52
Views
51
CrossRef citations to date
0
Altmetric
Research Article

Microbiology of Rice Soils

, , &
Pages 125-172 | Published online: 25 Sep 2008

References

  • De Datta S. K. Principles and Practices of Rice Production. John Wiley & Sons, New York 1981; 618
  • Ponnamperuma F. N. The chemistry of submerged soils. Adv. Agron. 1972; 24: 29
  • Patrick W. H., Jr., Reddy C. R. Chemical changes in rice soils, in Soils and Rice. International Rice Research Institute, Los BanosPhilippines 1978; 361
  • GambrelL R. P., Patrick W. H., Jr. Chemical and microbiological properties of anaerobic soils and sediments. Plant Life in Anaerobic Environments, D. D. Hook, R. M. Crawford. Ann Arbor, Mich 1978; 375
  • Yoab Jda T. Microbial metabolism in flooded soils. Soil Biochemistry, E. A. Paul, A. D. McLaren. Marcel Dekker, New York 1975; Vol. 3: 83
  • Watanabc I., Furusaka C. Microbial ecology of flooded rice soils. Advances in Microbial Ecology, M. Alexander. Plenum Press, New York 1980; Vol. 4: 125
  • Van Raalte M. H. On the oxygen supply of rice roots. Ann. Bot. Garden Buitenzorg 1941; 50: 99
  • Barber D. A., Ebert M., Evan T. N. S. The movement of l502 through barley and rice plants. J. Exp. Bot. 1962; 13: 397
  • Jensen C. R., Stolzy L. H., Letey J. Tracer studies of oxygen diffusion through roots of barley, corn and rice. Soil Set. 1967; 103: 23
  • Yoshida T., Broadbent F. E. Movement of atmospheric nitrogen in rice plants. Soil Sci. 1975; 120: 288
  • Lee K. K., Hobt R. W., Watanabc I., App A. Gas transport through rice. Soil Sci. Plant Nutr. (Tokyo). 1981; 27: 151
  • Lee K. K., Watanabc I. Problems of the acetylene reduction technique applied to water-saturated paddy soils. Appl. Environ. Microbiol. 1977; 34: 654
  • De Bont J. A. M., Lee K. K., Bouldin D. F. Bacterial oxidation of methane in rice paddy. Ecol. Bull. 1978; 26: 91
  • Shiga H. Microbial transformations in upland soils. Major Research in Upland Rice. International Rice Research Institute, Los BanosPhilippines 1975; 217
  • Takai Y., Koyama T., Kamura T. Microbial metabolism in reduction process of paddy soil. I. Soil Plant Food (Tokyo) 1956; 2: 63
  • Takai Y. The mechanism of reduction in paddy soil. Jpn. Agric. Res. Q. 1969; 4: 20
  • Takeda K., Furusaka C. Studies on the bacteria isolated anaerobically from paddy field soil. Rep. Inst. Agric. Res. Tohoku Univ. 1970; 21: 1
  • Takeda K., Furusaka C. Studies on the bacteria isolated anaerobically from paddy field soil. I. Succession of facultative anaerobes and strict anaerobes. J. Agr. Chem. Jpn. 1970; 44: 343
  • Takeda K., Furusaka C. Studies on the bacteria isolated anaerobically from paddy field soil. II. Classification of facultative and strict anaerobes. J. Agric. Chem. Jpn. 1970; 44: 349
  • Rangaswami G., Narayanaswami R. Studies on the microbial population of irrigation water in rice field. Int. Rice Comm. News. 1965; 14: 35
  • Suzuki T. Characteristics of microorganisms in paddy field soils. Jpn. Agric. Res. Q. 1967; 2: 8
  • Ishizawa S., Toyoda H. Microflora of Japanese soils. Nogyo Gijutsu Kenkyusho Hokoku. 1964; 14B: 204
  • Araragi M., Tangcham B., Cholitkul W., Pbetchawee S. Studies on microflora of tropical paddy and upland farm soils. Technical Bulletin No. 13, Tropical Agriculture Research Center, Japan 1979
  • Chen T. Y. Principal characteristics of rice root microflora. Acta Microbiol. Sinica 1963; 9: 186
  • Hayashi S., Asatsuma K., Nagatsuka T., Furusaka C. Studies on bacteria in paddy soil. Rep. Inst. Agric. Res. Tohoku Univ. 1978; 29: 19
  • Okuda A., Yamaguchi M., Kamata S. Nitrogen-fixing microorganisms in paddy soils. III. Distribution of nonsulfur purple bacteria in paddy soils. Soil Sci. Plant Nutr. (Tokyo). 1957; 2: 131
  • Kobayashi M., Takahaihi E., Kawaguchi K. Distribution of nitrogen-fixing microorganisms in paddy soils of southeast Asia. Soil Sci. 1967; 104: 113
  • Kobayashi M., Haque M. Z. Contribution to nitrogen fixation and soil fertility by photosynthetic bacteria. Plant Soil. Spec. 1971; Vol. 443
  • Motomura S. The study on advance in rice production by soil management. Report of the joint research work between Thailand and Japan. Tropical Agric. Res. Center, Japan 1973; 57–774
  • Matsuguchi T., Tangcbam B., Patiyuth S. Asymbiotic nitrogen fixing microflora and nitrogen fixation in Thai paddy fields. Soils Microorganisms. 1976; 18: 7
  • Alberda Th. Growth and root development of lowland rice and its relation to oxygen supply. Plant Soil. 1953; 5: 1
  • Inada K. Physiological characteristics of rice roots, especially with the view point of plant growth stage and root age. Bull. Natl. Inst. Agric. Sci. Ser. D. 1967; 16: 19
  • Kawata S., Soejlma M. On superficial root formation in rice plants. Crop. Sci. Soc. Jpn. Proc. 1974; 43: 354
  • Startb M. B. Changes in oxidation-reduction equivalent in soils as related to the physical properties of the soil and the growth of rice. La. Agric. Exp. Stn. 1936, Bull. No. 271
  • Kumada K. Investigations on the rhizosphere of rice seedling. I. On the microscopic structure of the rhizosphere and oxidative power of root. J. Sci. Soil Manure. Jpn. 1949; 19: 119
  • Kawata S., Isbihara K. Studies on the oxidizing ability of root hairs in rice plants. Proc. Crop Sci. Soc. Jpn. 1965; 33: 168
  • Wallace H. R. The Biology of Plant Parasitic Nematode. Edward Arnold Publ. Ltd., London 1963; 280
  • Ramakrishna C. Microbial aspects of pesticide residue problems in rice soils. Ph.D. thesis, Utkal University, Bhubaneswar 1980
  • Joshl M. M., Hollls J. P. Interaction of Beggiatoa and rice plant: detoxification of hydrogen sulfide in the rice rhizosphere. Science 1977; 195: 179
  • Klmura M., Wada H., Takal Y. Studies on the rhizosphere of paddy rice. IV. Physical and chemical features of rhizosphere. J. Sci. Soil Manure, Jpn. 1977; 48: 540
  • Klmura M., Wada H., Takal Y. The studies on the rhizosphere of paddy rice. VI. The effects of anaerobiosis on microbes. Soil Sci. Plant Nutr. (Tokyo) 1979; 25: 145
  • Okajima H. On the relationship between the nitrogen deficiency of the rice plant roots and the reduction of the medium. J. Sci. Soil Manure, Jpn. 1958; 29: 175
  • TroIldenJer G. Mineral nutrition and reduction processes in the rhizosphere of rice. Plant Soil 1977; 47: 193
  • Klmura M., Wada H., Takal Y. Studies on the rhizosphere of paddy rice. II. Microbiological features of rhizosphere (I). J. Sci. Soil Manure Jpn. 1977; 48: 91
  • Klmura M., Wada H., Takal Y. Studies on the rhizosphere of paddy rice. III. Microbiological features of rhizosphere (II). J. Sci. Soil Manure Jpn. 1977; 48: 111
  • Annual Report, Soil Microbiology. International Rice Research Institute. 1973; 114
  • Raghu K., MacRae I. C. Occurrence of phosphate dissolving micro-organisms in the rhizosphere of rice plants and in submerged soils. J. Appl. Bacterioi 1966; 29: 582
  • Mishra R. P., Das S. N. Microbial ecology of rice rhizosphere, OUAT Technical Bulletin No. 63. Orissa University of Agriculture and Technology, BhubaneswarIndia 1980
  • Wimpenny J. W. T. Oxygen and carbon dioxide as regulators of microbial growth and metabolism, in Microbial Growth. Proc. 19th Symp. Soc. Gen. Microbiol., P. Meadow, S. J. Pirt. 1969; 161
  • Oji Y., Izawa G. Metabolic backgrounds for the difference in utilization of ammonium and nitrate by rice and cucumber plants. J. Sci. Soil Manure, Jpn. 1974; 45: 341
  • Mangtdat I. J., Yoshida T. Nitrogen transformations of ammonium sulfate and alanine in submerged Maahas Clay. Soil Sci. Plant Nutr. (Tokyo) 1973; 19: 95
  • Yoshida T., Padre B. C., Jr. Nitrification and denitrification in submerged Maahas Clay soil. Soil Sci. Plant Nutr. (Tokyo). 1974; 20: 241
  • Patrick W. H., Jr., Reddj K. R. Fate of fertilizer nitrogen in a flooded rice soil. Soil Sci. Soc. Am. Proc. 1978; 40: 678
  • Gowda T. K. S., Rao V. R., Sethunathan N. Heterotrophic nitrification in the simulated oxidized zone of a flooded soil amended with benomyl. Soil Sci. 1977; 123: 171
  • Takal Y., Uehara Y. Nitrification and denitrification in the surface layer of submerged soils. I. Oxidation-reduction condition, nitrogen transformation and bacterial flora in the surface and deeper layers of submerged soils. J. Set Soil Manure, Jpn. 1973; 44: 463
  • Ramakrishna C., Sethunathan N. Stimulation of autotrophic ammonium oxidation in rice rhizosphere soil by the insecticide carbofuran. Appl. Environ. Microbiol. 1982; 44: 1
