207
Views
157
CrossRef citations to date
0
Altmetric
Original Article

The Phosphoenolpyruvate:Sugar Phosphotransferase System in Gram-Positive Bacteria: Properties, Mechanism, and Regulation

, , , , , & show all
Pages 297-338 | Published online: 02 Jul 2009

References

  • Abbe K., Takahashi S., Yamada T. Purification and properties of pyruvate kinase from Streptococcus sanguis and activator specificity of pyruvate kinase from oral Streptococci. Infect. Immun. 1983; 39: 1007
  • Abbe K., Yamada T. Purification and properties of pyruvate kinase from Streptococcus mutans. J. Bacteriol. 1982; 149: 299
  • Alpert C. A., Frank R., Sttiber K., Deutscher J., Hengstenberg W. Phosphoenolpyruvate dependent protein kinase enzyme I of Streptococcus faecalis: purification and properties of the enzyme and characterization of its active centre. Biochemistry 1985; 24: 959
  • Ambudkar S. V., Maloney P. C. Characterization of phosphate:hexose 6-phosphate antiport in membrane vesicles of Streptococcus lactis. J. Biol. Chem. 1984; 259: 12576
  • Ammer J., Brennenstuhl M., Schindler P., Holtje J. V., Zahner H. Phosphorylation of streptozotocin during uptake via the phosphoenolpyruvate: sugar phosphotransferase system in Escherichia coli. Antimicrob. Agents Chemother. 1979; 16: 801
  • Bernsmann P., Alpert C. A., Muss P., Deutscher J., Hengstenberg W. The bacterial PEP-dependent phosphotransferase system: mechanism of gluconate phosphorylation in Streptococcus faecalis. FEBS Lett. 1982; 138: 101
  • Beyreuther K., Raufuss H., Schrecker O., Hengstenberg W. The phosphoenolpyruvate-dependent phosphotransferase system of S. aureus. I. Amino acid sequence of the phosphocarrier protein HPr. Eur. J. Biochem. 1977; 75: 275
  • Bhumiratana A., Anderson R. L., Costilow R. N. Trehalose metabolism by Bacillus popilliae. J. Bacteriol. 1974; 119: 484
  • Booth I. R., Morris J. G. Carbohydrate transport in Clostridium pasteurianum. Biosci. Rep. 1982; 2: 47
  • Booth I. R., Mitchell W. J. Sugar transport and metabolism in the Clostridia. Sugar Transport and Metabolism in Gram-Positive Bacteria, J. Reizer, A. Peterkofsky. Ellis Horwood, ChichesterUK 1987; 165
  • Bowles L. K., Ellefson W. L. Effects of butanol on Clostridium acetobutylicum. Appl. Environ. Microbiol. 1985; 50: 1165
  • Boyd R. F. General Microbiology. C. V. Mosby, St Louis 1984
  • Button D. K., Egan J. B., Hengstenberg W., Morse M. L. Carbohydrate transport in Staphylococcus aureus. IV. Maltose accumulation and metabolism. Biochem. Biophys. Res. Commun. 1973; 52: 850
  • Chalumeau H., Delobbe A., Gay P. Biochemical and genetic study of d-glucitol transport and catabolism in Bacillus subtilis. J. Bacteriol. 1978; 134: 920
  • Chassy B. M., Bielawski R. M., Beall J. R., Porter E. V., Krichevsky M. I., Donkersloot J. A. Extracellular invertase in Streptococcus mutans and Streptococcus salivarius. Life Sci. 1974; 15: 1173
  • Chassy B. M., Lee L.-J., Hansen J. B., Jagusztyn-Krynicka E. K. Molecular cloning of Lactobacillus casei lactose metabolic genes. Dev. Ind. Microbiol. 1983; 24: 97
  • Chassy B. M., Thompson J. Regulation of lactose-phosphoenolpyruvate-dependent phosphotransferase system and β-d-phosphogalactohydrolase activities in Lactobacillus casei. J. Bacteriol. 1983; 154: 1195
  • Chassy B. M., Thompson J. Regulation and characterization of the galactose-phosphoenolpyruvate-dependent phosphotransferase system in Lactobacillus casei. J. Bacteriol. 1983; 154: 1204
