.
  • Castro S, M Permigiani, MVinocur A, Fabra. (1999). Nodulation in peanut. (Arachis hypogaea L). roots in the presence of native and inoculated rhizobia strain. Appl Soil Ecol 13: 39–44.
  • Castro S, G Cerioni, O Giayetto, A Fabra. (2006). Contribución relativa del nitrógeno del suelo y del fijado biológicamente a la economía de la nutrición nitrogenada de maní (Arachis hypogaea L) en diferentes condiciones de fertilidad. Agriscientia 23: 55–66.
  • Chandler M. (1978). Some observations of infection of Arachis hypogaea L by Rhizobium. J Exp Bot 29: 749–755.
  • Chatel DL, CA Parker. (1973). Survival of field–grown rhizobia over the dry summer period in Western Australia. Soil Biol Biochem 5: 415–423.
  • Chen H, AE Richardson, BG Rolfe. (1993). Studies on the physiological and genetic basis of acid tolerance in Rhizobium leguminosarum bv Trifolii. Appl Environ Microbiol 59: 1798–1804.
  • Cholaky L, O Giayetto, EC Neuman, S Cavaignac. (1983). Respuesta del maní (Arachis hypogaea L) a la inoculación del suelo con Rhizobium sp. Rev UNRC 3: 173–179.
  • Compant S, B Duffy, J Nowak, C Clément E, Ait Barka. (2005). Use of Plant Growth-Promoting Bacteria for Biocontrol of Plant Diseases, Principles, Mechanisms of Action, Future Prospects. Appl Environ Microbiol 71: 4951–4959.
  • Corticeiro S, A Lima, E Figueira. (2006). The importance of glutathione in oxidative status of Rhizobium leguminosarum biovar viciae under Cd exposure. Enzyme Microb Technol 40: 132–137.
  • Dardanelli MS, MR Woelke, PS Gonzá,lez MA, Bueno, NE Ghittoni. (1997). The effects of nonionic hyperosmolarity and of high temperature on cell-associated low molecular weight saccharides from two rhizobia strains. Symbiosis 23: 73–84.
  • Dardanelli MS, PS González MA, Bueno, NE Ghittoni. (2000). Synthesis, accumulation and hydrolysis of trehalose during growth of peanut rhizobia in hyperosmotic media. J Basic Microbiol 40: 149–156.
  • Dardanelli M, J Angelini, A Fabra. (2003). A calcium-dependent bacterial surface protein is involved in the attachment of rhizobia to peanut roots. Can J Microbiol 49: 399–405.
  • Dardanelli MS, V Busto, P Pereira, M Bueno, M García. (2008). Abiotic stress and response of peanut–rhizobia In: F Columbus, ed. Peanut crop, pp. 1–10. Huntington, NY, Nova Publishers.
  • Dardanelli MS, PS González DB, Medeot, NS Paulucci, MA Bueno, MB Garcia. (2009). Effects of peanut-rhizobia on the growth and symbiotic performance of Arachis hypogaea under abiotic stress. Symbiosis 47: 175–180.
  • De Faría S, G Hay, J Sprent. (1988). Entry of rhizobia into rotos of Mimosa scabrella Bentham occurs between epidermal cells. J Gen Microbiol 134: 2291–2296.
  • Deshwal VK, RC Dubey, DK Maheshwari. (2003). Isolation of plant growth–promoting Bradyrhizobium (Arachis) sp with biocontrol potential against Macrophomina phaseolina causing charcoal rot of peanut. Curr Sci 84: 443–448.
  • Dey R, KK Pal, DM Bhatt, SM Chauhan. (2004). Growth promotion and yield enhancement of peanut. (Arachis hypogaea L). plant growth-promoting rhizobacteria. Microbiol Res 159: 371–394.
  • D′Haeze W, MS Gao, R De Rycke, M van Montagou, G Engler, M Holsters. (1998). Roles for azorhizobial Nod factors and surface polysaccharides in intercellular invasion and nodule penetration, respectively. Mol Plant-Microbe Interact 11: 999–1008.
  • Doyle J, M Luckow. (2003). The rest of the iceberg Legume diversity and evolution in a phylogenetic context. Plant Physiol 131: 900–910.
  • Dreyfus B, Y Dommergues 1981 Nitrogen-fixing nodules induced by Rhizobium on the stem of the tropical legume Sesbania rostrata. FEMS Microbiol Lett 10: 313–317.