  • Watanabe I. A statistical study on the relationship between Nitrosomonas population and nitrifying activity of soil. J. Sci. Soil Manure, Jpn. 1974; 45: 279
  • Foeht D. D., Verstraete W. Biochemical ecology of nitrification and denitrification. Advances in Microbial Ecology, M. Alexander. Plenum Press, New York 1980; Vol. 1: 125
  • Connell W. E., Patrick W. H., Jr. Sulfate reduction in soil: effects of redox potential and pH. Science 1968; 159: 86
  • Connell W. E., Patrick W. H., Jr. Reduction of sulfate to sulfide in waterlogged soil. Soil Sci. Soc. Am. Proc. 1969; 33: 711
  • Nearpatt D. C., Clark F. E. Availability of sulfur to rice plants in submerged and upland soil. Soil Sci. Soc. Am. Proc. 1960; 24: 385
  • Ray R. C. Microbial activities in the rhizosphere of rice plants as influenced by pesticide applications. Ph.D. thesis, Utkal University, Bhubaneswar 1981
  • Yosnida T. Microbial metabolism in rice soils. Soils and Rice. International Rice Research Institute, Los BanosPhilippines 1978; 446
  • Motomura S. Estimation of the number of manganese-oxidising bacteria in paddy soils: studies on the oxidative sediments in paddy soils. II. J. Sci. Soil Manure, Jpn. 1966; 37: 263
  • Kamura T., Nishitani K. The effect of soil reaction on the manganese oxidation: the oxidation mechanism of manganese in soils. II. J. Sci. Soil Manure Jpn. 1977; 48: 103
  • Wada H., Seiyaroaakol A., Kjmara M., Takai Y. The process of manganese deposition in paddy soils. II. Microorganisms responsible for manganese deposition. Soil Sci. Plant Nutr. (Tokyo) 1978; 24: 319
  • Colmer A. R., Hinkle M. E. The role of microorganisms in acid mine drainage: a preliminary report. Science 1947; 106: 253
  • Harrison W. H., Aiyer P. A. S. The gases of swamp rice soils. II. Their utilization for the aeration of the roots of crops. Mem. Dtp. Agric. India Chem. Ser. 1915; 4: 1
  • De Bont J. A. M., Mulder E. G. Invalidity of acetylene reduction assay in alkane-utilizing nitrogen-fixing bacteria. Appl. Environ. Microbiol. 1976; 31: 640
  • De Bont J. A. M., Mulder E. G. Nitrogen fixing and cooxidation of ethylene by a methane-oxidizing bacterium. J. Gen. Microbiol. 1974; 83: 113
  • De Bont J. A. M. Bacterial degradation of ethylene and acetylene. Can. J. Microbiol. 1976; 221: 1060
  • Smith A. M., Cook R. J. Implications of ethylene production by soil bacteria for biological balance of soil. Nature (London). 1974; 252: 703
  • Yofhida T., Suzuki M. Formation and degradation of ethylene in submerged soils. Soil Sci. Plant Nutr. (Tokyo) 1975; 21: 129
  • Primrose S. B. Ethylene in agriculture: the role of the microbe. J. Appl. Bacteriol 1979; 46: 1
  • O'Neill J. G., Wilkinson J. F. Oxidation of ammonia by methane-oxidizing bacteria and the effects of ammonia on methane oxidation. J. Gen. Microbiol. 1977; 100: 407
  • Ponnamperuma F. N. The chemistry of submerged soils in relation to the growth and yield of rice. Ph.D. thesis, Cornell University, Ithaca 1955
  • Takai Y., Koyama T., Kamura T. Microbial metabolism in reduction process of paddy soils. II. Effect of iron and organic matter on the reduction process (1). Soil Sci. Plant Nutr. (Tokyo) 1963; 9: 176
  • Takai Y., Koyama T., Kamura I. Microbial metabolism in reduction process of paddy soils. III. Effect of iron and organic matter on the reduction process (2). Soil Sci. Plant Nutr. (Tokyo) 1963; 9: 207
  • Takai Y., Kamura T. The mechanism of reduction in waterlogged paddy soil. Folia Microbiol. 1969; 11: 304
  • Siddaramappa R., Sethunathan N. Persistence of gamma-BHC and beta-BHC in Indian rice soils under flooded conditions. Pestic. Sci. 1975; 6: 395
  • Guenzi W. D., Beard W. E., Viets F. G., Jr. Influence of soil treatment on persistence of six chlorinated hydrocarbon insecticides in the field. SoU Sci. Soc. Am. Proc 1971; 32: 522
  • Parr J. F., Smith S. Degradation of DDT in an everglades muck as affected by lime, ferrous ion and anaerobiosis. Soil Sci. 1974; 118: 45
  • Gowda T. K. S., Sethunathan N. Persistence of endrin in Indian rice soils under flooded conditions. J. Agric. Food Chem. 1976; 24: 750
  • Parr J. F., Smith S. Degradation of toxaphene in selected anaerobic soil environments. Soil Sci. 1976; 121: 52
  • Willis G. H., Wander R. C., South Wick L. M. Degradation of trifluralin in soil suspension as related to redox potentials. J. Environ. Qual. 1974; 3: 262
  • Sethunathan N., Siddaramappa R. Microbial degradation of pesticides in rice soils. Soils and Rice. International Rice Research Institute, Los BanosPhilippines 1978; 479
  • Singh R. N. Role of Blue-Green Algae in Nitrogen Economy of Indian Agriculture. Indian Council of Agricultural Research, New Delhi 1961; 197
  • Venkataraman G. S. Algal Biofertilizers and Rice Cultivation. Today and Tomorrow's Printers and Publishers, Faridabad 1972; 75
  • Watanabe A., Yamamoto Y. Algal nitrogen fixation in the tropics. Plant. Soil Special 1971; Vol. 403
  • Watanabe I., Lee K. K., Alimagno B. V., Sato M., Del Rosario D. C., De Guzman M. R. Biological N2 fixation in paddy field studied by in situ acetylene reduction assays. 1RR1 Research Paper Series 3, International Rice Research Institute, Los BanosPhilippines 1977
  • Roger P. A., Kulasooriya S. A. Blue-green Algae and Rice. International Rice Research Institute, Los BanosPhilippines 1980; 112
  • Yoshida T., Ancajas R. R. Nitrogen fixing activity in upland flooded rice fields. Soil Sci. Soc. Am. Proc 1973; 37: 42
  • Rao V. R., Kalininskaya T. A., Volkova T. N., Ippolitov L. T. The activity of non-symbiotic nitrogen fixation in soils of rice field studied by N-15 assay. Mikrobiologiya 1973; 42: 481
  • Rao V. R. Nitrogen fixation as influenced by moisture level, ammonium sulphate and organic matter in a paddy soil. Soil Biol. Biochem. 1976; 8: 445
  • Rao V. R., Charyulu P. B. B. N., Nayak D. N., Ramakrishna G. Nitrogen fixation by free-living organisms in rice soils — studies with N-15. Use of Isotopes and Radiation in Research on Soil-plant Relationships. International Atomic Energy Agency, Vienna 1979; 621
  • Yoshida T., Ancajas R. R. Nitrogen fixation in the root zone of rice. Soil Sci. Soc. Am. Proc 1971; 35: 156
  • Balandreau J., Rinaudo G., Fares-Hamad I., Dommergues Y. Nitrogen fixation in the rhizosphere of rice plants. Nitrogen Fixation by Free-living Microorganisms, W. D. P. Stewart. Cambridge University Press, Cambridge 1975; 57
  • Balandreau J., Knowles R. The rhizosphere. Interactions Between Non-pathogenic Soil Microorganisms and Plants, Y. R. Dommergues, S. V. Krupa. Elsevier, Amsterdam 1978; 243
  • Watanabe I., Espinas C. R., Berja N. S., Alimagno B. V. Utilization of Aiolla-Anabaena complex as a nitrogen fertilizer for rice. IRRI Research Paper series II, International Rice Research Institute, Los BanosPhilippines 1977
  • Singh P. K. Multiplication and utilization of fern Azolla containing nitrogen fixing algal symbiont as green manure in rice cultivation. Riso 1977; 26: 125
  • Singh P. K. Use of Azolla in rice production in India. Nitrogen and Rice. International Rice Research Institute, Los BanosPhilippines 1979; 407
  • Watanabe I., Lee K. K., Alimagno B. V. Seasonal change of nitrogen fixing rate in rice field by in situ acetylene reduction technique. I. Experiments in long term fertility plots. Soil Sci. Plant Nutr. (Tokyo) 1978; 24: I
  • Boddey R. M., Quilt P., Ahmad N. Acetylene reduction in the rhizosphere of rice: methods of assay. Plant Soil 1978; 50: 567
  • Balandreau J., Dommergues Y. Assaying nitrogenase (C2H2) activity in the field. Bull. Ecol. Res. Comm. (Stockholm) 1973; 17: 247
  • Lee K. K., Yoshida T. An assay technique of measurement of nitrogenase activity in root zone of rice for varietal screening by acetylene reduction method. Plant Soil 1977; 46: 127
  • Alimagno B. V., Yoshida T. In situ acetylene reduction assay of biological nitrogen fixation in lowland rice soils. Plant Soil 1977; 47: 239
  • Lee K. K., Alimagno B. V., Yoshida T. Field technique using acetylene reduction method to assay nitrogenase activity and its association with the rice rhizosphere. Plant Soil 1977; 47: 519
  • Watanabe I., Cbolitkul W. Field studies on nitrogen fixation in paddy soils. Nitrogen and Rice. International Rice Research Institute, Los BanosPhilippines 1979; 223
  • Rice W. A., Paul E. A. The acetylene reduction assay for measuring nitrogen fixation in waterlogged soil. Can. J. Microbiol. 1971; 17: 1049