  • Cirillo V. P. Transport systems. The Mycoplasmas, M. F. Barile, S. Razin. Academic Press, New York 1979; Vol. I: 323
  • Cirillo V. P., Razin S. Distribution of a phosphoenolpyruvate-dependent sugar phosphotransferase system in Mycoplasmas. J. Bacteriol. 1973; 113: 212
  • Crow V. L., Davey G. P., Pearce L. E., Thomas T. D. Plasmid linkage of the d-tagatose 6-phosphate pathway in Streptococcus lactis: effect on lactose and galactose metabolism. J. Bacteriol. 1983; 153: 76
  • Crow V. L., Pritchard G. G. Purification and properties of pyruvate kinase from Streptococcus lactis. Biochim. Biophys. Acta 1976; 438: 90
  • Crow V. L., Thomas T. D. Arginine metabolism in lactic Streptococci. J. Bacteriol. 1982; 150: 1024
  • Delobbe A., Haguenauer R., Rapoport G. Studies on the transport of α-methyl-d-glucoside in Bacillus subtilis 168. Biochimie. 1971; 53: 1015
  • De Reuse H., Roy A., Danchin A. Analysis of the ptsH-ptsI-crr region in Escherichia coli K-12: nucleotide sequence of the ptsH gene. Gene 1985; 35: 199
  • Deutscher J. Phosphoenolpyruvate-dependent phosphorylation of a 55-kDa protein of Streptococcus faecalis catalyzed by the phosphotransferase systems. FEMS Microbiol. Lett. 1985; 29: 237
  • Deutscher J., Beyreuther K., Sobek H. M., Stüber K., Hengstenberg W. Phosphoenolpyruvate-dependent phosphotransferase system of Staphylococcus aureus: Factor IIIlac, a trimeric phospho-carrier protein that also acts as a phase transfer catalyst. Biochemistry 1982; 21: 4867
  • Deutscher J., Kessler U., Alpert C. A., Hengstenberg W. Bacterial phosphoenolpyruvate-dependent phosphotransferase system: P-ser-HPr and its possible regulatory function. Biochemistry 1984; 23: 4455
  • Deutscher J., Kessler U., Hengstenberg W. Streptococcal phosphoenolpyruvate: sugar phosphotransferase system: purification and characterization of a phosphoprotein phosphatase which hydrolyzes the phosphoryl bond in seryl-phosphorylated histidine-containing protein. J. Bacteriol. 1985; 163: 1203
  • Deutscher J., Engelmann R. Purification and characterization of an ATP-dependent protein kinase from Streptococcus faecalis. FEMS Microbiol. Lett. 1984; 23: 157
  • Deutscher J., Saier M. H., Jr. ATP-dependent protein kinase-catalyzed phosphorylation of a seryl residue in HPr, a phosphate carrier protein of the phosphotransferase system in S. pyogenes. Proc. Natl. Acad. Sci. U.S.A. 1983; 80: 6790
  • Deutscher J., Sauerwald H. Stimulation of dihydroxyacetone/glycerol kinase activity in Streptococcus faecalis by phosphoenolpyruvate-dependent phosphorylation catalyzed by Enzyme I and HPr of the phosphotransferase system. J. Bacteriol. 1986; 166: 829
  • Dills S. S., Apperson A., Schmidt M. R., Saier M. H., Jr. Carbohydrate transport in bacteria. Microbiol. Rev. 1980; 44: 385
  • Dills S. S., Seno S. Regulation of hexitol catabolism in Streptococcus mutans. J. Bacteriol. 1983; 153: 861
  • Egan J. B., Morse M. L. Carbohydrate transport in Staphylococcus aureus. I. Genetic and biochemical analysis of a pleiotropic transport mutant. Biochim. Biophys. Acta 1965; 97: 310
  • Egan J. B., Morse M. L. Carbohydrate transport in Staphylococcus aureus. II. Characterization of the defect of a pleiotropic transport mutant. Biochim. Biophys. Acta 1965; 109: 172
  • Ell wood D. C., Phipps P. J., Hamilton I. R. Effect of growth rate and glucose concentration on the activity of the phosphoenolpyruvate phosphotransferase system in Streptococcus mutans grown in continuous culture. Infect. Immun. 1979; 23: 224