  • Díaz-Zorita, M, R Baliña. (2004). Respuesta de cultivos de maní a la inoculación con Bradyrhizobium sp. Ciencia del Suelo 22: 7–10.
  • Duijff B, G Recobert, P Bakke, J Lóper P, Lemanceau. (1999). Microbial antagonism at the root level is involved in the suppression of Fusarium wilt by the combination of nonpathogenic Fusarium oxysporum Fo47 and Pseudomonas putida WCS358. Phytopathology 89: 1073–1079.
  • Edwards DG, H Sharifuddin, M Yusoff, N Grundon, J Shamshuddin, M Norhayati. (1991). The management of soil acidity for sustainable crop production In: R J Wrightet al. eds, Plant–Soil Interaction at Low pH. Dordrecht, Kluwer Academic Publishers, 383–396.
  • El-Akhal MR, A Rincón F, Arenal, MM Lucas, N El Mourabit, S Barrijal, JJ Pueyo. (2008). Genetic diversity and symbiotic efficiency of rhizobial isolates obtained from nodules of Arachis hypogaea in northwestern Morocco. Soil Biol Biochem 40: 2911–2914.
  • Fernández A, A Krapovickas. (1994). Cromosomas y evolución de Arachis (Leguminosae). Bonplandia 8: 185–193.
  • Frendo P, J Harrison, C Norman, M Hernández Jimenez, G van de Sype, A Gilabert, A Puppo. (2005). Glutathione and homoglutathione pay a critical role in the nodulation process of Medicago truncatula. Mol Plant Microbe Interact 3: 254–259.
  • Furlan AL, ML Tonelli, T Taurian, A Fabra, S Castro. (2008). Induced resistance in the biocontrol of Sclerotium rolfsii by a PGPR strain on peanut. Biocell 32: 124.
  • Gage DJ. (2004). Infection and invasion of roots by symbiotic, nitrogen-fixing rhizobial during nodulation of temperate legumes. Microbiol Molec Biol Rev 68: 280–300.
  • Garau G, R Yates, P Deiana, J Howieson. (2009). Novel strains of nodulating Burkholderia have a role in nitrogen fixation with papilionoid herbaceous legumes adapted to acid, infertile soils. Soil Biol Biochem 41: 125–134 .
  • Giraud E, L Moulin, D Vallenet et al. (2007). Legume Symbioses, Absence of nod genes in photosynthetic bradyrhizobia. Science 316: 1307–1312 .
  • Glick BR, CL Patten, G Holguin, DM Penrose. (1999). Biochemical and genetic mechanisms used by plant growth-promoting bacteria. Imperial College Press, London.
  • Graham P H. (1992). Stress tolerance in Rhizobium and Bradyrhizobium and nodulation under adverse soil conditions. Can J Microbiol 38: 475–484.
  • Graham PH. (1994). Stress tolerance in Rhizobium and Bradyrhizobium, nodulation under adverse soil conditions. Can J Microbiol 38: 475–484.
  • Graham P H., K Draeger, M Ferrey, M Conroy, B Hammer, E Martinez. (1994). Acid pH tolerance in strains of Rhizobium and Bradyrhizobium, initial studies on the basis for pH tolerance of Rhizobium tropici UMR1899. Can J Microbiol 40: 198–207.
  • Graham P H., C P Vance. (2000). Nitrogen fixation in perspective, an overview of research and extension needs. Field Crops Res 65: 93–106.
  • Gray JX and BG Rolfe. (1990). Exopolysaccharide production in Rhizobium and its role in invasion. Molec Microbiol 4: 1425–1431.
  • Hampp E, I Berardo, I Moreno. (1997). Estadío físico–químico de hapludoles y haplusoles típicos bajo cultivo de alfalfa (Medicago sativa L) de la región centro sur de Córdoba IV Jornadas de Ciencia y Tecnología de la Facultad de Agronomía y Veterinaria, Universidad Nacional de Río Cuarto, Córdoba, Argentina, 144–146.
  • Harrison JA, A Famet, C Muglia, G Van de Sype, OM Aguilar, A Puppo, P Frendo. (2005). Glutathione plays a fundamental role in growth and symbiotic capacity of Sinorhizobium meliloti. J Bacteriol 187: 168–174 .
  • Höfte M, S Buysens, N Koedam, P Cornelis. (1993). Zinc affects siderophore–mediated high affinity iron uptake systems in the rhizosphere Pseudomonas aeruginosa 7NSK2. Biomet 6: 85–91.