  • Charyulu P. B. B. N., Rao V. R. Nitrogen fixation in some Indian rice soils. Soil Sci. 1979; 128: 86
  • Habte M., Alexander M. Nitrogen fixation by photosynthetic bacteria in lowland rice culture. Appl. Environ. Microbiol. 1980; 39: 342
  • Rao V. R. Effect of carbon source on asymbiotic nitrogen fixation in a paddy soil. Soil Biol. Biochem. 1978; 10: 319
  • Nayak O. N., Rao V. R. Pesticides and heterotrophic nitrogen fixation in paddy soils. Soil Biol. Biochem. 1980; 12: 1
  • Mahapatra R. N., Rao V. R. Influence of hexachlorocyclohexane on the nitrogenase activity of rice rhizosphere soil. Plant Soil 1981; 59: 473
  • Nayak D. N., Pasalu I. C., Rao V. R. Influence of natural and synthetic pesticides on nitrogen fixation (C2H2 reduction) in the rice rhizosphere. Curr. Sci. 1980; 49: 118
  • Rao J. L. N., Pasalu I. C., Rao V. R. Nitrogen fixation (C2H2 reduction) in the rice rhizosphere soil as influenced by pesticides and methods of their application. J. Agric. Sci. (Camb.) 1983; 100, in press
  • App A. A., Watanabe I., Alexander M., Ventura W., Daez C, Santiago T., De Dutta S. K. Non-symbiotic nitrogen fixation associated with the rice plant in flooded soils. Soil Sci. 1980; 130: 283
  • Rao V. R. Influence of soil fertilization with rice straw on rice yield. Proc. Acad. Sci. USSR Biol. Ser. 1973; 2: 223
  • Kalininskaya T. A., Miller Y. M., Belov Y. M., Rao V. R. N15 studies on the activity of non-symbiotic nitrogen fixation in rice soils of Krasnoder territory. Proc. Acad. Sci. USSR Biol. Ser. 1977; 4: 565
  • Reynaud P. A., Roger P. A. Nitrogen-fixing algal biomass in Senegal rice fields. Ecol. Bull. 1978; 26: 148
  • Traore T. M., Roger P. A., Reynaud P. A., Sasson A. Etude de la fixation de N2 par les Cyanobacteries dans une riziere Sondano-Sahelienne. Cah. ORSTOM Ser. Biol 1978; 13
  • Matsuguchi T., Tangcham B., Patiyuth S. Free-living nitrogen fixers and acetylene reduction in tropical rice field. Jpn. Agric. Res. Q. 1975; 8: 253
  • Charyuiu P. B. B. N., Nayak D. N., Rao V. R. 15N2 incorporation by rhizosphere soil: influence of rice variety, organic matter and combined nitrogen. Plant Soil 1981; 59: 399
  • Nayak D. N., Rao V. R. Nitrogen fixation by Spirillum sp. from rice roots. Arch. Microbiol. 1977; 115: 359
  • Charyuiu P. B. B. N., Rao V. R. Influence of various soil factors on N2-fixation by Azospirillum sp. Soil Biol. Biochem. 1980; 12: 343
  • Watanabe I., Barraquio W. I., De Guzman M. R., Cabrera D. A. Nitrogen fixing (acetylene reduction) activity and population of aerobic heterotrophic nitrogen fixing bacteria associated with wetland rice. Appl. Environ. Microbiol. 1979; 37: 813
  • Ito O., Cabrera D., Watanabe I. Fixation of Dinitrogen-15 associated with rice plants. Appl. Environ. Microbiol. 1980; 39: 554
  • Watanabe I., Cabrera D., Barraquio W. L. Contribution of basal portion of shoot to N2 fixation associated with wetland rice. Plant Soil 1981; 59: 391
  • Kulaaooriya S. A., Roger P. A., Barraquio W. L., Watanabe I. Epiphytic nitrogen fixation on deepwater rice. Soil Sci. Plant Nutr. (Tokyo) 1981; 27: 19
  • Watanabe A. Effect of nitrogen-fixing blue-green alga Tolypothrix tenuis on the nitrogenous fertility of paddy soils and on the crop yield of rice plant. J. Gen. Appl. Microbiol. 1962; 8: 85
  • Subrahmanyan R., Rdwani L. L., Manna G. B. Fertility build-up of rice field soils by blue-green algae. Proc. Indian Acad. Sci. B 1965; 62: 252
  • Sankaram A., Mudholkar N. J., Sahay M. N. Inoculation of blue-green algae on the yield of rice under field conditions. Indian J. Microbiol. 1967; 7: 57
  • Verkataraman G. S. The role of blue-green algae in tropical rice production. Nitrogen Fixation by Free living Microorganisms, W. D. P. Stewart. Cambridge University Press, Cambridge 1975; 207
  • Venkataraman G. S. Algal inoculation in rice fields. Nitrogen and Rice. International Rice Research Institute, Los BanosPhilippines 1979; 311
  • Shtina E. A. Fixation of free nitrogen in blue-green algae. The Ecology and Physiology of Blue-green Algae, V. D. Federov, M. M. Tellichenko. Moscow University Press, Moscow 1965; 66
  • Shinde S. T. The role of Azolobacter in increasing the yields of rice. Rice Newsl. 1965; 13: 92
  • Subba Rao N. S., Tilak K. V. B. R., Singh C. S., Lakshmikumari M. Response of a few economic species of graminaceous plants to inoculation with. Azospirillum lipoferum, Curr. Sci. 1979; 48: 133
  • Venkataraman G. S., Neebikantan S. Effect of cellular constituents of the nitrogen-fixing blue-green alga, Cylindrospermum musciola on the root growth of rice seedlings. J. Gen. Appl. Microbiol. 1967; 13: 53
  • Tien T. M., Gaskins M. H., Hubbell D. H. Plant growth substances produced by Azospirillum brasilense and their effect on the growth of pearl millet (Pennisetum americanum L.). Appl. Environ. Microbiol. 1979; 37: 1016
  • Moore A. W. Azolla: biology and agronomic significance. Bot. Rev. 1969; 35: 17
  • Liu C. C. Use of Azolla in rice production in China. Nitrogen and Rice. International Rice Research Institute, Los BanosPhilippines 1979; 375
  • Ishlzawa S., Matsuguchi T. Effects of pesticides and herbicides upon microorganisms in soil and water under waterlogged conditions. Bull. Natl. Inst. Agric. Sci. Ser. B. 1966; 16: 1
  • Singh P. K. Effect of pesticides on blue-green algae. Arch. Mikrobiol. 1973; 89: 317
  • Matsuguchi T. Factors affecting heterotrophic nitrogen fixation in submerged rice soils. Nitrogen and Rice. International Rice Research Institute, Los BanosPhilippines 1979; 207
  • Watanabe I., De Guzman M. R., Cabrera D. A. The effect of nitrogen fertilizer on N2 fixation in the paddy field measured by in situ acetylene reduction assay. Plant Soil 1981; 59: 135
  • Rao J. L. N., Prasad J. S., Rao V. R. Rice rhizosphere nitrogen fixation (C2H2 reduction) as influenced by nitrogen source. Curr. Sci. 1982; 51: 900
  • Kalininskaya T. A., Rao V. R., Volkova T. N., Ippolitov L. T. Nitrogen-fixing activity of soil under rice crop studied by acetylene reduction assay. Mikrobiologiya 1973; 42: 481
  • Trolldenier G. Influence of some environmental factors on nitrogen fixation in the rhizosphere of rice. Plant Soil 1977; 47: 217
  • Knowles R., Denike D. Effect of ammonium-, nitrite- and nitrate-nitrogen on anaerobic nitrogenase activity in soil. Soil Biol. Biochem. 1975; 7: 337
  • Charyulu P. B. B. N., Rao V. R. Influence of ammonium nitrogen on nitrogen fixation in paddy soils. Soil Sci. 1981; 131: 140
  • MacRae I. C., Castro T. F. Nitrogen fixation in some tropical rice soils. Soil Set. 1967; 103: 277
  • Rice W. A., Paul E. A. The organisms and biological processes involved in asymbiotic nitrogen fixation in waterlogged soil amended with straw. Can. J. Microbiol. 1972; 18: 715
  • Charyulu P. B. B. N., Rao V. R. Influence of carbon substrates and moisture regime on nitrogen fixation in paddy soils. Soil Biol. Biochem. 1981; 13: 39
  • Cholitkul W., Tangcham B., Sangtong P., Watanabe I. Effect of phosphorus on N2 fixation as measured by the field acetylene reduction technique in Thailand long-term fertility plots. Soil Sci. Plant Nutr. (Tokyo) 1980; 26: 291
  • Watanabe I., Lee K. K., Alimagno B. V. Seasonal change of nitrogen fixing rate in rice field assayed by in situ acetylene reduction technique. I. Experiments in long term fertility plots. Soil Sci. Plant Nutr. (Tokyo) 1978; 24: 1
  • Rao J. L. N. 1981, Unpublished data
  • Durbin K. J., Watanabe I. Sulfate-reducing bacteria and nitrogen fixation in flooded rice soil. Soil Biol. Biochem. 1980; 12: 11
  • Rao J. L. N. 1981, Unpublished data
  • Charyulu P. B. B. N., Rao V. R. Nitrogen fixation by Azospirillum sp. isolated from benomyl-amended rice soil. Curr. Sci. 1978; 47: 822
  • Raghu K., MacRae I. C. The effect of gamma isomer of benzene hexachloride upon microflora of submerged rice soils. II. Effect upon nitrogen mineralization and fixation and selected bacteria. Can. J. Microbiol. 1967; 13: 622
  • Nayak D. N., Rao V. R. Pesticides and nitrogen fixation in a paddy soil. Soil Biol. Biochem. 1982; 14: 207
  • Nayak D. N., Rao V. R. Influence of alternate flooded and nonflooded conditions on nitrogen fixation (C2H2 reduction) in paddy soils. Soil Sci. 1981; 131: 26
  • Rao J. L. N. 1981, Unpublished data
  • Domraergues Y. R., Rinaudo G. Factors affecting nitrogen fixation in the rice rhizosphere. Nitrogen and Rice. International Rice Research Institute, Los BanosPhilippines 1979; 241
