1,419
Views
168
CrossRef citations to date
0
Altmetric
Review Article

Plant Growth Promoting Rhizobacteria (PGPR): the bugs to debug the root zone

&
Pages 232-244 | Received 30 Dec 2009, Accepted 10 Mar 2010, Published online: 16 Jul 2010

References

  • Abdel-Fattah GM, Mohamedin AH. (2000). Interactions between a vesicular arbuscular mycorrhizal fungus. (Glomus intraradices). and Streptomyces coelicolor and their effects on sorghum plants grown in soil amended with chitin of brawn scales. Biol Fert Soils 32, 401–409.
  • Achouak W, Conrod S, Cohen V, Heulin T. (2004). Phenotypic variation of Pseudomonas brassicacearum as a plant root-colonisation strategy. Mol Plant–Microbe Interact 17, 872–879.
  • Ames P, Bergman K. (1981). Competitive advantage provided by bacterial motility in the formation of nodules by Rhizobium meliloti. J Bacteriol 148, 728–729.
  • Arora DK, Gupta S. (1993). Effect of different environmental conditions on bacterial chemotaxis toward fungal spores. Can J Microbiol 39, 922–931.
  • Azcon R, Barea JM, Hayman DS. (1976). Utilization of rock phosphate in alkaline soil by plants inoculated with mycorrhizal fungi and phosphate solubilizing bacteria. Soil Biol Biochem 81, 135–138.
  • Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM. (2006). The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57, 233–266.
  • Barea JM, Azcon-Aguilar C. (1983). Mycorrhizas and their significance in nodulating nitrogen-fixing plants. In: Brady NC, ed. Advances in Agronomy. New York: Academic Press, 1–54.
  • Barea JM, rade G, Bianciotto V, Dowling D, Lohrke S, Bonfante P, O’Gara F, Azcon-Aguilar C. (1998). Impact on arbuscular mycorrhiza formation of Pseudomonas strains used as inoculants for biocontrol of soil borne fungal plant pathogens. Appl Environ Microbiol 64, 2304–2307.
  • Barnett SJ, Singleton I, Ryder M. (1999). Spatial variation in populations of Pseudomonas corrugata 2140 and pseudomonads on take-all diseased and healthy root systems of wheat. Soil Biol Biochem 31, 633–636.
  • Barriuso J, Solano BR, Lucas JA, Lobo AP, Garica-Villaraco A, Gutierrez Manero FJ. (2008). Ecology, genetic diversity and screening strategies of plant growth promoting rhizobacteria. (PGPR). In: I Ahmad, J Pichtel, S Hayat, eds. Plant-Bacteria Interaction, Strategies and Techniques to Promote Plant Growth. Weinheim: Wiley-VCH GmbH & Co, 1–13.
  • Bashan Y, Holguin G, de-Bashan LE. (2004). Azospirillum-plant relationships, physiological, molecular, agricultural, and environmental advances (1997–2003). Can J Microbiol 50, 521–577.
  • Bashan Y, Levanony H. (1987). Horizontal and vertical movement of Azospirillum brasilense Cd in the soil and along the rhizosphere of wheat and weeds in controlled and field environments. J Gen Microbiol 133, 3473–3480.
  • Bassler BL. (1999). How bacteria talk to each other, regulation of gene expression by quorum sensing. Curr Opin Microbiol 2, 582–587.
  • Bell AA, Wheeler MH. (1986). Biosynthesis and functions of fungal melanins. Annu Rev Phytopathol 24, 411–451.
  • Bertin C, Yang XH, Weston LA. (2003). The role of root exudates and allelochemicals in the rhizosphere. Plant Soil 256, 67–83.
  • Bianciotto V, Lumini E, Lanfranco L, Minerdi D, Bonfante P, Perotto S. (2000). Detection and identification of bacterial endosymbionts in arbuscular mycorrhizal fungi belonging to the family Gigasporaceae. Appl Environ Microbiol 66, 4503–4509.
  • Boelens J, Woestyne MV, Verstraete W. (1994). Ecological importance of motility for the plant growth promoting rhizopseudomonas strain ANP15. Soil Biol Biochem 26, 269–277.
  • Bolwerk A, Lagopodi AL, Wijfjes AH, Lamers GE, Chin-A-Woeng TF, Lugtenberg B, Bloemberg GV. (2003). Interactions in the tomato rhizosphere of two Pseudomonas biocontrol strains with the phytopathogenic fungus Fusarium oxysporum f sp radicis-lycopersici. Mol Plant–Microbe Interact 16, 983–993.