  • Howieson J G, AD Robson, LK Abbott. (1992). Calcium modifies pH effects on the growth of acid-tolerant and acid-sensitive Rhizobium meliloti. Aust J Agric Res 43: 765–772.
  • Hungria M, MA Vargas. (2000). Environmental factors affecting N2 fixation in grain legumes in the tropics, with emphasis on Brazil. Field Crops Res 65: 151–164.
  • Ibañez F, T Taurian, J Angelini, M Tonelli, A Fabra. (2008). Rhizobia phylogenetically related to common bean symbionts Rhizobium giardinii and R tropici isolated from peanut nodules in central Argentina. Soil Biol Biochem 40: 537–539.
  • Ibañez F, J Angelini, T Taurian, M L Tonelli, A Fabra. (2009). Endophytic occupation of peanut root nodules by opportunistic Gammaproteobacteria. Syst Appl Microbiol 32: 49–55.
  • Jones KM, H Kobayashi, B Davies, M Taga, G Walker. (2007). How rhizobial symbionts invade plants, the Sinorhizobium-Medicago model. Nature Rev Microbiol 5: 619–633.
  • Jordan DL, RL Brandenburg, JE Bailey, P Dewayne Johnson, BM Royals, VL Curtis. (2006). Compatibility of in-furrow application of acephate, inoculant, tebuconazole in peanut (Arachis hypogaea L). Peanut Sci 33: 112–117.
  • Kraprovickas A. (1969). The Origin, Variability, Spread of the Groundnut (Arachis hypogaea). In: PJ Ucko and JW Dimbleby, eds. The Domestication and Exploitation of Plants and Animals. Chicago, Aldine, 427–441.
  • Kashket E. (1985). The proton motive force in bacteria A critical assessment of methods. Ann Rev Microbiol 39: 219–242.
  • Kijne JW. (1992). The Rhizobium infection process In: Stacey, G, RH Burris, HU Evan, eds. Biological Nitrogen Fixation. New York, Chapman and Hall, 349–398.
  • Kishinevsky BD, D Sen, RW Wearver. (1992). Effect of high root temperature on Bradyrhizobium-peanut symbiosis. Plant Soil 143: 275–282.
  • Kishore GK, S Pande, A R Podile. (2005a). Chitin-supplemented foliar application of Serratia maecescens GPS 5 improves control of late leaf spot disease of groundnut by activating defence-related enzymes. J Phytopathol 153: 19–173.
  • Kishore GK, S Pande, A R Podile. (2005b). Biological control of collar rot disease with broad–spectrum antifungal bacteria associated with groundnut. Can J Microbiol 51: 123–132.
  • Kishore G K, S Pande, JN Rao, A R Podile. (2005c). Pseudomonas aeruginosa inhibits the plant cell wall degrading enzymes of Sclerotium rolfsii and reduces the severity of groundnut stem rot. Eu J Plant Pathol 113: 315–320.
  • Kishore G K, S Pande, AR Podile. (2005d). Biological control of late leaf spot peanut (Arachis hypogaea) with chitinolytic bacteria. The American Phytopathological Society 95: 1157–1164.
  • Kloepper J, C Ryu, S Zhang. (2004). Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytophatol 94: 1259–1266.
  • Kochert G, HT Stalker, M Ginenes, L Galgaro, K Moore. (1996). RFLP and cytogenetic evidence for the progenitor species of allotetraploid cultivated peanut, Arachis hypogaea (Leguminosae). Amer J Bot 83: 1282–1291.
  • Krulwich T A, R Agus, M Schneir, AA Guffanti. (1985). Buffering capacity of bacilli that grow at different pH ranges. J Bacteriol 162: 768–772.
  • Lanier JE, DL Jordan, JF Spears, R Wells, PD Johnson. (2005). Peanut response to inoculation and nitrogen fertilizer. Agron J 97: 79–84.
  • Lavin M, R Pennington, B Klitgaard, J Sprent, H Lima, P Gasson. (2001). The dalbergioid legumes. (Fabaceae), delimitation of a pantropical monophyletic clade. Amer J Bot 88: 503–533.
  • Law IJ, WF Botha, UC Majaule, FL Palane. (2007). Symbiotic and genomic diversity of cowpea bradyrhizobia from soils in Botswana and South Africa. Biol Fertil Soils 43: 653–663.