  • Nayak D. N., Charyulu P. B. B. N., Rao V. R. 15N2 incorporation and acetylene reduction by Azospirillum sp. isolated from rice roots and soils. Plant Soil 1981; 61: 429
  • Matsuguchi T., Tangcham B., Patiyuth S. Free-living nitrogen fixers and acetylene reduction in tropical rice fields. Jpn. Agric. Res. Q. 1975; 8: 253
  • Brouzes R., Mayfield C. I., Knowles R. Effect of oxygen partial pressure on nitrogen fixation and acetylene reduction in a sandy loam soil amended with glucose. Plant Soil, Special 1971; Vol. 481
  • Rao V. R. Non-symbiotic nitrogen fixation in paddy soils. Ph.D. thesis, Institute of Microbiology, U.S.S.R. Academy of Sciences, Moscow 1974
  • Rao V. R. Changes in nitrogen fixation in a paddy soil amended with rice straw and ammonium sulphate. Riso. 1980; 29: 29
  • Rao V. R. Effect of organic and mineral fertilizers on Azotobacter in flooded rice field. Curr. Sci. 1977; 46: 118
  • Rao V. R. Nitrogen economy of rice soils in relation to nitrogen fixation by heterotrophic microorganisms — review. Increasing Rice Yields in Kharif. Central Rice Research Institute, CuttackIndia 1978; 241
  • Strandberg G. W., Wilson P. W. Formation of the nitrogen-fixing enzyme system in Azotobacter vinelandii. Can. J. Microbiol. 1968; 14: 25
  • Biggins D. R., Postgate J. R. Nitrogen fixation by cultures and cell-free extracts of Mycobacterium flavum 301. J. Gen. Microbiol. 1969; 56: 181
  • Becking J. H. Biological nitrogen fixation and its economic significance. Nitrogen-15 in Soil-plant Studies. International Atomic Energy Agency, Vienna 1971; 189
  • Yoshida T., Roncal R. A., Bautista E. M. Atmospheric nitrogen fixation by photosynthetic microorganisms in a submerged Philippine soil. Soil Sci. Plant Nutr. (Tokyo). 1973; 19: 117
  • MacRae I. C. Effect of applied nitrogen upon acetylene reduction in the rice rhizosphere. Soil Biol. Biochem. 1975; 7: 337
  • Raghu K., MacRae I. C. The effect of the gamma isomer of benzene hexachloride upon the microflora of submerged rice soils. 1. Effect upon algae. Can. J. Microbiol 1967; 13: 173
  • Charyulu P. B. B. N., Ramakrishna C., Rao V. R. Effect of 2-aminobenzimidazole on nitrogen fixers from flooded soil and their nitrogenase activity. Bull. Environ. Contam. Toxicol. 1980; 25: 482
  • Tirol A. C., Santiago S. T., Watanabe I. Effect of the insecticide carbofuran on microbial activities in flooded soil. J. Pestic. Sci. 1981; 6: 83
  • Venkataraman G. S., Rajyalakshmi B. Tolerance of blue-green algae to pesticides. Curr. Sci. 1971; 40: 143
  • Venkataraman G. S., Rajyalakshmi B. Relative tolerance of nitrogen-fixing blue-green algae to pesticides. Md. J. Agric. Set. 1972; 42: 119
  • Ahmad M. H., Venkataraman G. S. Tolerance of Aulosira fertilissima to pesticides. Curr. Sci. 1973; 42: 108
  • Dai B., Singh P. K. Detoxication of the pesticide benzene hexachloride by blue-green algae. Microbios Lett. 1977; 4: 99
  • Hirota Y., Fujii T., Sano Y., Iyama S. S. Nitrogen fixation in the rhizosphere of rice. Nature (London). 1978; 276: 416
  • Najrak D. N., Swain A., Rao V. R. Nitrogen-fixing Azospirillum lipoferum from common weeds associated with rice and aquatic ecosystems. Curr. Sci. 1979; 48: 866
  • Sano Y., Fujii T., Iyama S., Hirota Y., Komagata K. Nitrogen fixation in the rhizosphere of cultivated and wild rice strains. Crop Sci. 1981; 21: 758
  • Yoshida T., Takai Y., Del Rosario D. C. Molecular nitrogen content in a submerged rice field. Plant Sod. 1975; 42: 655
  • Watanabe I., Barraqnio W. L. Low levels of fixed nitrogen required for isolation of free-living N2-fixing organisms from rice roots. Nature (London). 1979; 277: 568
  • Yoshida T., Yoneyama T. Atmospheric nitrogen fixation in the flooded rice rhizosphere as determined by the N-15 isotope technique. Soil Set Plant Nutr. (Tokyo). 1980; 26: 551
  • Ito O., Watanabe I. Immobilization, mineralization and availability to rice plants of nitrogen derived from heterotrophic nitrogen fixation in flooded soil. Soil Sci. Plant Nutr. (Tokyo) 1981; 27: 169
  • Charyulu P. B. B. N., Rao V. R. 1981, Unpublished data
  • Broadbent F. E., Stojanovic B. F. The effect of partial pressure of oxygen on some soil nitrogen transformations. Soil Set Soc. Am. Proc 1952; 16: 359
  • Wijler J., Ddwiche C. C. Investigations on the denitrifying process in soil. Plant Soil. 1954; 5: 155
  • Nonunik H. Investigations on denitrification in soil. Acta Agric. Scandinavica 1956; 6: 195
  • MacRae I. C., Ancajas R. R., Salandanan S. The fate of nitrate nitrogen in some tropical soils following submergence. Soil Sci. 1968; 105: 327
  • Stanford G., Left J. O., Dzienia S., Simpson E. C., Jr. Denitrification and associated nitrogen transformations in soils. Soil Sci. 1975; 120: 147
  • Stanford G., Legg J. O., Staley T. E. Fate of 15N-labelled nitrate in soils under anaerobic conditions. Proc. 2nd Int. Conf. Stable Isotopes, Illinois, 1975; 667
  • Koike J., Hattori A. Dentriflcation and ammonia formation in anaerobic coastal sediments. Appl. Environ. Microbiol. 1978; 35: 278
  • Sorenscn J. Capacity for denitrification and reduction of nitrate to ammonia in a coastal marine sediment. Appl. Environ. Microbiol. 1978; 35: 301
  • Bureth R. J., Patrick W. H., Jr. Nitrate reduction to ammonium in anaerobic soil. Soil. Sci. Soc. Am. J. 1978; 42: 913
  • Buresh R. J., Patrick W. H., Jr. Nitrate reduction to ammonium and organic nitrogen in an estuarine sediment. Soil Biol. Biochem. 1981; 13: 279
  • Caskey W. H., Tiedje J. M. Evidence for Clostridia as agents of dissimilatory reduction of nitrate to ammonium in soils. J. Soil Sci. Soc. Am. 1979; 43: 931
  • Terry R. E., Tate R. L., III. Dentrification as a pathway for nitrate removal from organic soils. Soil Sci. 1980; 129: 162
  • Ponnamperuma F. N., Castro R. V. Redox systems in submerged soils. Trans. 8th Int. Cong. Soil Science., Bucharest, 1964; Vol. III: 379
  • Bailey L. D., Beauchamp E. G. Effects of moisture, added NO3 and macerated roots on NOJ transformation and redox potential in surface and subsurface soils. Can. J. Soil Sci. 1973; 53: 219
  • Patnaik S. Tracer studies on the transformation of applied nitrogen in submerged rice soils. Proc. Indian Acad. Sci. 1965; 61B: 25
  • Abichandani C. T., Patnaik S. Nitrogen changes and fertilizer losses in lowland waterlogged soils. J. Indian Soc. Soil Sci. 1958; 6: 87
  • De P. K., Digar S. Loss of nitrogen gas from waterlogged soils. J. Agric. Sci. 1954; 44: 129
  • Merzari A. H., Broeshart H. The utilization by rice of nitrogen from ammonium fertilizers as affected by fertilizer placement and microbiological activity. Isotope Studies on the Nitrogen Chain. International Atomic Energy Agency, ViennaAustria 1967; 79
  • Broadbent F. E., Tusneem M. E. Losses of nitrogen from some flooded soils in tracer experiments. Soil Sci. Soc. Am. Proc. 1971; 35: 922
  • Baldcrston W. L., Sherr B., Payne W. J. Blockage by acetylene of nitrous oxide reduction in Pseudomonas perfectomarinus. Appl. Environ. Microbiol. 1976; 31: 504
  • Yoshinari T., Knowles R. Acetylene inhibition of nitrous oxide reduction by denitrifying bacteria. Biochem. Biophys. Res. Comm. 1976; 69: 705
  • Tiedje J. M., Firestone R. B., Firestone M. K., Betlach M. R., Smith M. S., Caskey W. H. Methods for the production and use of nitrogen-13 in studies of denitrification. Soil Sci. Soc. Am. J. 1979; 43: 709
  • Robton D. E., Fried M, Goldhamer D. A. Field measurement of denitrification. I. Flux of N2 and N2O. Soil Sci. Soc. Am. J. 1978; 42: 863
  • Ryden J. C., Lund L. J., Letey J., Focht D. D. Direct measurement of denitrification loss from soils. II. Development and application of field methods. Soil Sci. Soc. Am. J. 1979; 43: 110
  • Komatsu Y., Takagi M., Yamaguchi M. Participation of iron in denitrification in waterlogged soil. Soil Biol. Biochem. 1978; 10: 21
  • Araragi M., Tangcham B. Microflora related to the nitrogen cycle in paddy soils of Thailand. Jpn. Agric. Res. Q. 1975; 8: 256
  • Garcia J. L., Raimbault M., Jacq V., Rinaudo G., Roger P. A. Activities microbiennes dans les sols des rizieres du Senegal: relations avec les characteristiques physicochimiques et influence de la rhizosphere. Rev. Ecol. Biol. Sol. 1974; 11: 169
  • Gamble T. N., Betlach M. R., Tiedje J. M. Numerically dominant denitrifying bacteria from world soils. Appl. Environ. Microbiol. 1977; 33: 926
