189
Views
215
CrossRef citations to date
0
Altmetric
Original Article

Genetics of Naphthalene Catabolism in Pseudomonads

, &
Pages 247-268 | Published online: 02 Jul 2009

References

  • Gibson D. T. Biodegradation of aromatic petroleum hydrocarbons. Fate and Effects of Petroleum Hydrocarbons in Marine Ecosystems and Organisms, D. A. Wolfe. Pergamon Press, Oxford 1977; 36
  • Ames B. N., Sims P., Grover P. L. Epoxides of carcinogenic hydrocarbons are frameshift mutagens. Science 1972; 176: 47
  • Grimmer G. Environmental Carcinogens: Polycyclic Aromatic Hydrocarbons. CRC Press, Boca Raton, Fla. 1985
  • Guengerich F. P., Liebler D. C. Enzymatic activation of chemicals to toxic metabolites. CRC Crit. Rev. Toxicol. 1985; 14: 259
  • Ghisalba O. Microbial degradation of chemical waste, an alternative to physical methods of waste disposal. Expehentia 1983; 39: 1247
  • Gibson D. T., Subramanian V. Microbial degradation of aromatic hydrocarbons. Microbial Degradation of Organic Compounds, D. T. Gibson. Marcel Dekker, New York 1984; 180
  • Tausson W. O. Basic Principles of Plant Bioenergetics, N. A. Maximov. Academy of Sciences of the U.S.S.R., Moscow 1950; 48
  • Strawinski R. J., Stone R. W. Conditions governing the oxidation of naphthalene and the chemical analysis of its products. J. Bacterial. 1943; 45: 16
  • Davies J. I., Evans W. C. Oxidative metabolism of naphthalene by soil Pseudomonads. Biochem. J. 1964; 91: 251
  • Jeffrey A. M., Yeh H. J. C., Jerina D. M., Patel T. R., Davey J. F., Gibson D. T. Initial reactions in the oxidation of naphthalene by Pseudomonas putida. Biochemistry 1975; 14: 575
  • Jerina D. M., Daly J. W., Jeffrey A. M., Gibson D. T. Cis-1,2-dihydroxy-1,2-dihydro-naphthalene: a bacterial metabolite from naphthalene. Arch. Biochem. Biophys. 1971; 142: 394
  • Ensley B. D., Gibson D. T., Laborde A. L. Oxidation of naphthalene by a multicomponent enzyme system from Pseudomonas sp. strain NCIB 9816. J. Bacteriol. 1982; 149: 948
  • Ensley B. D., Gibson D. T. Naphthalene dioxygenase: purification and properties of a terminal oxygenase component. J. Bacteriol. 1983; 155: 505
  • Haigler B. E. Naphthalene dioxygenase from Pseudomonas putida NCIB 9816: purification and properties of an iron-flavoprotein reductase. Abstr. Am. Soc. Microbiol. 1984; K101: 163
  • Patel T. R., Gibson D. T. Purification and properties of (+)-cis-naphthalene dihydrodiol dehydrogenase of Pseudomonas putida. J. Bacteriol. 1974; 119: 879
  • Patel T. R., Gibson D. T. Bacterial cis-dihydrodiol dehydrogenase: comparison of physicochemical and immunological properties. J. Bacteriol. 1976; 128: 842
  • Patel T. R., Barnsley E. A. Naphthalene metabolism by Pseudomonads: purification and properties of 1,2-dihydroxynaphthalene oxygenase. J. Bacteriol. 1980; 143: 668
  • Barnsley E. A. Naphthalene metabolism by Pseudomonads: the oxidation of 1,2-dihydroxynaphthalene to 2-hydroxychromene-2-carboxylic acid and the formation of 2-hydroxybenzalpyruvate. Biochem. Biophys. Res. Commun. 1976; 72: 1116
  • Dagley S. Catabolism of aromatic compounds by microorganisms. Adv. Microb. Physiol. 1971; 6: 1
  • Starovoitov I. I., Nefedova M. Y., Yakovlev G. I., Zyakun A. M., Adanin V. M. Gentisic acid as a microbial oxidation product of naphthalene. Izv. Akad. Nauk SSSR Ser. Khim. 1975; 9: 2091