  • Esders T. W., Michrina C. A. Purification and properties of l-α-glycerophosphate oxidase from Streptococcus faecium ATCC 12755. J. Biol. Chem. 1979; 254: 2710
  • Fedotov N. S., Panchenko L. F., Logachev A. P., Bekkouzhin A. G., Tarshis M. A. Transport properties of membrane vesicles from Acholeplasma laidlawii. I. Folia Microbiol. 1975; 20: 470
  • Fedotov N. S., Panchenko L. F., Tarshis M. A. Transport properties of membrane vesicles from Acholeplasma laidlawii. III. Evidence of active nature of glucose transport. Folia Microbiol. 1975; 20: 488
  • Forage R. G., Lin E. C. C. DHA system mediating aerobic and anaerobic dissimilation of glycerol in Klebsiella pneumoniae NCIB 418. J. Bacteriol. 1982; 151: 591
  • Fordyce A. M., Crow V. L., Thomas T. D. Regulation of product formation during glucose or lactose limitation in nongrowing cells of Streptococcus lactis. Appl. Environ. Microbiol. 1984; 48: 332
  • Fox D. K., Meadow N. D., Roseman S. Phosphate transfer between acetate kinase and Enzyme I of the bacterial phosphotransferase system. J. Biol. Chem. 1986; 261: 13498
  • Fox D. K., Roseman S. Interaction between the PEP:Glycose phosphotransferase system (PTS) and acetate kinase of Salmonella typhimurium. Fed Proc. Am. Soc. Exp. Biol. 1983; 42: 1079
  • Fox D. K., Roseman S. Isolation and characterization of homogeneous acetate kinase from Salmonella typhimurium and Escherichia coli. J. Biol. Chem. 1986; 261: 13487
  • Freese E., Klofat W., Galliers E. Commitment to sporulation and induction of glucose-phos-phoenolpyruvate-transferase. Biochim. Biophys. Acta 1970; 222: 265
  • Fukui K., Fukui Y., Moriyama T. Purification and properties of dextransucrase and invertase from Streptococcus/nutans. J. Bacteriol. 1974; 118: 796
  • Gasson M. J. Transfer of sucrose fermenting ability, nisin resistance and nisin production into Streptococcus lactis 712. FEMS Microbiol. Lett. 1984; 21: 7
  • Gauthier L., Mayrand D., Vadeboncoeur C. Isolation of a novel protein involved in the transport of fructose by an inducible phosphoenolpyruvate fructose phosphotransferase system in Streptococcus mutans. J. Bacteriol. 1984; 160: 755
  • Gauthier L., Vadeboncoeur C., Mayrand C. Loss of sensitivity to xylitol by Streptococcus/nutans LG-1. Caries Res. 1984; 18: 289
  • Gay P., Cordier P., Marquet M., Delobbe A. Carbohydrate metabolism and transport in Bacillus subtilis a study of ctr mutations. Mol. Gen. Genet. 1973; 121: 355
  • Ghosh S., Ghosh D. Probable role of a membrane-bound phosphoenolpyruvate-hexose phosphotransferase system of Escherichia coli in the permeation of sugars. Indian J. Biochem. 1968; 5: 49
  • Gonzalez C. F., Kunka B. S. Transfer of sucrose-fermenting ability and nisin production phenotype among lactic streptococci. Appl. Environ. Microbiol. 1985; 49: 627
  • Gupta K. D., Ghosh S. Identification of a phosphoenolpyruvate:fructose 1-phosphotransferase system in Azospirillum brasilense. J. Bacterioi. 1984; 160: 1204
  • Hamada S., Slade H. D. Biology, immunology, and cariogenicity of Streptococcus mutans. Microbiol. Rev. 1980; 44: 331
  • Hamilton I. R. Effects of changing environment on sugar transport and metabolism by oral bacteria. Sugar Transport and Metabolism in Gram-Positive Bacteria, J. Reizer, A. Peterkofsky. Ellis Horwood, ChichesterUK 1987; 94
  • Hamilton I. R., St. Martin E. J. Evidence for the involvement of proton motive force in the transport of glucose by a mutant of Streptococcus mutans strain DR0001 defective in glucose-phosphoen-olpyruvate phosphotransferase activity. Infect. Immun. 1982; 36: 567