  • Garcia J. L. Analyse de differents groups composant la microflora denitrificante des sols de rizieres du Senegal. Ann. Microbiol. (Inst. Pasteur) 1977; 128A: 433
  • Garcia J. L. Etude de la denitrification chez une bacteria thermophile sporulee. Ann. Microbiol. (Inst. Pasteur) 1977; 128A: 447
  • Pichinoty F., Mandel M., Greenway B., Garcia J. L. Isolation and properties of a denitrifying bacterium related to Pseudomonas lemoignei. Int. J. Syst. Bacteriol. 1977; 27: 346
  • Neyra C. A., Dobereiner J., Lalande R., Knowles R. Denitrification by N2- fixing Spirillum lipoferum. Can. J. Microbiol. 1977; 23: 300
  • Satoh T., Hoshino Y., Kitamura H. Rhodopseudomonas Sphaeroides forma sp. denilrificans. a denitrifying strain as a subspecies of Rhodopseudomonas sphaeroides. Arch. Mikrobiol. 1976; 108: 265
  • Sawada I., Satoh T., Kitamura H. Purification and properties of a dissimilatory nitrate reductase of a denitrifying phototrophic bacterium. Plant Cell Physiol. 1978; 19: 1339
  • Garcia J. L. Reduction de I'oxyde nitreux dans les sols de rizieres du Senegal: measure de l'activite denitrificants. Soil Biol. Biochem. 1974; 6: 79
  • Garcia J. L. Evaluation de la denitrification dans les rizieres par la methode de reduction de N2O. Soil Biol. Biochem. 1975; 7: 251
  • Garcia J. L. Production d'oxyde nitrique dans les sols de riziere. Ann. Microbiol. (Inst. Pasteur) 1976; 127A: 401
  • Firestone M. K., Firestone R. B., Tiedje J. M. Nitric oxide as an intermediate in denitrification: evidence from nitrogen-13 isotope exchange. Biochem. Biophys. Res. Commun. 1979; 91: 10
  • Mandal L. N. Transformation of iron and manganese in waterlogged rice soils. Soil Sci. 1961; 91: 121
  • Gotoh S., Yamashita K. Oxidation-reduction potential of a paddy soil in situ with special reference to the production of ferrous iron, manganous manganese and sulfide. Soil Sci. Plant Nutr. (Tokyo) 1966; 12: 230
  • Yoshida K., Kamura T. The reduction mechanism of manganese in paddy soils. II. Role of microorganisms in the reduction process of manganese. J. Sci. Soil Manure, Jpn. 1972; 43: 447
  • Yoshida K., Kamura T. The reduction mechanism of mangenese in paddy soils. III. Manganese-reducing microorganisms in soils and the reduction mechanisms of manganese in the culture solution. J. Sci. Soil Manure, Jpn. 1972; 43: 451
  • Yoshida K., Kamura T. The reduction mechanism of manganese in paddy soils. VI. The reaction conditions of manganese reduction by metabolic products of microorganisms. J. Sci. Soil Manure. Jpn. 1975; 46: 377
  • Yoshida K., Kamura T. The reduction mechanism of manganese in paddy soils. VII. Model experiments on the role of ferrous iron in manganese reduction. J. Sci. Soil Manure, Jpn. 1975; 46: 382
  • Kamura T., Takai Y., Ishikawa K. Microbial reduction mechanism of ferric iron in paddy soils. Soil Sci. Plant Nutr. (Tokyo). 1963; 9: 171
  • Pal S. S. Interaction between pesticides and microbial activities in submerged soils. Ph.D. thesis, University of Calcutta, India 1981
  • Kamura T., Takai Y. The microbial reduction mechanism of ferric iron in paddy soils. I. J. Sci. Soil Manure, Jpn. 1961; 32: 135
  • Bromfield S. M. Reduction of feme compounds by soil bacteria. J. Gen. Microbiol. 1954; II: 1
  • Ottow J. C. G., Utbe G H. Isolation and identification of iron-reducing bacteria from gley soils. Soil Biol. Biochem. 1971; 3: 43
  • Ottow J. C. G. Bacterial mechanism of gley formation. Nature (London). 1970; 225: 103
  • Starkey R. L., HaJvorson H. O. Studies on the transformation of iron in nature. SoilSci. 1927; 14: 381
  • Robert J. L. Reduction of ferric hydroxide by strains of Bacillus polymyxa. Soil Sci. 1947; 63: 135
  • Ottow J. C. G. Evaluation of iron-reducing bacteria in soil and the physiological mechanism of iron reduction in Aerobacter aerogens. Z. Allg. MikrobioL. 1968; 8: 441
  • Ottow J. C. G. Selection, characterization and iron-reducing capacity of nitrate reductase less (nit) mutants from iron reducing bacteria. Z. Allg. MikrobioL. 1970; 10: 55
  • Mitsui S., Aso S., Kumazawa K. Dynamic studies on the nutrient uptake by crop plants. 1. The nutrient uptake of roots as influenced by hydrogen sulfide. J. Soi. Soil Manure. Jpn. 1951; 22: 46
  • Shiga H., Suzuki S. Studies on the behavior of hydrogen sulfide in waterlogged soils. VII. Bull. Chugoku Agric. Exp. Sin. 1964; 10A: 103
  • Wakao N., Furusaka C. Distribution of sulfate-reducing bacteria in paddy- field soil. Soil Sci. Plant Nutr., (Tokyo). 1973; 19: 47
  • Cappenberg T. E., Print R. A. Interrelations between sulfate-reducing and methane-producing bacteria in bottom deposits of a freshwater lake. HI. Experiments with 14C-labeled substrates Antonie van Leeuwenhoek. J. Microbiol. Serol. 1974; 40: 457
  • Takai Y., Tezuka C. Sulfate-reducing bacteria in paddy and upland soils. J. Sci. Soil Manure, Jpn. 1971; 42: 145
  • Wakao N-, Hattori T., Furusaka C. Study on the distribution patterns of sulfate-reducing bacteria in a paddy field soil by 15-index. Soil Sci. Plant Nutr. (Tokyo) 1973; 19: 201
  • Wakao N., Furusaka C. Influence of organic matter on the distribution of sulfate-reducing bacteria in a paddy field soil. Soil Sci. Plant Nutr. (Tokyo). 1976; 22: 203
  • Ishimoto M., Koyama J., Omura T., Nagai Y. Biochemical studies on sulfate-reducing bacteria. III. Sulfate reduction by cell suspension. J. Biochem. 1954; 41: 537
  • Bloomfield C. Sulphate reduction in waterlogged soils. J. Soil Sci. 1969; 20: 207
  • Furusaka C. Studies on the activity of sulfate reducers in paddy soil. Tohoku Daigaku Nogaku Kenkyusho Iho. 1968; 19: 101
  • Postgate J. R. Sulphate reduction by bacteria. Ann. Rev. Microbiol. 1959; 13: 505
  • Jacq V. A. La Sulfato-reduction in relation avec I' excretion racinaire. Soc. Bot. Fr. Coll. Rhizosphere. 1975; 136: 136
  • Jacq V. A. Biological sulfate-reduction in the spermatosphere and the rhizosphere of rice in some acid sulfate soils of Senegal. Acid Sulfate Soil., H. Dost. University of Wageningen, Holland 1973; Vol. 2: 82
  • Jacq V. A., Roger P. A. Evaluation des risques de sulfato-reduction en riziere au moyen d'un critere microbiologique mesurable in situ. Cah. ORSTOM Ser. Biol. 1978; 13: 137
  • Acharya C. N. Studies on the anaerobic decomposition of plant materials. 111. Comparison of the course of decomposition of rice straw under anaerobic, aerobic and partially aerobic conditions. Biochem. J. 1935; 29: 1116
  • Tate R. L. Effect of flooding on microbial activities in organic soils: carbon metabolism. Soil Sci. 1979; 128: 267
  • De Laune R. D., Reddjr C. N., Patrick W. H., Jr. Organic matter decomposition in soil as influenced by pH and redox conditions. Soil Biol. Biochem. 1981; 13: 533
  • Broadbent F. E., Nakashima T. Nitrogen immobilization in flooded soils. Soil Sci. Soc. Am. Proc. 1970; 34: 218
  • Asami T. Immobilization and mineralization of nitrogen compounds in paddy soils. III. Immobilization of added inorganic nitrogen in paddy soil incubated under submerged or upland conditions. J. Sci. Soil Manure, Jpn. 1971; 42: 74
  • Asami T. Immobilization and mineralization of nitrogen compounds in paddy soils. IV. Effect of plant residues on the immobilization and mineralization of nitrogen compounds in paddy soil under submerged or upland conditions. J. Sci. Soil Manure. Jpn. 1971; 42: 971
  • Asami T. Immobilization and mineralization of nitrogen compounds in paddy soils. V. Distribution of immobilized nitrogen in various organic nitrogen fractions. J. Sci. Soil Manure, Jpn. 1971; 42: 103
  • Mitsui S., Kumazawa K., Hishida T. Dynamic studies on the nutrient uptake by crop plants (23). The growth of rice plant in poorly drained soil as affected by the accumulation of volatile organic acids (2). J. Sci. Soil Manure, Jpn. 1959; 30: 411
  • Yamane I., Sato K. Effect of temperature on the decomposition of organic substances in flooded soil. Soil Sci. Plant Nutr. (Tokyo). 1967; 13: 94
  • Gotoh S., Onikura Y. Organic acids in flooded soil receiving added rice straw and their effect on the growth of rice. Soil Sci. Plant Nutr. (Tokyo) 1971; 17: I
  • Chandrasekaran S., Yoshida T. Effect of organic acid transformations in submerged soils on growth of the rice plant. Soil Set. Plant Nutr. (Tokyo). 1973; 19: 39
  • Rao D. N., Mikkelsen D. S. Effect of rice straw additions on production of organic acids in a flooded soil. Plant Soil. 1977; 47: 303
  • Tanaka A., Navasero S. A. Carbon dioxide and organic acids in relation to the growth of rice. Soil Sci. Plant Nutr. (Tokyo). 1967; 13: 25