  • Monticello D. J., Bakker D., Schell M., Finnerty W. R. Plasmid-bome Tn5 insertion mutation resulting in accumulation of gentisate from salicylate. Appl. Environ. Microbiol. 1985; 49: 761
  • Buswell J. A., Paterson A., Salkinoja-Salonen M. S. Hydroxylation of salicylic acid to gentisate by a bacterial enzyme. FEMS Microbiol. Lett. 1980; 8: 135
  • Yano K., Arima K. Metabolism of aromatic compounds by bacteria. II. m-Hydroxybenzoic acid hydroxylase A and B; 5-dehydroshikimic acid, a precursor of protocatechuic acid, a new pathway from salicylic acid to gentisic acid. J. Gen. Appl. Microbiol. 1958; 4: 241
  • Williams P. A., Murray K. Metabolism of benzoate and the methylbenzoates by Pseudomonas putida (arvilla) mt-2: evidence for the existence of a TOL plasmid. J. Bacteriol. 1974; 120: 416
  • Rheinwald J. G., Chakrabarty A. M., Gunsalus I. C. A transmissible plasmid controlling camphor oxidation in Pseudomonas putida. Proc. Natl. Acad. Sci. U.S.A. 1973; 70: 885
  • Chakrabarty A. M., Chou G., Gunsalus I. C. Genetic regulation of octane dissimilation plasmid in Pseudomonas. Proc. Natl. Acad. Sci. U.S.A. 1973; 70: 1137
  • Thacker R., Rorvig O., Kahlon P., Gunsalus I. C. NIC, a conjugative nicotine-nicotinate degradative plasmid in Pseudomonas convexa. J. Bacteriol. 1978; 135: 289
  • Dunn N., Gunsalus I. C. Transmissible plasmids coding early enzymes of naphthalene oxidation in Pseudomonas putida. J. Bacteriol. 1973; 114: 974
  • Farrell R. Molecular and Genetic Relationship of Aromatic Metabolic Plasmids in Pseudomonas. Ph.D. thesis, University of Illinois, Urbana 1980
  • Johnston J. B., Gunsalus I. C. Isolation of metabolic plasmid DNA from Pseudomonas putida. Biochem. Biophys. Res. Commun. 1977; 75: 13
  • Yen K.-M., Gunsalus I. C. Plasmid gene organization: naphthalene/salicylate oxidation. Proc. Natl. Acad. Sci. U.S.A. 1982; 79: 874
  • Yen K.-M., Sullivan M., Gunsalus I. C. Electron microscope heteroduplex mapping of naphthalene oxidation genes on the NAH7 and SALI plasmids. Plasmid 1983; 9: 105
  • Harayama S., personal communication
  • Ensley B. D., Ossiund T. D., Simon M. J., unpublished data
  • Barnsley E. A. The induction of the enzymes of naphthalene metabolism in Pseudomonads by salicylate and 2-aminobenzoate. J. Gen. Microbiol. 1975; 88: 193
  • Barnsley E. A. Role of regulation of the ortho and meta pathways of catechol metabolism in Pseudomonads metabolizing naphthalene and salicylate. J. Bacteriol. 1976; 125: 404
  • Schell M. A. Transcriptional control of the nah and sal hydrocarbon-degradation operons by the nahR gene product. Gene 1985; 36: 301
  • Yen K.-M., Gunsalus I. C., unpublished data
  • Connors M. A., Barnsley E. A. Metabolism of naphthalene by Pseudomonads: salicylaldehyde as the first possible inducer in the metabolic pathway. J. Bacteriol. 1980; 141: 1052
  • Yen K.-M., Gunsalus I. C. Regulation of naphthalene catabolic genes of plasmid NAH7. J. Bacteriol. 1985; 162: 1008
  • Grund A. D., Gunsalus I. C. Cloning of genes for naphthalene metabolism in Pseudomonas putida. J. Bacteriol. 1983; 156: 89
  • Schell M. A. Homology between nucleotide sequences of promoter regions of nah and sal operons of NAH7 plasmid of Pseudomonas putida. Proc. Natl. Acad. Sci. U.S.A. 1986; 83: 369
  • Rosenberg M., Court D. Regulatory sequences involved in the promotion and termination of RNA transcription. Annu. Rev. Genet. 1979; 13: 319
  • Sienbenlist U., Simpson R. B., Gilbert W. E. coli RNA polymerase interacts homologously with two different promoters. Cell 1980; 20: 269