  • Bonfante P, Perotto S. (1995). Strategies of arbuscular mycorrhizal fungi when infecting host plants Transley review no 82. New Phytol 130, 3–21.
  • Borst P. (2003). Mechanisms of antigenic variation, an overview In: A Craig, and A Scherf, eds, Antigenic Variation. London, UK: Elsevier Academic Press, 1–15.
  • Brimecombe MJ, De Lelj FA, Lynch JM. (2001). The Rhizosphere The Effect of Root Exudates on Rhizosphere Microbil Populations In: R Pinton, Z Varanini, and P Nannipieri, eds, The Rhizosphere Biochemistry and Organic Substances at the Soil-Plant Interface. New York: Marcel Dekker, 95–140.
  • Brown ME, Carr GR. (1984). Interaction between Azotobacter chroococcum and vesicular-arbuscular mycorrhiza and their elects on plant growth. J Appl Bacteriol 56, 429–437.
  • Budzik JM, Marraffini LA, Souda P, Whitelegge JP, Faull KF, Schneewind O. (2008). Amide bonds assemble pili on the surface of bacilli. PNAS 105, 10215–10220.
  • Burdman S, Dulguerova G, Okon Y, Jurkevitch E. (2001). Purification of the major outer membrane protein of Azospirillum brasilense, its affinity to plant roots, and its involvement in cell aggregation. Mol Plant- Microbe Interact 14, 555–558.
  • Burse A, Weingart H, Ullrich M. (2004). The phytoalexin-inducible multidrug efflux pump AcrAB contributes to virulence in the fire blight pathogen, Erwinia amylovora. Mol Plant-Microbe Ineract 17, 43–54.
  • Caetano-Anolles G, Wall LG, De Micheli AT, Macchi EM, Bauer WD, Favelukes G. (1988). Role of motility and chemotaxis in efficiency of nodulation by Rhizobium meliloti. Plant Physiol 86, 1228–1235.
  • Carrillo AE, Li CY, Bashan Y. (2002). Increased acidification in the rhizosphere of cactus seedlings induced by Azospirillum brasilense. Naturwissenschaften 89, 428–432.
  • Castagno LN, Estrella MJ, Grassano A, Ruiz OA. (2008). Biochemical and molecular characterization of phosphate solubilizing bacteria and evaluation of its efficiency promoting the growth of Lotus tenuis. Lotus Newsletter 38, 53–56.
  • Chabeaud P, de Groot A, Bitter W, Tommassen J, Heulin T, Achouak W. (2001). Phase-variable expression of an operon encoding extracellular alkaline protease, a serine protease homolog, and lipase in Pseudomonas brassicacearum. J Bacteriol 183, 2117–2120.
  • Chancey ST, Wood DW, Pierson EA, Pierson LS. (2002). Survival of GacS/GacA mutants of the biological control bacterium Pseudomonas aureofaciens 30-84 in the wheat rhizosphere. Appl Environ Microbiol 68, 3308–3314.
  • Che FS, Nakajima Y, Tanaka N, Iwano M, Yoshida T, Takayama S. (2000). Flagellin from an incompatible strain of Pseudomonas avenae induces a resistance response in cultured rice cells. J Biol Chem 275, 32347–32356.
  • Chesnokova O, Coutinho JB, Khan IH, Mikhail MS, Kado CI. (1997). Characterization of flagella genes of Agrobacterium tumefaciens, and the effect of a bald strain on virulence. Mol Microbiol 23, 579–590.
  • Chin-A-Woeng TFC, de Priester W, van der Bij AJ, Lugtenberg BJJ. (1997). Description of the colonization of a gnotobiotic tomato rhizosphere by Pseudomonas fluorescens biocontrol strain WCS365, using scanning electron microscopy. Mol Plant-Microbe Interact 10, 79–86.
  • Coley-Smith JR. (1979). Survival of plant-pathogenic fungi in soil in the absence of host plants In: B Schippers, and W Gams, eds, Soil-borne plant pathogens. London: Academic Press, 39–57.
  • Compant S, Duffy B, Nowak J, Clement C, Barka EA. (2005). Use of plant growth promoting bacteria for biocontrol of plant diseases, principles, mechanisms of action and future prospects. Appl Environ Microbiol 71, 4951–4959.
  • Croes CL, Moens S, van Bastelaere E, Vanderleyden J, Michiels KW. (1993). The polar flagellum mediates Azospirillum brasilense adsorption to wheat roots. J Gen Microbiol 139, 2261–2269.
  • Dakora FD, Philips DA. (2002). Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant Soil 248, 35–47.