  • Smiley R. W. Rhizosphere pH as influenced by plants, soils and nitrogen fertilizers. Soil Sci. Soc. Am. Proc. 1974; 38: 795
  • Vostrov I. S., Dolgikh Yu. R. Microflora of flooded rice soils. Izv. Akad. Nauk. SSSR. Ser. Biol. 1970; 1: 64
  • Saito M., Wada H., Takai Y. Microbial ecology of cellulose decomposition in paddy soils. I. Modification of Tribe's cellophane film method and staining methods for the observation of microorganisms growing on cellulose material. J. Sci. Soil Manure. Jpn. 1977; 48: 313
  • Saito M., Wada H., Takai Y. Microbial ecology of cellulose decomposition in paddy soils. II. Succession of microorganisms growing on cellulose material. J. Set Soil Manure. Jpn. 1977; 48: 318
  • Hiura K., Hattori T., Furusaka C. Bacteriological studies on the mineralization of organic nitrogen in paddy soils. I. Effect of mechanical disruption of soils on ammonification and bacterial number, So/7. Sci. Plant Nutr. (Tokyo) 1976; 22: 459
  • Hiura K., Sato K., Hattori T., Furusaka C. Bacteriological studies on the mineralization of soil organic nitrogen in paddy soils. II. The role of anaerobic isolates on nitrogen mineralization. Soil Sci. Plant Nutr. (Tokyo) 1977; 23: 201
  • Dutton P. L., Evans W. C. The metabolism of aromatic compounds by Rhodopseudomonas palustris. A new reductive method of aromatic ring metabolism. Biochem. J. 1969; 113: 525
  • Okuda A., Yamaguchi M., Kobayashi M. Nitrogen fixation in mixed culture of photosynthetic bacteria (Rhodopseudomonas capsulatus) with other heterotrophic bacteria. I. Soil Sci. Plant Nutr. (Tokyo). 1960; 6: 35
  • Kobayashi M., Katayama T., Okuda A. Nitrogen fixation in mixed culture of photosynthetic bacteria (R. capsulatus) with other heterotrophic bacteria. III. Association with B. Subtilis. Soil Sci. Plant Nutr. (Tokyo) 1965; II: 74
  • Kobayashi M L., Katayama T., Okuda A. Nitrogen fixation in mixed culture of photosynthetic bacteria (R. capsulatus) with other heterotrophic bacteria, (8), Effect of light on the mixed culture of R. capsulatus with B. megateruim. Soil Sci. Plant Nutr. (Tokyo) 1965; II: 200
  • Koyama T. Gaseous metabolism in lake sediments and paddy soils and the production of atmospheric methane and hydrogen. J. Geophys. Res. 1963; 68: 3971
  • Takai Y. The mechanism of methane fermentation in flooded paddy soil. Soil Sci. Plant Nutr. (Tokyo). 1970; 16: 238
  • Tu C. M., Miler J. R. W. Interactions between insecticides and soil microbes. Residue Rev. 1976; 64: 17
  • Anderson J. R. Pesticide effect on non-target soil microorganisms. Pesticide Microbiology, I. R. Hill, S. J. L. Wright. Academic Press, London 1978; 313
  • Simon-Sylveste G., Foumier J. C. Effects of pesticides on the soil microflora. Adv. Agron. 1979; 31: II
  • Sivasithamparam K. Some effects of an insecticide (Dursban) and a weedicide (linuron) on the microflora of a submerged soil. Proc. Ceylon Assoc. Adv. Sci. 1969; 25: 1
  • Ishizawa S., Matsuguchf T. Effects of pesticides and herbicides upon microorganisms in soil and water under waterlogged condition. Bull. Nat. Inst. Agr. Sci. Ser. 1966; 13: I
  • Mikkelsen D. S. Use of chlorinated phenols as nitrification inhibitors in rice fertilization. Rice J. 1965; 68: 74
  • Ramakrishna C., Rao V. R., Sethunathan N. Nitrification in simulated oxidized surface of flooded soil amended with carbofuran. Soil Biol. Biochem. 1978; 10: 555
  • Ramakrishna C., Gowda T. K. S., Sethunathan N. Effect of benomyl and its hydrolysis products, AB and MBC on nitrification in flooded soil. Bull Environ. Contam. Toxicol. 1979; 21: 328
  • Ramakrishna C., Sethunathan N. Inhibition of heterotrophic and autotrophic nitrification in bacteria] cultures by carbaryl and 1-naphthol. J. Appl. Bacterial. 1983; 52, in-press
  • Turner F. T. Soil nitrification retardation by rice pesticides. Soil Sci. Soc. Am. J. 1979; 43: 955
  • Chen Y. L. Degradation of butachlor in paddy fields. Technical bulletin FFTC TB 57. Food and fertilizer Technology Center, Taiwan 1981
  • Ray R. C., Ramakrishna C, Sethunathan N. Nitrification inhibition in a flooded soil by hexachlorocyclohexane and carbofuran. Plant Soil 1980; 56: 165
  • Mitsui S., Watanabe I., Honda S. Effect of pesticides on denitrification in paddy soil. I. Jpn. J.S Soil Sci. Fert. 1962; 33: 469
  • Mitsui S., Watanabe I., Homma S. Action of pesticides on denitrification in paddy soils. II. Soil Sci. Plant Nutr. (Tokyo). 1964; 10: 45
  • Nbhihara T. Effect of some nitrification inhibitors on the availability of basal dressed nitrogen to directly sown rice plants on a dry paddy field. BulL Fac. Agr. Kagoshima Univ. 1962; 12: 107
  • Ray R. C., Sethunathan N. Effect of commercial formulation of hexachlorocyclohexane and benomyl in the oxidation of elemental sulfur in soils. Soil Biol. Biochem. 1980; 12: 451
  • Ray R. C., Sethunathan N. Effect of hexachlorocyclohexane and benomyl on sulphate reduction in flooded acid sulphate soil. Env. Pollut. 1982, in press
  • Pal Sudhakar-Barik S.S., Sethunathan N. Effects of benomyl on iron and manganese transformations in flooded soil. J. Soil Sci. 1979; 30: 155
  • Pal S. S., Misra A. K., Sethunathan N. Inhibition of the reduction of flooded soils by hexachlorocyclohexane. Soil Sci. 1980; 129: 54
  • Sivasfthamparam K. Some effects of an insecticide Dursban and a weedicide Linuron on the microflora of a submerged soil. Riso 1970; 19: 339
  • Chendrayan K., Sethunathan N. Effect of HCH, carbaryl and atrazine on the dehydrogenase activity in a flooded soil. Bull. Environ. Contam. Toxicol. 1980; 24: 379
  • Raghu K., MacRae I. C. Biodegradation of the gammaisomer of benzene hexachloride in submerged soils. Science 1966; 154: 263
  • Yoshida T., Castro T. F. Degradation of gamma-BHC in rice soils. Soil Sci. Soc. Am. Proc. 1970; 34: 440
  • Castro T. F., Yoshida T. Degradation of organochlorine insecticides in flooded soils in the Philippines. J. Agric. Food Chem. 1971; 19: 1168
  • Sethunathan N. 1971, Unpublished data
  • Sethunathan N., Yoshida T. Parathion degradation in submerged rice soils in the Philippines. J. Agric. Food Chem. 1973; 21: 504
  • Adhya T. K. 1981, Unpublished data
  • Nakatawa M., Ando M., Obata Y. Fate of isoxanthion [0, 0-diethyl 0-(5-phenyl-3-isoxazol)-phosphorothionate] in soils. Agric. Biol. Chem. 1975; 39: 1763
  • Venkateswarlu K., Gowda T. K. S., Sethunathan N. Persistence and biodegradation of carbofuran in flooded soils. J. Agric. Food Chem., IS 1977; 533
  • Venkateswarlu K., Chendrayan K., Sethunathan N. Persistence and biodegradation of carbaryl in soils. J. Environ. Sci. Health. 1980; 15B: 421
  • Matsunaka S., Kuwatsuka S. Environmental problems related to herbicidal use in Japan. Environmental Quality and Safety, F. Coulston, N. Y. Albany, F. Korte. Academic Press, New York 1975; 149
  • Chen Y. L., Fang C. H., Chen L. J., Wane Y. S. Photodecomposition and some behaviour of herbicides, benthiocarb and DCPA in soil. Proc. 5th Asian-Pacific Weed Sci. Soc. Conf., Tokyo. The Asian Pacific Weed Science Society, Tokyo 1976; 236
  • Ishikawa K., Nakamura Y., Kuwatsuka S. Degradation of benthiocarb herbicide in soil. J. Pestic. Sci. 1976; I: 49
  • Yoshida T. Pesticide residues in upland rice soils. Major Research in Upland Rice. International Rice Research Institute, Los BanosPhilippines 1975; 200
  • Tomizawa C. Degradation of organophosphorus pesticides in soils with special reference to anaerobic conditions. Environmental Quality and Safety, F. Coulston, N. Y. Albany, F. Korte. Academic Press, New York 1975; 117
  • Probst G. W., Golab T., Herbert R. J., Holzer F. J., Parka S. J., Vander Schans C, Tepe J. B. Fate of trifluralin in soils and plants. J. Agric. Food Chem. 1967; 15: 592
  • Probst G. W., Tepe J. B. Trifluralin and related compounds. Degradation of Herbicides, P. C. Kearney, D. D. Kaufman. Marcel Dekker, New York 1969; 255
  • Ohyama H., Kuwatsuka S. Degradation of bifenox, a diphenyl ether herbicide, methyl 5-(2,4-dichlorophenoxy)-2-Nitrobenzoate in soils. J. Pestic. Sci. 1978; 3: 401
  • Wang C. H., Broadbent F. E. Effect of soil treatments on losses of two chloronitrobenzene fungicides. J. Environ. Qual. 1973; 2: 511
  • Rajaram K. P., Sethunathan N. Persistence and biodegradation of Hinosan in soil. Bull. Environ. Contam. Toxicol. 1976; 16: 709