  • Leeman M, F den Ouden, J van Pelt, F Dirkx, H Steij, B Bakker Schippers. (1996). Iron availability affects induction of systemic resistance to Fusarium wilt of radish by Pseudomonas fluorescens. Phytopathology 86: 149–155.
  • Leigh J, G Walker. (1994). Exopolysaccharide of Rhizobium, synthesis, regulation and symbiotic function. Trends Genet 10: 63–67.
  • Leigh J, D Coplin. (1992). Exopolysaccharides in plant-bacteria interactions. Ann Rev Microbiol 46: 307–346.
  • Limpens E, T Bisseling. (2003). Signaling in symbiosis. Curr Op Plant Biol 6: 343–350.
  • Long SR. (1996). Rhizobium symbiosis, Nod factors in perspective. Plant Cell 8: 1885–1898.
  • Macció D, A Fabra, S Castro. (2002). Acidity and calcium interaction affect the growth of Bradyrhizobium sp and the attachment to peanut roots. Soil Biol Biochem 34: 201–208.
  • Madhaiyan M, BV Suresh Reddy, R Anandham, M Senthilkumar, S Poonguzhali, SP Sundaram, T Sa. (2006). Plant-growth promoting Methylobacterium induces defence responses in groundnut. (Arachis hypogaea L). compared with root pathogens. Curr Microbiol 53: 270–276.
  • Manjula K, GK Kishore, AR Podile. (2004). Whole cells of Bacillus subtilis AF 1 proved more effective then cell-free and chitinase based formulations in biological control of citrus fruit rot and groundnut rust. Can J Microbiol 50: 737–744.
  • March G, A Marinelli. (2005). Enfermedades por hongos del rizoplano. In: G March, A Marinelli, eds, Enfermedades del maní en Argentina. Biglia Impresores, Córdoba, Argentina, 59-89.
  • Mazur A, J Król J, Wielbo, T Urbanik–Sypniewska A, Skorupska. (2002). Rhizobium leguminosarum bv trifolii PssP protein is required for exopolysaccharide biosynthesis and polymerization. Mol Plant-Microbe Interact 15: 388–397.
  • Medeot DB, MA Bueno, MS Dardanelli, M García de Lema (2007). Adaptational changes in lipids of Bradyrhizobium SEMIA 6144 nodulating peanut as a response to growth temperature and salinity. Curr Microbiol 54: 31–35.
  • Michiels J, C Verreth, J Vanderleyden. (1994). Effects of temperature stress on bean nodulating Rhizobium strains. Appl Environ Microbiol 60: 1206–1212.
  • Miller KJ, JM Wood. (1996). Osmoadaptation by rhizosphere bacteria. Annu Rev Microbiol 50: 101–136.
  • Morgante C, J Angelini, S Castro, A Fabra. (2005). Role of rhizobial exopolysaccharides in crack entry/intercellular infection of peanut. Soil Biol Biochem 37: 1436–1444.
  • Morgante C, S Castro, A Fabra. (2007). Role of rhizobial EPS in the evasion of peanut defence response during the crack-entry infection process. Soil Biol Biochem 39: 1222–1225 .
  • Munns D N. (1986). Acid soils tolerance in legumes and rhizobia. Adv Plant Nutr 2: 63–91.
  • Natera V, L Sobrevals, A Fabra, S Castro. (2006). Glutamate is involved in acid stress response in Bradyrhizobium sp SEMIA 6144 (Arachis hypogaea L) microsymbiont. Curr Microbiol 53: 479–482.
  • Nap JP, T Bisseling. (1990). Developmental biology of a plant prokaryote symbiosis, Thr legume root nodule. Science 250: 948–954.
  • Nkot LN, T Krasova-Wade, FX Etoa, SN Sylla, D Nwaga. (2008). Genetic diversity of rhizobia nodulating Arachis hypogaea L in diverse land use systems of humid forest zone in Cameroon. Appl Soil Ecol 40: 411–416.
  • Nwokolo E. (1996). Peanut. (Arachis hypogaea L). In: E Nwokolo and J Smartt, eds. Food and Fee from Legumes and Oilseeds. New York, Chapman and Hall, 49–63.
  • O’Hara G W, TJ Goss, MJ Dilworth, AR Glenn. (1989). Maintenance of intracellular pH and acid tolerance in Rhizobium meliloti. Appl Environ Microbiol 55: 1870–1876.