  • Hawley D. K., McClure W. R. Compilation and analysis of Escherichia coli promoter DNA sequences. Nucleic Acid Res. 1983; 11: 2237
  • Schell M. A. Cloning and expression in Escherichia coli of the naphthalene degradation genes from plasmid NAH7. J. Bacteriol. 1983; 153: 822
  • Schell M. A., Wender P. E. Identification of the nahR gene product and nucleotide sequences required for its activation of the sal operon. J. Bacteriol. 1986; 166: 9
  • Raiband O., Schwartz M. Positive control of transcription initiation in bacteria. Annu. Rev. Genet. 1984; 18: 173
  • Evans W. C., Fernley H. N., Griffiths E. Oxidative metabolism of phenanthrene and anthracene by soil pseudomonads. The ring-fission mechanism. Biochem. J. 1965; 95: 819
  • Williams P. A., Catterall F. A., Murray K. Metabolism of naphthalene, 2-methylnaphthalene, salicylate, and benzoate by Pseudomonas PG: regulation of tangential pathways. J. Bacteriol. 1975; 124: 679
  • Serdar C. M. Plasmid Involvement in the Metabolism of Naphthalene and Parathion. Ph.D. thesis, University of Texas, Austin 1985
  • Connors M. A., Barnsley E. A. Naphthalene plasmids in Pseudomonads. J. Bacteriol. 1982; 149: 1096
  • Cane P. A., Williams P. A. The plasmid-coded metabolism of naphthalene and 2-methylnaphthalene in Pseudomonas strains: phenotypic changes correlated with structural modification of the plasmid pWW60–1. J. Gen. Microbiol. 1982; 128: 2281
  • Feist C. F., Hegeman G. D. Phenol and benzoate metabolism by Pseudomonas putida: regulation of tangential pathways. J. Bacteriol. 1969; 100: 869
  • Ornston L. N. The conversion of catechol and protocatechuate to 3-ketoadipate by Pseudomonas putida. IV. Regulation. J. Biol. Chem. 1966; 241: 3800
  • Cane P. A., Williams P. A. A restriction map of naphthalene catabolic plasmid pWW60–1 and the location of some of its catabolic genes. J. Gen. Microbiol. 1986; 132: 2919
  • Bagdasarian M., Lurz R., Rückert B., Franklin F. C. H., Bagdasarian M., Frey J., Timmis K. N. Specific-purpose cloning vectors. II. Broad host range, high copy number, RSF1010-derived vectors, and a host-vector system for gene cloning in Pseudomonas. Gene 1981; 16: 237
  • Ensley B. D., Ratzkin B. J., Osslund T. D., Simon M. J., Wackett L. P., Gibson D. T. Expression of naphthalene oxidation genes in Escherichia coli results in the biosynthesis of indigo. Science 1983; 222: 167
  • Bochner B. R., Savageau M. A. Generalized indicator plate for genetic, metabolic and taxonomic studies with microorganisms. Appl. Environ. Microbiol. 1977; 33: 434
  • Finette B. A., Subramanian V., Gibson D. T. Isolation and characterization of Pseudomonas putida PpF1 mutants defective in the toluene dioxygenase enzyme system. J. Bacteriol. 1984; 160: 1003
  • Skryabin G. K., Kochetkov V. V., Eremin A. A., Perebityuk A. N., Starovoitov I. I., Boronin A. M. New naphthalene-biodegrading plasmid pBS4. Dokl. Akad. Nauk SSSR 1980; 250: 212
  • Boronin A. M., Starovoitov I. I., Borisoglebskaya A. N., Skryabin G. K. Plasmid of Pseudomonas putida which controls initial stages of naphthalene oxidation. Dokl. Akad. Nauk SSSR 1976; 228: 962
  • Scriabin G. K., Starovoitov I. I. An alternative path for the catabolism of naphthalene in Pseudomonas fluorescens. Doklady 1975; 221: 493