  • Dakora FD, Phillips DA. (1996). Diverse functions of isoflavonoids in legumes transcend anti-microbial definitions of phytoalexins. Physiol Mol Plant Pathol 49, 1–20.
  • Dardanelli MS, Manyani H, González-Barroso S, Rodríguez-Carvajal MA, Gil-Serrano AM, Espuny MR, López-Baena FJ, Bellogín RA, Megías M, Ollero FJ. (2009). Effect of the presence of the plant growth promoting rhizobacterium. (PGPR). Chryseobacterium balustinum Aur9 and salt stress in the pattern of flavonoids exuded by soybean roots. Plant Soil DOI 101007/s11104-009-0127-6.
  • Das SN, Dutta S, Anil K, Neeraja Ch Sarma, PVSRN, Srinivas V, Podile AR. (2009). Plant Growth Promoting Chitinolytic Paenibacillus elgii Responds Positively to the Tobacco Root Exudates. J Plant Growth Regul. (In press).
  • de Weert S, Kuiper I, Lagendijk EL, Lamers GEM, Lugtenberg BJJ. (2004). Role of chemotaxis toward fusaric acid in colonization of hyphae of Fusarium oxysporum f sp radicis-lycopersici by Pseudomonas fluorescens WCS365 Molecular Plant–Microbe Interactions 17, 1185–1191.
  • de Weert S, Vermeiren H, Mulders IH, Kuiper I, Hendrickx N, Bloemberg GV, et al. (2002). Flagella-driven chemotaxis towards exudate components is an important trait for tomato root colonization by Pseudomonas fluorescens. Mol Plant-Microbe Interact 15, 1173–80.
  • De Weger LA, Bakker PAHM, Schippers B, van Loosdrecht MCM, Lugtenberg B. (1989). Pseudomonas spp with mutational changes in the O-antigenic side chain of their lipopolysaccharides are affected in their ability to colonize potato roots In: BJJ Lugtenberg, ed, Signal molecules in plant-microbe interactions. Berlin: Springer-Verlag, 197–202.
  • De Weger LA, van der Vlugt CIM, Wijfjes AHM, Bakker PAHM, Schippers B, Lugtenberg B. (1987). Flagella of a plant-growth stimulating Pseudomonas fluorescens strain are required for colonization of potato roots. J Bacteriol 169, 2769–2773.
  • Defago G, Haas D. (1990). Pseudomonads as antagonists of soilborne plant pathogens, modes of action and genetic analysis. Soil Biochem 6, 249–291.
  • Dekkers LC, Phoelich CC, van der Fits L, Lugtenberg BJ. (1998a). A site-specific recombinase is required for competitive root colonization by Pseudomonas fluorescens WCS365. PNAS 95, 7051–7056.
  • Dekkers LC, van der Bij AJ, Mulders IHM, Phoelich CC, Wentwoord RAR, Glandorf DCM, Wijffelman CA, Lugtenberg BJJ. (1998b). Role of the O-antigen of lipopolysaccheride, and possible roles of growth rate and of NADH, ubiquinone oxidoreductase (nuo) in competitive tomato root-tip colonization by Pseudomonas fluorescens WCS365. Mol Plant-Microbe Interact 11, 763–771.
  • Dong H, Gusti AR, Zhang Q, Xu J-L Zhang, L-H. (2002). Identification of quorum-quenching N-acyl homoserine lactonases from Bacillus species. Appl Environ Microbiol 68, 1754–1759.
  • Dorr J, Hurek T, Reinhold-Hurek B. (1998). Type IV pili are involved in plant-microbe and fungus-microbe interactions. Mol Microbiol 30, 7–17.
  • Duffy BK, Keel C, Defago G. (2004). Potential role of pathogen signaling in multitrophic plant-microbe interactions involved in disease protection. Appl Environ Microbiol 70, 1836–1842.
  • Duffy BK, Defago G. (1999). Environmental factors modulating antibiotic and siderophore biosynthesis by Pseudomonas fluorescens biocontrol strains. Appl Environ Microbiol 65, 2429–2438.
  • Duffy BK, Defago G. (1997). Zinc improves biocontrol of Fusarium crown and root rot of tomato by Pseudomonas fluorescens and represses the production of pathogen metabolites inhibitory to bacterial antibiotic biosynthesis. Phytopathol 87, 1250–1257.
  • Duffy BK, Ownley BH, Weller DM. (1997). Soil chemical and physical properties associated with suppression of take-all of wheat by Trichoderma koningii. Phytopathol 87, 1118–1124.
  • Duineveld BM, Veen JAV. (1999). The number of bacteria in the rhizosphere during plant development, relating colony-forming units to different reference units. Biol Fert Soils 28, 285–291.