  • Pal KK, R Dey, DM Bhatt, SM Chauhan. (2000). Plant growth promoting fluorescent pseudomonads enhanced peanut growth, yield and nutrient uptake. Proceedings of the Fifth International PGPR Workshop.
  • Pellock BJ, HP Cheng, GC Walker. (2000). Alfalfa root nodule invasion efficiency is dependent on Sinorhizobium meliloti polysaccharides. J Bacteriol 189: 4310–4318.
  • Perret X, C Staehelin, W Broughton. (2000). Molecular basis of symbiotic promiscuity. Microbiol Mol Biol Rev 64: 180–201.
  • Pieterse CM, SC van Wees, JA van Pelts, M Knoester, R Laan, H Gerrits, P Weisbeek, L van Loon. (1998). A novel signalling pathway controlling induced systemic resistance in Arabidopsis. Plant Cell 10: 1571–1580.
  • Podile AR, GK Kishore. (2006). Plant growth promoting rhizobacteria In: SS Gnanamanickam, eds, Plant Associated Bacteria. Netherlands, Springer, 195–230.
  • Poiteau PJF. (1853). Note sur l′Arachis hypogaea. Ann Sci Nat 3d Ser 19: 268–272.
  • Ponsone L, A Fabra, S Castro. (2004). Interactive effects of acidity and aluminium on the growth, lipopolysaccharide and glutathione contents in two nodulating peanut rhizobia. Symbiosis 36: 193–204.
  • Reddy VM, JW Tanner, RC Roy, JM Elliot. (1981). The effect of irrigation, inoculants and fertilizer nitrogen on peanut. (Arachis hypogaea L) II Yield. Peanut Sci 8: 125–128.
  • Reddy GB, A Mapik, BR Singh. (1998). Effect of residual fertilizer N, lime and Bradyrhizobium inoculum on groundnut yield, N uptake and N2 fixation. Acta Agr Scan Sect Soil Plant 48: 91–99.
  • Ricillo PM, CI Muglia, FJ Bruijn, AJ Roe, IR Booth, OM Aguilar. (2000). Glutathione is involved in environmental stress responses in Rhizobium tropici, including acid tolerance. J Bacteriol 182: 1748–1753.
  • Robson A, PJ Bottomley. (1991). Limitations in the use of legumes in agriculture and forestry. In: MJ Dilworth, AR Glenn, eds. Biology and Biochemistry of Nitrogen Fixation, Elsevier, Amsterdam, The Netherlands, 320–349.
  • Rojo FG, MM Reynoso, M Férez SN, Chulze, AM Torres. (2007). Biological control by Trichoderma species of Fusarium solani causing peanut brown root rot under field conditions. Crop Protect 26: 549–555.
  • Roth LE, G Stacey. (1989). Bacterium release into host cells of nitrogen–fixing soybean nodules The symbiosome membrane comes from three sources. Eur J Cell Biol 49: 13–23.
  • Roughley RJ. (1970). The influence of root temperature, Rhizobium strain and host selection on the structure and nitrogen-fixing efficiency of the root nodules of Trifolium subterraneum. Ann Bot 34: 631–646.
  • Roughley RJ, PJ Dart. (1970). Root temperature and root–hair infection of Trifolium subterraneum L cv Cranmore. Plant Soil 32: 518–520.
  • Saleena L, P Loganathan, S Rangarajan, S Nair. (2001). Genetic diversity of Bradyrhizobium strains isolated from Arachis hypogaea. Can J Microbiol 47: 118–122.
  • SAGPyA. (2008). Secretaría de agricultura, ganadería, pesca y alimentos http://wwwsagpyamecongovar.
  • Sen D, RW Weaver. (1984). A Basis for different rates of N2–fixation by the same strain of Rhizobium in peanut and cowpea root nodules. Plant Sci Lett 34: 239–246.
  • Siddique A, A Bal. (1991). Nitrogen fixation in peanut nodules during dark periods and detopped conditions with special reference to lipid bodies. Plant Physiol 95:896–899.
  • Sinharoy D, M DasGupta. (2009). RNA interference highlights the role of CCaMK in dissemination of endosymbionts in Aeschynomeneae legume Arachis. Mol Plant Microbe Interact 22: 1466–1475.
  • Singleton PW, SA El-Swaifi, BB Bohlool. (1982). Effect of salinity on Rhizobium growth and survival. Appl Environ Microbiol 44: 884–890.