  • Boronin A. M., Borisoglebskaya A. N., Starovoitov I. I. Mutants of the plasmid NPL-1, controlling the oxidation of naphthalene. Dokl. Akad. Nauk SSSR 1977; 235: 494
  • Chakrabarty A. M. Genetic basis of the biodegradation of salicylate in Pseudomonas. J. Bacteriol. 1972; 112: 815
  • Zuniga M. C., Durham D. R., Welch R. A. Plasmid- and chromosome-mediated dissimilation of naphthalene and salicylate in Pseudomonas putida PMD-1. J. Bacteriol. 1981; 147: 836
  • Heinaru A. L., Duggleby C. J., Broda P. Molecular relationships of degradative plasmids determined by in situ hybridization of their endonuclease-generated fragments. Mol. Gen. Genet. 1978; 160: 347
  • Lehrbach P. R., McGregor I., Ward J. M., Broda P. Molecular relationships between Pseudomonas INC P-9 degradative plasmids TOL, NAH, and SAL. Plasmid 1983; 10: 164
  • Williams P. A. Catabolic plasmids. TIBS 1981; 6: 23
  • Williams P. A., Cane P. A., Jeenes D. J., Pickup R. W. Correlation between spontaneous phenotypic changes in Pseudomonas strains with changes in the structure of catabolic plasmids: experiences with TOL plasmids. Basic Biology of New Developments in Biotechnology, A. Hollaender, A. I. Laskin, P. Rogers. Plenum Press, New York 1984
  • Harayama S., Lehrbach P. R., Timmis K. Transposon mutagenesis analysis of meta-cleavage pathway operon genes of the TOL plasmid of Pseudomonas putida mt-2. J. Bacteriol. 1984; 160: 251
  • Ghosal D., You I. S., Gunsalus I. C., personal communication
  • Kleckner N. Transposable elements in prokaryotes. Annu. Rev. Genet. 1981; 15: 341
  • Currier T. C., Morgan M. K. Direct DNA repeat in plasmid R68.45 is associated with deletion formation and concomitant loss of chromosome mobilization ability. J. Bacteriol. 1982; 150: 251
  • Hass D., Riess G. Spontaneous deletions of the chromosome-mobilizing plasmid R68.45 in Pseudomonas aeruginosa PAO. Plasmid 1983; 9: 42
  • Bayley S. A., Duggleby C. J., Worsey M. J., Williams P. A., Hardy K. G., Broda P. Two modes of loss of the Tol function from Pseudomonas putida mt-2. Mol. Gen. Genet. 1977; 154: 203
  • Jeenes D. J., Williams P. A. Excision and integration of degradative pathway genes from TOL plasmid pWWO. J. Bacteriol. 1982; 150: 188
  • Kunz D. A., Chapman P. J. Isolation and characterization of spontaneously occurring TOL plasmid mutants of Pseudomonas putida HSI. J. Bacteriol. 1981; 146: 952
  • Lehrbach P. R., Jeenes D. J., Broda P. Characterization by molecular cloning of insertion mutants in TOL catabolic functions. Plasmid. 1983; 9: 112
  • Furukawa K., Chakrabarty A. M. Involvement of plasmids in total degradation of chlorinated biphenyls. Appl. Environ. Microbiol. 1982; 44: 619
  • Chatterjee D. E., Chakrabarty A. M. Genetic rearrangements in plasmids specifying total degradation of chlorinated benzoic acids. Mol. Gen. Genet. 1982; 188: 279
  • Sinclair M. I., Maxwell P. C., Lyon B. R., Holloway B. W. Chromosomal location of TOL plasmid DNA in Pseudomonas putida. J. Bacteriol. 1986; 168: 1302
  • Tsuda M., Lino T., personal communication
  • Dunn N. W., Dunn H. M., Austen A. Evidence for the existence of two catabolic plasmids coding for the degradation of naphthalene. J. Gen. Microbiol. 1980; 117: 529
  • Boronin A. M., Kochetkov V. V., Starovoitov A., Skryabin A. Plasmid pBS2 and pBS3, controlling the oxidation of naphthalene in bacteria of the genus Pseudomonas. Dokl. Akad. Nauk SSSR 1977; 237: 1205

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.