  • Dunn AK, Klimowicz AK, Handelsman J. (2003). Use of a promoter trap to identify Bacillus cereus genes regulated by tomato seed exudate and a rhizosphere resident, Pseudomonas aureofaciens. Appl Environ Microbiol 69, 1197–1205.
  • Elasri M, Delorme S, Lemanceau P, Stewart G, Laue B. (2001). Acyl-homoserine lactone production is more common among plant-associated Pseudomonas spp than among soilborne Pseudomonas spp. Appl Environ Microbiol 67, 1198–1209.
  • Fedonenko YP, Zatonsky GV, Konnova SA, Zdorovenko EL, Ignatov VV. (2002). Structure of the O-specific polysaccharide of the lipopolysaccharide of Azospirillum brasilense Sp245. Carbohyd Res 337, 869–872.
  • Fenchel T. (2002). Microbial behavior in a heterogeneous world. Science 296, 1068–1071.
  • Fray RG. (2002). Altering plant–microbe interaction through artificially manipulating bacterial quorum sensing. Ann Bot 89, 245–253.
  • Fritze D. (2004). Taxonomy and systematics of the aerobic endospore forming bacteria, Bacillus and related genera In: E Ricca, AO Henriques, and SM Cutting, eds, Bacterial Spore Formers: probiotics and emerging applications. Horizon Scientific Press, Norfolk, UKM, 17–34.
  • Gahoonia TS. (1993). Influence of root-induced pH on the solubility of soil aluminum in the rhizosphere. Plant Soil 149, 289–291.
  • Gera C, Srivastava S. (2006). Quorum-sensing, The phenomenon of microbial communication Curr Sci 90, 566–677.
  • Glick BR, Todorovic B, Czarny J, Cheng Z, Duan J, McConkey B. (2007). Promotion of plant growth by bacterial ACC deaminase. Crit Rev Plant Sci 26, 227–242.
  • Glick BR. (2003). Phytoremediation, synergistic use of plants and bacteria to clean up the environment. Biotechnol Adv 21, 383–393.
  • Gonzalez-Pasayo R, Martinez-Romero E. (2000). Muliresistance genes of Rhizobium etli CFN42. Mol Plant-Microbe Interact 13, 572–577.
  • Haas D, Defago G. (2005). Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3, 307–319.
  • Hahn HP. (1997). The type-4 pilus is the major virulence-associated adhesion of Pseudomonas aeruginosa-a review. Gene 192, 99–108.
  • Hansen M, Kragelund L, Ybroe O, Sorensen J. (1997). Early colonization of barley roots by Pseudomonas fluorescens studied by immunofluorescence technique and confocal laser scanning microscopy. FEMS Microbiol Ecol 23, 353–360.
  • Heulin T, Guckert A, Balandreau J. (1987). Stimulation of root exudation of rice seedlings by Azospirillum strains, carbon budget under gnotobiotic conditions. Biol Fert Soils 4, 9–17.
  • Holden M, Swift S, Williams P. (2000). New signal molecules on the quorum-sensing block. Trends Microbiol 8, 101–103.
  • Hunter WJ, Fahring CJ. (1980). Movement by Rhizobium and nodulation of legumes. Soil Biol Biochem 12, 537–542.
  • Ichinose Y, Shimizu R, Ikeda Y, Taguchi F, Marutani M, Mukaihara T. (2003). Need for flagella for complete virulence of Pseudomonas syringae pv tabaci, genetic analysis with flagella-defective mutants ΔfliC and ΔfliD in host tobacco plants. J Gen Plant Pathol 69, 244–249.
  • Joe MM, Jaleel CA, Sivakumar PK, Zhao CL, Karthikeyan B. (2009). Co-aggregation in Azospirillum brasilensense MTCC-125 with other PGPR strains, Effect of physical and chemical factors and stress endurance ability. J Taiwan Institute of Chemical Engineers 40, 491–499.
  • Jones DL, Darrah PR. (1994). Role of root derived organic acids in the mobilization of nutrients from the rhizosphere. Plant Soil 166, 247–257.
  • Kamilova F, Kravchenko LV, Shaposhnikov AI, Azarova T, Makarova N, Lugtenberg BJJ. (2006a). Organic acids, sugars, and L-tryptophane in exudates of vegetables growing on stonewool and their effects on activities of rhizosphere bacteria. Mol Plant-Microbe Interact 9, 250–256.