  • Harris P., Romberg H. L. The uptake of glucose by a thermophilic Bacillus species. Proc. R. Soc. London 1972; 182: 159
  • Harris P., Miller E. K. Growth of Bacilli on methyl-α-d-glucoside. Nature (London) 1976; 260: 432
  • Hausman S. Z., Thompson J., London J. Futile xylitol cycle in Lactobacillus casei. J. Bacteriol. 1984; 160: 211
  • Hays J. B. Group translocation transport systems. Bacterial Transport, B. P. Rosen. Microbiology Series, Marcel Dekker, New York 1978; Vol. 4: 43
  • Hays J. B., Simoni R. D., Roseman S. Sugar transport. V. A trimeric lactose-specific phospho-carrier protein of the S. aureus phosphotransferase system. J. Biol. Chem. 1973; 248: 941
  • Hengstenberg W. Enzymology of carbohydrate transport in bacteria. Curr. Top. Microbiol. Immunol. 1977; 77: 97
  • Hengstenberg W., Egan J. B., Morse M. L. Carbohydrate transport in Staphylococcus aureus. VI. The nature of the derivatives accumulated. J. Biol. Chem. 1968; 243: 1881
  • Hengstenberg W., Egan J. B., Morse M. L. Carbohydrate transport in Staphylococcus aureus. V. The accumulation of phosphorylated carbohydrate derivatives, and evidence for a new enzyme-splitting lactose-phosphate. Proc. Natl. Acad. Sci. U.S.A. 1967; 58: 274
  • Hengstenberg W., Penberthy W. K., Hill K. L., Morse M. L. Phosphotransferase system of S. aureus. Its requirement for the accumulation and metabolism of galactosides. J. Bacteriol. 1969; 99: 383
  • Hengstenberg W., Schrecker O., Stein R., Weil R. Lactose transport and metabolism in Staphylococcus aureus. Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Hyg. Abt. I Suppl. 1976; 5: 203
  • Hickey M. W., Hillier A. J., Jago R. G. The transport and metabolism of lactose, glucose and galactose in homofermentative Lactobacilli. Appl. Environ. Microbiol. 1986; 51: 825
  • Hopp T. P., Woods K. R. Prediction of protein antigenic determinants from amino acid sequences. Proc. Natl. Acad. Sci. U.S.A. 1981; 78: 3824
  • Hutkins R. W., Kashket E. R. Phosphotransferase activity in Clostridium acetobutylicum from acidogenic and solventogenic phases of growth. Appl. Environ. Microbiol. 1986; 51: 1121
  • Iwami Y., Yamada T. Rate-limiting steps of the glycolytic pathway in the oral bacteria Streptococcus mutans and Streptococcus sanguis on the glucose metabolism. Arch. Biol. Sci. 1980; 25: 163
  • Iwami Y., Yamada T. Regulation of glycolytic rate in Streptococcus sanguis grown under glucose-limited and glucose-excess conditions in a chemostat. Infect. Immun. 1985; 50: 378
  • Jacobs N. J., Van Demark P. J. The purification and properties of the α-glycerophosphate -oxidizing enzyme of Streptococcus faecalis 10C1. Arch. Biochem. Biophys. 1960a; 88: 250
  • Jacobs N. J., Van Demark P. J. Comparison of the mechanism of glycerol oxidation in aerobically and anaerobically grown Streptococcus faecalis. J. Bacteriol. 1960b; 79: 532
  • Kaback H. R. The transport of sugars across isolated bacterial membranes. Current Topics in Membranes and Transport, F. Bronner, A. Kleinzeller. Academic Press, New York 1970; Vol. 1: 35
  • Kalbitzer H. R., Deutscher J., Hengslenberg W., Rosch P. Phosphoenolpyruvate-dependent phosphotransferase system of 5. aureus. 1H-NMR studies of phosphorylated and unphosphorylated Factor IIIlac and its interaction with the phospho carrier protein HPr. Biochemistry 1981; 21: 6178