  • Tomizawa C, Uesugi Y., Ueyama I., Yamamoto H. Movement'and metabolism of S-benzyl, 0-O-diisopropyl phosphorothiolate (Kitazin P) and 0-ethyl S, S-diphenyl phosphorodithiolate (Edifenphos) in various types of soils. J. Environ. Sci. Health 1976; 11B: 231
  • MacRae I. C., Raghu K., Castro T. F. Persistence and biodegradation of four common isomers of benzene hexachloride in submerged soils. J. Agric. Food Chem. 1967; 15: 911
  • Castro T. F., Yoshida T. Effect of organic matter on the biodegradation of some organochlorine insecticides in submerged soils. Soil Sci. Plant Nutr. (Tokyo). 1974; 20: 363
  • Heritage A. O., MacRae I. C. Identification of intermediates formed during the degradation of hexachlorocyclohexanes by Clostridium sphenoides. Appl. Environ. Microbiol. 1977; 33: 1295
  • MacRae I. C., Raghu K., Bautista E. M. Anaerobic degradation of the insecticide lindane by Clostridium sp. Nature (London) 1969; 221: 859
  • Heritage A. D., MacRae I. C. Degradation of hexachlorocyclohcxane and structurally related substrates by Clostridium sphenoides. Austr. J. Biol. Sci. 1979; 32: 493
  • Jagnow G., Haider K., Ellwardt Chr P. Anaerobic dechlorination and degradation of hexachlorocyclohcxane isomers by anaerobic and facultative anaerobic bacteria. Arch. Microbiol. 1977; 115: 265
  • Sethunatban N., Bautis U E. M., Yoshida T. Degradation of benzene hexachloride by a soil bacterium. Can. J. Microbiol. 1969; 15: 1349
  • Tsukano Y., Kobajashi A. Formation of γ-BTC in flooded rice soils treated with -y-BHC. Agric. Biol. Chem. 1972; 36: 166
  • Mathur S. P., Sana J. G. Microbial degradation of Lindane-Cu in a flooded sandy loam soil. Soil Sci. 1975; 120: 301
  • Obisa N., Yamaguchi M. Gamma-BHC degradation accompanied by the growth of Clostridium rectum isolated from paddy field soil. Agric. Biol. Chem. 1978; 42: 1819
  • Obisa N., Yamagucbi M., Kurihara N. Lindane degradation by cell-free extractsol Clostridium rectum. Arch. Microbiol. 1980; 125: 221
  • Ohisa N., Yamagucbi M. Degradation of gamma-BHC in flooded soils enriched with peptone. Agric. Biol. Chem. 1978; 42: 1983
  • Newland L. W., Chesters G., Lee G. B. Degradation of γ-BHC in simulated lake impoundments as affected by aeration. J. Water Pollut. Control Fed. 1969; 41: R-174
  • Kohnen R., Haider K., Jagnow G. investigations on the microbial degradation of lindane in submerged and aerated moist soil. Pesticides, E. Coulston, F. Korte. Georg Thieme Verlag, Stuttgart 1975; 222
  • Benezet H. J., Matsumura F. Isomerization of γ-BHC to γ-BHC in the environment. Nature (London) 1973; 243: 480
  • Tomizawa C., Kazano H. Environmental fate of rice paddy pesticides in a model ecosystem. J. Environ. Sci. Health. 1979; 14B: 121
  • Kiritani K. Symposium on rice insects. Tropical Agricultural Center, Tokyo 1971; 319
  • Guenzi W. D., Beard W. E. Anaerobic conversion of DDT to DDD and anaerobic stability of DDT in soil. Soil Sci. Soc. Am. Proc. 1968; 32: 522
  • Mlrra J., Raghu K. Effect of amendments on the degradation of DDT to DDD and DDE. Proc. 6th Annu. Conf. Environ. Mutagen Soc. India., Calcutta, 1981; 32
  • Kallman B. J., Andrews A. J. Reductive dechlorination of DDT to DDD by yeast. Science 1963; 141: 1050
  • Barker P. S., Morrison F. O., Whitaker R. S. Conversion of DDT to DDD by Proteus vulgaris, a bacterium isolated from the intestinal flora of a mouse. Nature (London) 1965; 205: 621
  • Wedemeyer G. Dechlorination of DDT by Aerobacter aerogens. Science 1966; 152: 647
  • Johnson B. T., Goodman R. N., Goldberg H. S. Conversion of DDT to DDD by pathogenic and saprophytic bacteria associated with plants. Science 1967; 157: 560
  • Plimmer J. R., Kearney P. C., Von Endt D. W. Mechanism of conversion of DDT to DDD by Aerobacter aerogens. J. Agric. Food Chem. 1968; 16: 594
  • Kearney P. C., Wooison E. A., Plimmer J. R., Isensee A. R. Decontamination of pesticides in soils. Residue Rev. 1969; 29: 137
  • Sethunatban N., Yoshida T. Degradation of chlorinated hydrocarbons by Clostridium sp. isolated from lindane-amended flooded soil. Plant Soil 1973; 38: 663
  • Glass B. L. Relation between the degradation of DDT and iron redox system in soils. J. Agric. Food Chem. 1972; 20: 324
  • Zoro J. A., Hunter J. M., Eglinton G., Ware G. C. Degradation of p, p-DDT in reducing environments. Nature, (London) 1974; 247: 235
  • Gowda T. K. S., Sethunatban N. Endrin decomposition in soils as influenced by aerobic and anaerobic conditions. Soil Sci. 1977; 124: 5
  • Matsumura F., Khanvilkar V. G., Patil K. C., Bousch G. M. Metabolism of endrin by certain soil microorganisms. J. Agric. Food Chem. 1971; 19: 27
  • Patil K. C., Matsumura F., Boush G. M. Degradation of endrin, aldrin. and DDT by soil microorganisms. Appl. Microbiol. 1970; 19: 879
  • Sethunatban N., MacRae I. C. Persistence and biodegradation of diazinon in submerged soils. J. Agric. Food Chem. 1969; 17: 221
  • Bartsch E., Diazinon I I. Residues in plants, soil and water. Residue Rev. 1974; 51: 37
  • Sethunathan N. Diazinon degradation in submerged soil and rice-paddy water. Adv. Chem. Ser. 1972; III: 244
  • Sethunathan N., Yoshida T. A Flavobacterium sp. that degrades diazinon and parathion. Can. J. Microbiol. 1973; 19: 873
  • Sethunathan N., Siddaramappm R., Rajaram K. P., Bank S., Wahid P. A. Parathion: Residues in soil and water. Residue Rev. 1977; 68: 91
  • Sudhakar-Barik Ramakrishna C., Sethunathan N. A change in the degradation pathway of parathion after repeated application to flooded soil. J. Agric. Food Chem. 1979; 27: 1391
  • Siddaramappa R., Rajaram K. P., Sethunathan. Degradation of parathion by bacteria isolated from flooded soil. Appl Microbiol. 1973; 26: 846
  • Siddaramappa Sudhakar-Barik R., Sethunathan N. Metabolism of nitrophenols by bacteria isolated from parathion-amended flooded soil Antonie van Leeuwenhoek. J. Microbiol. Serol. 1976; 42: 461
  • Sudhakar-Barik, Sethunathan N. Biological hydrolysis of parathion in natural ecosystems. J. Environ. QuaL. 1978; 7: 346
  • Rao A. V., Sethunathan N. Degradation of parathion by Penicillum waksmani Zaleski isolated from flooded acid sulphate soil. Arch. Microbiol. 1974; 97: 203
  • Tikimoto Y., Hirota M., Inui H., Miyamoto J. Decomposition and leaching of radioactive sumithion in four different soils under laboratory conditions. J. Pesiic. Sci. 1976; 1: 131
  • Adhya Sudhakar-Barik T.K., Sethunathan N. Stability of commercial formulations of fenitrothion, methyl parathion and parathion in anaerobic soils. J. Agric. Food Chem. 1981; 29: 90
  • Adhya Sudhakar-Barik T.K., Sethunathan N. Hydrolysis of selected organophosphorus insecticides by two bacteria isolated from flooded soils. J. Appl. Bacterioi 1981; 50: 167
  • Wood P. A., MacRae I. C. Reduction of fensulfothion to fensulfothion sulfide by Klebsiella pneumoniae. Appl Environ. Microbiol. 1977; 34: 247
  • Venkateswarlu K. Microbial degradation of carbamate insecticides in rice soils. Ph.D. thesis, Utkal University, Bhubaneswar 1979
  • Siddaramappa R., Tirol A. C., Sdber J. N., Heinrich E. A., Watanabe I. The degradation of carbofuran in paddy water and flooded soil of untreated and retreated rice fields. J. Environ. Sci. Health. 1978; 13B: 369
  • Venkateswarlu K., Sethunathan N. Degradation of carbofuran in rice soils as influenced by repeated application and exposure to aerobic conditions following anaerobiosis. J. Agric. Food Chem. 1978; 26: 1148
  • Siddaramappa R., Seiber J. M. Persistence of carbofuran in flooded rice soils and water. Prog. Water Technol. 1979; II: 103
  • Rajagopal B. S. 1981, Unpublished data
  • Rajagopal B. S. 1981, Unpublished data
  • Rajagopal B. S., Chendrayan K., Reddy B. R., Sethunathan N. Persistence of carbaryl in flooded soils and its degradation by enrichment cultures. Plant Soil 1983; 71, in press
  • Sud R. K., Sud A. K., Gupta K. C. Degradation of sevin (1-naphtyl N-methyl carbamate) by Achromobacter sp. Arch Microbiol. 1972; 87: 353
  • Yoshida T., Castro T. F. Degradation of 2, 4-D, 2, 4, 5-T and picloram in two Philippines soils. Soil Sci. Plant Nutr. (Tokyo). 1975; 21: 397
  • Soderquist C. J., Crosby D. G. Dissipation of 4-Chloro-2-methyl-phenoxyacetic acid (MCPA) in a rice field. Pestic. Sci. 1975; 6: 17
  • Ohyama H., Kuwatsuka S. Degradation of phenothiol and MCPA in soils. Proc. 2nd Artnu. Meet. Pest. Sci. Soc., Jpn, 1977
  • Oelke E. A., Morse M. D. Propanil and monilate for control of barnyard grass in water-seeded rice. Weed Sci. 1968; 16: 235
  • Bartha R., Primer D. Metabolism of acylanilide herbicides. Adv. Appl. Microbiol 1969; 13: 317