  • Kamilova F, Kravchenko LV, Shaposhnikov AI, Makarova N, Lugtenberg BJJ. (2006b). Effects of the tomato pathogen Fusarium oxysporum f sp radicis-lycopersici and of the biocontrol bacterium Pseudomonas fluorescens WCS365 on the composition of organic acids and sugars in tomato root exudates. Mol Plant-Microbe Interact 19, 1121–1126.
  • Katiyar V, Goel R. (2003). Solubilization of inorganic phosphate and plant growth promotion by cold tolerant mutants of Pseudomonas fluorescens. Microbiol Res 158, 163–168.
  • Kennedy AC. (1998). The rhizosphere and spermosphere In: DM Sylvia, JJ Fuhrmann, PG Hartel, DA Zuberer, eds, Principles and Applications of soil microbiology. Upper Saddle River, NJ: Prentice Hall, 389–407.
  • Kloepper JW. (1993). Plant growth promoting rhizobacteria as biological control agents. In: FB Metting Jr, ed, Soil Microbiology Ecology: Applications in Agricultural and Environmental Management. Marcel Dekker Inc. New York, USA.
  • Kloepper JW, Schroth MN. (1978). Plant growth promoting rhizobacteria on radishes In Proc Int Conf Plant Pathog Bact 4th Angers, France 879–882.
  • Kravchenko LV, Azarova TS, Leonova-Erko EI, Shaposhnikov AI, Makarova NM, Tikhonovich, IA. (2003). Root exudates of tomato plants and their effect on the growth and antifungal activity of Pseudomonas strains. Microbiol 72, 37–41.
  • Lee SJ, Park SY, Lee JJ, Yum DY, Koo BT, Lee JK. (2002). Genes encoding the N-acyl homoserine lactone-degrading enzyme are widespread in many subspecies of Bacillus thuringiensis. Appl Environ Microbiol 68, 3919–3924.
  • Linderman RG. (1992). Vesicular-arbuscular mycorrhizae and soil microbial interactions In: GJ Bethlenfalvay, and RG Linderman, eds, Mycorrhiza in Sustainable Agriculture. Madison, WI: American Society of Agronomy, 45–70.
  • Livermore DM. (2002). Multiple mechanisms of antimicrobial resistance in Pseudomonas aeruginosa-our worst nightmare. Clin Infect Dis 34, 634–640.
  • Lugtenberg BJ, Kamilova F. (2009). Plant growth-promoting rhizobacteria. Annu Rev Microbiol 63, 541–556.
  • Lugtenberg BJ, Chin-A-Woeng TF, Bloemberg GV. (2002). Microbe-plant interactions, principles and mechanisms. Antonie Van Leeuwenhoek 81, 373–383.
  • Lugtenberg BJ, Dekkers LC, Bloemberg GV. (2001). Molecular determinants of rhizosphere colonization by Pseudomonas. Annu Rev Phytopathol 39, 461–490.
  • Lugtenberg BJ, Dekkers LC. (1999). What makes Pseudomonas bacteria rhizosphere competent? Environ Microbiol 1, 9–13.
  • Mantelin S, Desbrosses G, Larcher M, Tranbarger TJ, Cleyet-Marel JC, Touraine B. (2006). Nitrate-dependent control of root architecture and N nutrition are altered by a plant growth-promoting Phyllobacterium sp. Planta 223, 591–603.
  • March JC, Bentley WE. (2004). Quorum sensing and bacterial cross- talk in biotechnology. Curr Opin Biotechnol 15, 495–502.
  • Mark GL, Dow JM, Kiely PD, Higgins H, Haynes J, Baysse C, Abbas A, Foley T, Franks A, Morrissey J, O’Gara F. (2005). Transcriptome profiling of bacterial responses to root exudates identifies genes involved in microbe–plant interactions. PNAS 102, 17454–17459.
  • Martin JF, Marcos AT, Martı´n A, Asturias JA, Liras P. (1994). Phosphate control of antibiotic biosynthesis at the transcriptional level In: A Torriani-Gorini, E Yagil, and S Silver, eds, Phosphates in microorganisms, cellular and molecular biology. Washington, DC: ASM Press, 140–147.
  • Martinez-Granero F, Capdevila S, Sanchez-Contreras M, Martin M, Rivilla R. (2005). Two site-specific recombinases are implicated in phenotypic variation and competitive rhizosphere colonisation of Pseudomonas fluorescens. Microbiol 151, 975–983.
  • Mathesius U, Mulders S, Gao M, Teplitski M, Caetano-Anolles G, Rolfe BG, Bauer WD. (2003). Extensive and specific responses of a eukaryote to bacterial quorum-sensing signals. PNAS 100, 1444–1449.