  • Smith AF. (2002). Peanuts, The Illustrious History of the Goober Pea Chicago, University of Illinois Press.
  • Sobrevals L, P Müller A, Fabra, S Castro. (2006). Role of glutathione in growth of Bradyrhizobium sp (peanut microsymbiont) under different environmental stresses and in symbiosis with the host plant. Can J Microbiol 52: 609–616.
  • Spaink H. (2000). Root nodulation and infection factors produced by rhizobial bacteria. Ann Rev Microbiol 54: 257–288.
  • Sprent J, S de Faría. (1988). Mechanisms of infection of plants by nitrogen fixing organisms. Plant Soil 110: 157–165.
  • Sprent J. (2007). Evolving ideas of legume evolution and diversity, A taxonomic perspective on the occurrence of nodulation. New Phytol 174: 11–25.
  • Stacey G, J So, L Roth, S Lakshmi, R Carlson. (1991). A lipopolysaccharide mutant of Bradyrhizobium japonicum that uncouples plant from bacterial differentiation. Mol Plant-Microbe Interact 4: 332–340.
  • Stalker HT. (1997). Peanut (Arachis hypogaea L). Field Crop Res 53: 205–217.
  • Steenkamp E, T Stepkowski, A Przymusiak, W Botha, I Law. (2008). Cowpea and peanut in southern Africa are nodulated by diverse Bradyrhizobium strains harboring nodulation genes that belong to the large pantropical clade common in Africa. Mol Phylogenet Evol 48: 1131–1144 .
  • Sturz AV, BR Christie, J Noweck. (2000). Bacterial endophytes:potential role in developing sustainable systems of crop production. Crit Rev Plant Sci 19: 1–30.
  • Subba-Rao NS, P Mateos, D Baker, H Stuart Pankratz, J Palma, F Dazzo, J Sprent. (1995). The unique root-nodule symbiosis between Rhizobium and the aquatic legume Neptunia natans. (Lf). Druce Planta 2: 311–320.
  • Taurian T, S Castro, A Fabra. (1998). Physiological response of two peanut rhizobia strains to acid pH. Symbiosis 24: 327–336.
  • Taurian T, OM Aguilar and A Fabra. (2002). Characterization of nodulating peanut rhizobia isolated from a native soil population in Córdoba, Argentina. Symbiosis 33: 59–72.
  • Taurian T, OM Aguilar, A Fabra. (2005). Characterization of peanut rhizobia with PGPR activities. XV Jornadas Científicas de la Sociedad de Biología de Córdoba, Villa Giardino, Córdoba.
  • Taurian T, F Ibañez A, Fabra, OM Aguilar. (2006). Genetic diversity of rhizobia nodulating Arachis hypogaea L in central Argentinean soils. Plant Soil 282: 41–52.
  • Taurian T, B Morón, ME Soria-Díaz, J Angelini, P Tejero-Mateo, A Gil-Serrano, M Megías A, Fabra. (2008). Signal molecules in the peanut-bradyrhizobia interaction. Arch Microbiol 189: 345–356.
  • Taurian T, MS Anzuay, JG Angelini, ML Tonelli, L Ludueña, D Pena, F Ibáñez, A Fabra. (2009). Phosphate-solubilizing peanut associated bacteria: screening for plant growth-promoting activities. Plant Soil. DOI:10.1007/s11104-009-0168-x.
  • Trichine L, H Imaizurni-Anraku, S Yoshida, Y Murakami, L Madsen, H Miwa, T Nakagawa, N Sandal, A Albrektsen, M Kawaguchi, A Sato, S Tabata, H Kouchi, M Parniske, S Kawasaki, J Stougaard. (2006). Deregulation of calcium/calmodulin-dependent kinase leads to spontaneous nodule development. Nature 441: 1153–1156.
  • Turner P, P Backman. (1991). Factors relating to peanut yield increases after seed treatment with Bacillus subtilis. Plant Dis 75: 347–353.
  • Urtz BE, GH Elkan. (1996). Genetic diversity among Bradyrhizobium isolates that effectively nodulate peanut (Arachis hypogaea). Can J Microbiol 42: 1121–1130.
  • Valetti L, J Angelini, G Cerioni, Fabra A. (2008). Desarrollo y evaluación a campo de un inoculante para maní elaborado a partir de aislamientos rizobianos nativos de la zona mansera de la provincia de Córdoba. In XXIII Jornada Nacional de Maní Córdoba, 36–38.