  • Kearney P. C., Smith R. J., Jr., Plimmer J. R., Guardia F. S. Propanil and TCAB residues in rice soils. Weed Sci. 1970; 18: 464
  • Kuwatsuka S. Degradation products of swep and DCPA herbicides under flooded and upland conditions. Proc. Annu. Meet. Soc. Sci. Soil Manure, Japan, 1973; 19: 19
  • Kuwatsuka S., Horl K. Degradation of swep herbicide in soil. Proc. Atami Meet. Soc. Sci. Soil Manure, Japan, 1973; 10
  • Nakamura Y., Ishikawa K., Kuwatsuka S. Degradation of benthiocarb in soils as affected by soil conditions. J. Pesticide Sci. 1977; 2: 7
  • Ishikawa K., Nakamura Y., Kuwatsuka S. Degradation of benthiocarb in a soil. J. Pestic. Sci. 1976; 1: 49
  • Ishikawa K., Asano U., Nakamura Y., Akasaki K. Bahaviour and disappearance of benthiocarb herbicide in water, soil and rice plant of paddy fields treated with its granular formulations. Weed Research Jpn. 1976; 21: 16
  • Niki Y., Kuwatsuka S. Degradation of diphenyl ether herbicides in soils. Soil Sci. Plant Nutr. (Tokyo). 1976; 22: 223
  • Kuwatsuka S., Nikl Y., Oyamada H., Shimotori H., Oyama H. Fate of diphenyl ether herbicides in soils and plants. Proc. 5 th Asian-Pacific Weed Sci. Soc. Conf., Tokyo, 1976; 236
  • Yamada T. Residues of Nitrofen and CNP in paddy fields. Proc. 5th Asian-Pacific Weed Sci. Soc. Conf., Tokyo, 1976; 217
  • Oyamada M., Kuwatsuka S. Degradation products of CNP in soils affected by redox status of soil. Proc. Annu. Meet. Soc. Sci. Soil Manure, Japan, 1974; 20: 8
  • Ohayama H., Kuwatsuka S. Comparison of degradation of 4 dephenyl ether herbicides in soils. Proc. 1st Annu. Meeting Pestic. Sci. Soc., Japan, 1976; 220
  • Golab T., Althans W. A., Wooten H. L. Fate of l4C-trifluralin in soil. J. Agric. Food Chem. 1979; 27: 163
  • Parr J. F., Smith S. Degradation of trifluralin under laboratory conditions and soil anaerobiosis. Soil Sci. 1973; 155: 55
  • Williams P. P., Feil V. J. Identification of trifluralin metabolites from rumen microbial cultures. Effect of trifluralin on bacteria and protozoa. J. Agric. Food Chem. 1971; 19: 1198
  • Ide A., Niki Y., Sakamoto F., Watanabc I., Watanabe H. Decomposition of pentachloro-phenol in paddy soil. Agric. Biol. Chem. 1972; 36: 1937
  • Watanabe I., Hyashi S. Degradation of PCP (Pentachlorophenol) in soil. I. Microbial depletion of PCP under dark and submerged conditions. J. Sci. Soil Manure. Jpn. 1972; 43: 119
  • Kuwatsuka S. Degradation of several herbicides in soils under different conditions. Environmental toxicology of pesticides, F. Matsumura, G. M. Boush, T. Misato. Academic Press, New York 1972; 385
  • Suzuki T., Nose K. Decomposition of pentachlorophenol in farm soil. I. Some factors relating to PCP decomposition. Pestic. Tech. Jpn. 1972; 22: 27
  • Kuwatsuka S., Igarashi M. M. Degradation of PCP in soils. II. The relationship between the degradation of PCP and the properties of soils and the products of PCP. Soil Sci. Plant Nutr. (Tokyo) 1975; 21: 405
  • Murthy N B. K., Kaufman D. D., Fries C. F. Degradation of pentachlorophenol (PCP) in aerobic and anaerobic soil. J. Environ. Sci. Health. 1979; 14B: I
  • Watanabe I. Pentachlorophenol-decomposing and PCP-tolerant bacteria in field soil treated with PCP. Soil Biol. Biochem. 1977; 9: 99
  • Watanabe I. Isolation of pentachlorophenol decomposing bacteria from soil. Soil Sci. Plant Nutr.(Tokyo). 1973; 19: 109
  • Kamisako T., Sasaki T., Iwamoto T., Inaoka M., Kawashita M. Degradation of pentachlorophenol (PCP) by a soil microorganism. Ann. Meet. Agr. Chem. Soc., Jpn, 1975; 450: 206
  • Rajaram K. P., Sethunathan N. Persistence and biodegradation of hinosan in soil. Bull. Environ. Contam. Toxicol. 1976; 16: 709
  • Baisubramanya R. H. Microbial metabolism and behaviour in soil of two carboxanilide fungicides. Ph.D. thesis, University of Agricultural Sciences, BangaloreIndia 1977
  • Baisubramanya R. H., Patil R. B., Bbat M. V., Nagendrappa G. Degradation of carboxin (Vitavax) and oxycarboxin (Plantvax) by Pseudomonas aeruginosa isolated from soil. J. Environ. Sci. Health. 1980; 15B: 485
  • Nakanishi T. Microbial conversion of pentachloronitrobenzene in soil. Ann. Phytopathol. Soc. Jpn. 1972; 38: 249
  • Murthy N. B. K., Kaufman D. D. Degradation of pentachloronitrobenzene (PCNB) in anaerobic soils. J. Agric. Food Chem. 1978; 26: 1151
  • Kirkpatrick D., Biggs S. R., Conway B., Finn C. M., Hawkins D. R., Honda T., Ishida M., Powell G. P. Metabolism of N- (2, 3-Dichlorophenyl)-3, 4, 5, 6-tetrachlorophthalamic acid (Techlofthalam) in paddy soils and rice. J. Agric. Food Chem. 1981; 29: 1149
  • Ichihashi M., Takahashi R., Kimura N., Yokomichi I. Studies on the herbicidal properties of new diphenyl ether X-52. Proc. Annu. Meet. Weed Soc, Japan, 1971; 35
  • Miyamoto J., Kitagawa K., Sato Y. Metabolism of organophosphorus insecticides by Bacillus subtilis, with special emphasis on sumithion. Jpn. J. Exp. Med. 1966; 36: 211
  • Niki Y., Kuwatsuka S. Degradation of chlomethoxylin (X-52) in soils. Soil Sci. Plant Nutr. (Tokyo) 1976; 22: 233
  • Ohyama H., Kuwatsuka S. Degradation of bifenox, a diphenyl ether herbicide, methyl 5-(2, 4-Dichylorophenoxy)-2-Nitrobenzoate, in soils. J. Pestic. Sci. 1978; 3: 401
  • Wahid P. A., Sethunathan N. Involvement of hydrogen sulfide in the degradation of parathion in flooded acid sulphate soil. Nature (London) 1979; 282: 401
  • Adhya Sudhakar-Barik T.K., Sethunathan N. Fate of fenitrothion, methyl parathion and parathion in anoxic sulfur-containing soil systems. Pestic. Biochem. Physiol. 1981; 16: 14
  • Wheeler W. B., Stratton G. D., Twilley R. R., Ou Li-Tse, Carlson D. A., Davidson J. M. Trifluralin degradation and binding in soil. J. Agric. Food Chem. 1979; 27: 702
  • Walter-Echol G., Lichtenstein E. P. Movements and metabolism of 14C-phorate in a flooded soil system. J. Agric. Food Chem. 1978; 26: 599
  • Wahid P. A., Sethunathan N. Sorption-desorption of parathion in soils. J. Agric. Food Chem. 1978; 26: 101
  • Wahid P. A., Sethunathan N. Sorption-desorption of alpha-, beta-, and gamma-isomers of hexachlorocyclohexane in soils. J. Agric. Food Chem. 1979; 27: 1050
  • Wahid P. A., Sethunathan N. Instantaneous degradation of parathion in anaerobic soils. J. Environ. Qual. 1980; 9: 127
  • Sudhakar-Barik, Sethunathan N. Metabolism of nitrophenols in flooded soils. J. Environ. Qual. 1978; 7: 349
  • Ferreria J., Raghu K. Decontamination of hexachlorocyclohexane isomers in soil by green manure application. Environ. Tech. Lett. 1981; 2: 357
  • Venkateswarlu K., Sethunathan N. Metabolism of carbofuran in rice straw-amended and unamended rice soils. J. Environ. Qual. 1979; 8: 365
  • Guenzi W. D., Beard W. E. Anaerobic biodegradation of DDT to DDD in soil. Science 1967; 156: 1116
  • Johnsen R. E., Lin C. S., Collyard K. J. Influence of soil amendments on the metabolism of DDT in soil. Proc. Sec. Int. Congr. Pest. Chem. 1971; 6: 139
  • Sethunathan N. Organic matter and parathion degradation in flooded soil. Soil Biol. Biochem. 1973; 5: 641
  • Rajaram K. P., Sethunathan N. Effect of organic sources on the degradation of parathion in flooded alluvial soil. Soil Sci. 1975; 119: 296
  • Rajaram K. P., Rao Y. R., Sethunathan N. Inhibition of biological hydrolysis of parathion in rice straw-amended flooded soil and its reversal by nitrogen compounds and aerobic conditions. Pestic. Sci 1978; 9: 155
  • Chawla R. P., Chopra S. L. Persistence of residues of DDT and BHC in normal and alkali soils. J. res. Punjab Agric. Univ. 1967; 4: 96
  • Cho D. Y., Ponnamperuma F. N. Influence of soil temperature on the chemical kinetics of flooded soils and the growth of rice. Soil Sci. 1971; 112: 184
  • Bowman B. T., Sans W. W. Stability of parathion and DDT in dilute iron solutions. J. Environ. Sci. Health. 1980; 15B: 233
  • Rao Y. R., Sethunathan N. Effect of ferrous sulfate on the degradation of parathion in flooded soil. J. Environ. Sci. Health. 1979; 14B: 335
  • Sudhakar-Barik, Sethunathan N. Increased stability of parathion in flooded soil amended with benomyl. Prog. Water Technol. 1979; 11: 113
  • Kaufman D. D., Kearney P. C., Von Endt D. W., Miller D. E. Methyl carbamate inhibition of phenylcarbamate metabolism in soil. J. Agric. Food Chem. 1970; 18: 513
  • Reddy B. R., Sethunathan N. Mineralization of parathion in the rice rhizosphere. Appl. Environ. Microbiol. 1983; 45, in press

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.