  • Matilla MA, Espinosa-Urgel M, Rodríguez-Herva JJ, Ramos JL, Ramos-González MI. (2007). Genomic analysis reveals the major driving forces of bacterial life in the rhizosphere. Genome Biol 8, R179.
  • Matora LY, Shchegolev SY. (2002). Antigenic identity of the capsule lipopolysaccharides, exopolysaccharides, and O-specific polysaccharides in Azospirillum brasilense. Microbiol (Moscow, Russ Ed). 71, 178–181.
  • Mazzola M, Cook RJ 1991 Effects of fungal root pathogens on the population dynamics of biocontrol strains of fluorescent pseudomonads in the wheat rhizosphere. Appl Environ Microbiol 57, 2171–78.
  • Michiels KW, Croes CL, Vanderleyden J 1991 Two different modes of attachment of Azospirillum brasilense Sp7 to wheat roots. J Gen Microbiol 137, 2241–2246.
  • Miethling R, Wieland G, Backhaus H, Tebbe CC. (2000). Variation of microbial rhizosphere communities in response to crop species, soil origin and inoculation with Sinorhizobium meliloti L33. Microb Ecol 41, 43–56.
  • Milner JL, Silo-Suh L, Lee JC, He H, Clardy J, Handelsman J. (1996). Production of kanosamine by Bacillus cereus UW85. Appl Environ Microbiol 62, 3061–3065.
  • Milner JL, Raffel SJ, Lethbridge BJ, Handelsman J. (1995). Culture conditions that influence accumulation of zwittermicin A by Bacillus cereus UW85. Appl Microbiol Biotechnol 43, 685–691.
  • Mulholland V, Hinton JCD, Sidebotham J, Toth IK, Hyman LJ, Perombelon MCM. (1993). A pleiotropic reduced virulence. (Rvi−). mutant of Erwinia carotovora subspecies atroseptica is defective in flagella assembly proteins that are conserved in plant and animal bacterial pathogens. Mol Microbiol 9, 343–356.
  • Notz R, Maurhofer M, Dubach H, Haas D, Defago G. (2002). Fusaric acid-producing strains of Fusarium oxysporum alter 2, 4-diacetylphloroglucinol biosynthetic gene expression in Pseudomonas fluorescens CHA0 in vitro and in the rhizosphere of wheat. Appl Environ Microiol 68, 2229–2235.
  • Ownley BH, Weller DM, Alldredge JR. (1991). Relation of soil chemical and physical factors with suppression of take-all by Pseudomonas fluorescens 2-79. IOBC/WPRS Bull 14, 299–301.
  • Palumbo J, Kado C, Phillips DA. (1998). An isoflavonoid-inducible efflux pump in Agrobacterium tumefaciens is involved in competitive colonization of roots. J Bacteriol 180, 3107–3113.
  • Parker JE. (2003). Plant recognition of microbial patterns. Trends Plant Sci 8, 245–247.
  • Persello-Cartieaux, F, Nussaume, L, Robaglia, C. (2003). Tales from the underground, molecular plant-rhizobacteria interactions. Plant Cell Environ 26, 189–199.
  • Persello-Cartieaux F, David P, Sarrobert C, Thibaud M, Achouak W, Robaglia C, Nussaume L. (2001). Utilization of mutants to analyze the interaction between Arabidopsis thaliana and its naturaly root-associated. Pseudomonas Planta 212, 190–198.
  • Pillai BVS, Swarup S. (2002). Elucidation of the flavonoid catabolism pathway in Pseudomonas putida PML2 by comparative metabolic profiling. Appl Environ Microbiol 68, 143–151.
  • Pinton R, Varanini Z, Nannipieri P. (2001). The Rhizosphere Biochemistry and Organic Substances at the Soil-Plant Interface. New York: Marcel Dekker.
  • Podile AR, Dey D, Sashidhar B. (2008). Molecular genetics of ‘mob attack’ by phytopathogenic bacteria. Rev Plant Pathol 4, 301–334.
  • Podile AR, Kishore GK. (2006). Plant growth-promoting rhizobacteria In: SS Gnanamanickam, ed, Plant-Associated Bacteria. Netherlands: Springer, 195–230.
  • Prasad SV, Ballal M, Shivananda PG. (2009). Slime production a virulence marker in Pseudomonas aeruginosa strains isolated from clinical and environmental specimens, A Comparitive study of two methods. Ind J Pathol Microbiol 52, 191–193.
  • Sanchez-Contreras M, Martin M, Villacieros M, O’Gara F, Bonilla I, Rivilla R. (2002). Phenotypic selection and phase variation occur during alfalfa root colonization by Pseudomonas fluorescens F113. J Bacteriol 184, 1587–1596.