  • van Berkum P, JJ Fuhrmann. 2000 Evolutionary relationships among the soybean bradyrhizobia resconstructed from 16S rRNA gene and internally transcribed spacer region sequence divergence. Int J Syst Evolut Microbiol 50: 2165–2172.
  • van Rossum D, A Muyotcha, HW van Verseveld, AH Stouthamer, FC Boogerd. (1993). Effects of Bradyrhizobium strain and host genotype, nodule dry weight and leaf area on groundnut (Arachis hypogaea L ssp fastigiata) yield. Plant Soil 154: 279–288.
  • van Rossum D, P F Shuurmans, M Gillis, A Muyotcha, HW van Verseveld, AH Stouthamer, FC Boogerd. (1995). Genetic and phenetic analysis of Bradyrhizobium strains nodulating peanut (Arachis hypoagea L) roots. Appl Environ Microbiol 61: 1599–1608.
  • Vargas AAT, PH Graham. (1988). Phaseolus vulgaris cultivar and Rhizobium strain variation in acid–pH tolerance and nodulation under acid conditions. Field Crops Res 19: 91–101.
  • Vargas R, C Ramirez. (1989). Respuesta de la soya y el maní a Rhizobium y a la fertilización con N, P y Mo en un Tepic pellustert de cañas, Guanacaste. Agronomía Costarricense 13: 175–182.
  • Vega-Hernández M, R Pérez-Galdona FB, Dazzo, A Jarabo-Lorenzo, MC Alfayate, M Leon-Barrios. Novel infection process in the indeterminate root nodule symbiosis between Chamacytisus proliferus (tagasaste) and Bradyrhizobium sp. New Phytol 150: 707–721.
  • Velagaleti RR, Marsh. (1989). Influence of host cultivars and Bradyrhizobium strains on the growth and symbiotic performance of soybean under salt stress. Plant Soil 119: 133–138.
  • Vinuesa P, M Leon-Barrios, C Silva, A Willems, A Jarabo-Lorenzo, R Perez-Galdona, D Werner, E Martinez-Romero. (2005). Bradyrhizobium canariense sp nov, an acid-tolerant endosymbiont that nodulates endemic genistoid legumes (Papilionoideae, Genisteae) from the Canary Islands, along with Bradyrhizobium japonicum bv genistearum, Bradyrhizobium genospecies alpha and Bradyrhizobium genospecies beta. Int J Syst Evol Microbiol 55: 569–575.
  • Walker ME, NA Minton, CC Dowler. (1976). Effects of herbicides, a nematicide and Rhizobium inoculant on yield, chemical composition and nodulation of Starr peanuts (Arachis hypogaea L). Peanut Sci 3: 49–51.
  • WeissE A. (2000). Oilseed Crops. London, Blackwell Science.
  • Yang JK, FL Xie, J Zou, Q Zhou, JC Zhou. (2005). Polyphasic characteristics of bradyrhizobia isolated from nodules of peanut (Arachis hypogaea L) in China. Soil Biol Biochem 37: 141–153.
  • Yang J, J Zhou. (2008). Diversity, phylogeny and host specificity of soybean and peanut bradyrhizobia. Biol Fertil Soils 44: 843–851.
  • Yelton MM, SS Yang, SA Edie, ST Lim. (1983). Characterization of an effective salt-tolerant fast-growing strain of Rhizobium japonicum. J Gen Microbiol 129: 1537–1547.
  • Zahran HH, JI Sprent. (1986). Effects of sodium chloride and polyethylene glycol on root hair infection and nodulation of Vicia faba L plants by Rhizobium leguminosarum. Planta 167: 303–309.
  • Zahran HH. (1999). Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in arid climate. Microbiol Mol Biol Rev 63: 968–989.
  • Zhang X, G Nick, S Kaijalainen, Z Terefework, L Paulin, S Tighe, P Grahams, K Lindström. (1999). Phylogeny and diversity of Bradyrhizobium strains isolated from the root nodules of peanut. (Arachis hypogaea). in Sichuan, China. Syst Appl Microbiol 22: 378–386.
  • Zhang S, MS Reddy, N Kokalis-Bruelle, L W Wells, S P Nighttengale, J W Kloepper. (2001). Lack of induced systemic resistence in peanut to late leaf spot disease by plant growth-promoting rhizobacteria and chemical elicitors. Plant Dis 85: 879–884.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.