  • Saunders NJ, Moxon ER, Gravenor MB. (2003). Mutation rates, estimating phase variation rates when fitness differences are present and their impact on population structure. Microbiology 149, 485–495.
  • Schnider U, Seematter A, Maurhofer M, Blumer C, Duffy B, Gigot-Bonnefoy C, Reimmann C, Notz R, Défago G, Haas D, Keel C. (2000). Autoinduction of 2, 4-diacetylphloroglucinol biosynthesis in the biocontrol agent Pseudomonas fluorescens CHA0 and repression by the bacterial metabolites salicylate and pyoluteorin. J Bacteriol 182, 1215–1225.
  • Segura A, Hurtado A, Duque E, Ramos JL. (2004). Transcriptional phase variation at the flhB gene of Pseudomonas putida DOT-T1E is involved in response to environmental changes and suggests the participation of the flagellar export system in solvent tolerance. J Bacteriol 186, 1905–1909.
  • Shimizu R, Taguchi F, Marutani M, Mukaihara T, Inagaki Y, Toyoda K. (2003). The ΔfliD mutant of Pseudomonas syringae pv tabaci, which secretes flagellin monomers, induces a strong hypersensitive reaction (HR) in non-host tomato cells. Mol Gen Genomics 269, 21–30.
  • Simon HM, Smith KP, Dodsworth JA, Guenthner B, Handelsman J, Goodman RM. (2001). Influence of tomato genotype on growth of inoculated and indigenous bacteria in the spermosphere. Appl Environ Microbiol 67, 514–520.
  • Simons M, van der Bij AJ, de Weger LA, Wijffelman CA, Lugtenberg BJ. (1996). Gnotobiotic system for studying rhizosphere colonization by plant growth-promoting Pseudomonas bacteria. Mol Plant-Microbe Interact 9, 600–607.
  • Singh T, Arora DK. (2001). Motility and chemotactic response of Pseudomonas fluorescens toward chemoattractants present in the exudate of Macrophomina phaseolina. Microbiol Res 156, 343–351.
  • Slininger PJ, Shea-Wilbur MA. (1995). Liquid-culture pH, temperature, and carbon. (not nitrogen). source regulate phenazine productivity of the takeall biocontrol agent Pseudomonas fluorescens 2–79. Appl Microbiol Biotechnol 37, 388–392.
  • Slininger PJ, Jackson MA. 1992 Nutritional factors regulating growth and accumulation of phenazine 1-carboxylic acid by Pseudomonas fluorescens 2-79. Appl Microbiol Biotechnol 37, 388–392.
  • Smith KP, Handelsman J, Goodman RM. (1999). Genetic basis in plants for interactions with disease-suppressive bacteria. PNAS 96, 4786–4790.
  • Somers E, Vanderleyden J, Srinivasan M. (2004). Rhizosphere bacterial signalling, a love parade beneath our feet. Crit Rev Microbiol 30, 205–235.
  • Sood SG. (2003). Chemotactic response of plant-growth-promoting bacteria towards roots of vesicular-arbuscular mycorrhizal tomato plants. FEMS Microbiol Ecol 45, 219–227.
  • Steenhoudt O, Vanderleyden J. (2000). Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses, genetic, biochemical and ecological aspects. FEMS Microbiol Rev 24, 487–506.
  • Steidle A, Sigl K, Schuhegger R, Ihring A, Schmid M, Gantner A, Stoffels M, Reidel K, Givskov M, Hartmann A, Langebartels C, Eberl L. (2001). Visualization of N-acylhomoserine lactone-mediated cell-cell communication between bacteria colonizing the tomato rhizosphere. Appl Environ Microbiol 67, 5761–5770.
  • Strom MS, Lory S. 1993 Structure-function and biogenesis of the type IV pili. Annu Rev Microbiol 30, 565–596.
  • Tans-Kersten J, Huang H, Allen C. (2001). Ralstonia solanacearum needs motility for invasive virulence on tomato. J Bacteriol 183, 3597–3605.
  • Teplitski M, Robinson JB, Bauer WD. (2000). Plants secrete substances that mimic bacterial N-acyl homoserine lactone signal activities and affect population density-dependent behaviours in associated bacteria. Mol Plant-Microbe Interact 13, 637–648.
  • Thomashow LS, Weller DM. (1996). Current concepts in the use of introduced bacteria for biological disease control, mechanisms and antifungal metabolites In: G Stacey, and N T Keen, ed, Plant-microbe interactions. New York: Chapman and Hall, 187–235.
  • Toyoda H, Katsuragi K, Tamai T, Ouchi S. (1991). DNA sequence of genes for detection of fusaric-acid, a wilt-inducing agent produced by Fusarium species. J Phytopathol 133, 265–277.
  • Toyota K, Ikeda K. (1997). Relative importance of motility and antibiosis in the rhizoplane competence of a biocontrol agent Pseudomonas fluorescens MelRC2Rif. Biol Fert Soils 25, 416–420.
  • Uren NC. (2007). Types, amounts and possible functions of compounds released into the rhizosphere by soil grown plants In: R Pinton, Z Varanini, P Nannipieri, eds, The Rhizosphere, Biochemistry and Organic Substances at the Soil-Plant Interface. Boca Raton, FL: Taylor and Francis Group, 1–21.
  • Uren NC. (2000). Types, amounts and possible functions of compounds released into the rhizosphere by soil grown plants In: R Pinton, Z Varanini, P Nannipieri, eds, The Rhizosphere, Biochemistry and Organic Substances at the Soil Interface. New York: Marcel Dekker, 19–40.
  • Utsumi R, Yagi T, Katayama S, Katsuragi K, Tachibana K, Toyoda H, Ouchi S, Obata K, Shibano Y, Noda M. (1991). Molecular cloning and characterization of the fusaric acid-resistance gene from Pseudomonas cepacia. Agric Biol Chem 55, 1913–1918.
  • Van de Broek A, Lambrecht M, Vanderleyden J. (1998). Bacterial chemotactic motility is important for the initiation of wheat root colonization by Azospirillum brasilense. Microbiology 144, 2599–2606.
  • van den Broek D, Chin-A-Woeng TFC, Eijkemans K, Mulders IH, Bloemberg GV, Lugtenberg BJJ. (2003). Biocontrol traits of Pseudomonas spp are regulated by phase variation. Mol Plant–Microbe Interact 16, 1003–1012.
  • van Overbeek LS, van Elsas JD. (1995). Root exudates induced promoter activity in Pseudomonas fluorescens mutants in the wheat rhizosphere. Appl Environ Microbiol 61, 890–898.
  • van Rij ET Girard G, Lugtenberg BJJ, Bloemberg GV. (2005). Influence of fusaric acid on phenazine-1- carboxamide synthesis and gene expression of Pseudomonas chlororaphis strain PCL1391. Microbiology 151, 2805–2814.
  • van Rij ET, Wesselink M, Chin-A-Woeng TFC, Bloemberg GV, Lugtenberg BJJ. (2004). Influence of environmental conditions on the production of phenazine-1-carboxamide by Pseudomonas chlororaphis PCL1391. Mol Plant-Microbe Interact 17, 557–566.
  • vanEtten H, Temporini E, Wasmann C. (2001). Phytoalexin. (and phytoanticipin). tolerance as a virulence trait, why is it not required by all pathogens? Physiol Mol Plant Pathol 59, 83–93.
  • Villegas J, Fortin JA. (2002). Phosphorus solubilization and pH changes as a result of the interactions between soil bacteria and arbuscular mycorrhizal fungi on a medium containing NO33 as nitrogen source. Can J Bot 80, 571–576.
  • von Bodman SB, Bauer WD, Coplin DL. (2003). Quorum-sensing in plant pathogenic bacteria. Annu Rev Phytopathol 41, 455–482.
  • Wai-Leung Ng, Bassler BL. (2009). Bacterial Quorum-Sensing Network Architectures. Annu Rev Gen 43, 197–222.
  • Walley FL, Germida JJ. (1997). Response of spring wheat. (Triticum aestivum). to interactions between Pseudomonas species and Glomus clarum NT4. Biol Fert Soils 24, 365–371.
  • Waters CM, Bassler BL. (2005). Quorum Sensing, Cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol 21, 319–346.
  • Weller DM, Raaijmakers, JM, Gardener, BBM, Thomashow LS. (2002). Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annu Rev Phytopathol 40, 309–348.
  • Williams P. (2007). Quorum sensing, communication and cross-kingdom signaling in the bacterial world. Microbiology 153, 3923–3938.
  • Wu CH, Bernard S, Mersen GL, Chen W. (2009). Developing microbe-plant interactions for applications in plant-growth promotion and disease control, production of useful compounds, remediation and carbon sequestration. Microbial Biotechnol 2, 428–440.
  • Yamada Y, Nihira T. (1998). Microbial hormones and microbial chemical ecology In: DHR Barton K, Nakanishi, ed, Comprehensive Natural Products Chemistry, Vol 8. Oxford: Elsevier, 377–413.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.