  • Kalbitzer H. R., Hengstenberg W., Rösch P., Muss P., Bernsmann P., Engelmann R., Dörschug M., Deutscher J. HPr proteins of different microorganisms studied by Hydrogen 1 high resolution NMR: similarities of structures and mechanisms. Biochemistry 1982; 21: 2879
  • Kalbitzer H. R., Muss H. P., Engelmann R., Kiltz H. H., Stüber K., Hengstenberg W. Phosphoenolpyruvate-dependent phosphotransferase system. 1H-NMR studies on chemically modified HPr proteins. Biochemistry 1985; 24: 4562
  • Kay W. W., Romberg H. L. The uptake of C4-dicarboxylic acids by Escherichia coli. Eur. J. Biochem. 1971; 18: 274
  • Keevil C. W., Williamson M. I., Marsh P. D., Ejlwood D. C. Evidence that glucose and sucrose uptake in oral streptococcal bacteria involves independent phosphotransferase and proton-motive force-mediated mechanisms. Arch. Oral Biol. 1984; 29: 871
  • Kessler U. Diploma thesis, Ruhr University, BochumGermany 1983
  • Knuuttila M. L. E., Makinen K. K. Effect of xylitol on the growth and metabolism of Streptococcus mutans. Caries Res. 1975; 9: 177
  • Koditschek L. K., Umbreit W. W. α-Glycerophosphate oxidase in Streptococcus faecium F 24. J. Bacteriol. 1969; 98: 1063
  • Romberg H. L. Fine control of sugar uptake by Escherichia coli. Symp. Soc. Exp. Biol. 1973; 27: 175
  • Korte T., Hengstenberg W. Purification and characterization of the inducible lactose-specific membrane-bound component of Staphylococcal phosphoenolpyruvate-dependent phosphotransferase system. Eur. J. Biochem. 1971; 23: 295
  • Krulwich T. A., Blanco R., McBride P. A. Amino acid transport in whole cells and membrane vesicles of Arthrobacter pyridinolis. Arch. Biochem. Biophys. 1977; 178: 108
  • Krulwich T. A., Sobel M. E., Wolfson E. B. Alternate pathways of d-fructose transport and metabolism in Arthrobacter pyridinolis. Biochem. Biophys. Res. Commun. 1973; 53: 258
  • Kyte J., Doolittle R. F. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 1982; 157: 105
  • Ladygina V. G., Migushina V. L., Abaeva T. P., Logachev A. P., Tarshis M. A. Biochemical Properties of Mutants of Acholeplasma laidlawii. Biokhimiya 1977; 42: 151
  • LeBlanc D. J., Crow V. L., Lee L. N., Garon C. F. Influence of the lactose plasmid on the metabolism of galactose by Streptococcus lactis. J. Bacteriol. 1979; 137: 878
  • LeBlanc D. J., Crow V. L., Lee L. N. Plasmid mediated carbohydrate catabolic enzymes among strains of Streptococcus lactis. Plasmids: Environmental Effects and Maintenance Mechanisms, C. Stuttard, K. R. Rozee. Academic Press, New York 1980; 31
  • Lengeler J. Streptozotocin, an antibiotic superior to penicillin in the selection of rare bacterial mutations. FEMS Microbiol. Lett. 1979; 5: 417
  • Lengeler J. Characterization of mutants of Escherichia coli K12 selected by resistance to streptozotocin. Mol. Gen. Genet. 1980; 179: 49
  • Lengeler J. Analysis of the physiological effects of the antibiotic streptozotocin on Escherichia coli K 12 and other sensitive bacteria. Arch. Microbiol. 1980; 128: 196
  • Lengeler J., Auburger A. M., Mayer R., Pecher A. The phosphoenolpyruvate-dependent car-bohydrate.phosphotransferase system enzymes II as chemoreceptors in chemotaxis of Escherichia coli K12. Mol. Gen. Genet. 1981; 183: 163
  • Lengeler J., Steinberger H. Analysis of regulatory mechanisms controlling the synthesis of the hexitol transport systems in Escherichia coli K12. Mol. Gen. Genet. 1978; 164: 163
  • Lessie T. G., Phibbs P. V., Jr. Alternative pathways of carbohydrate utilization in Pseudomonads. Annu. Rev. Microbiol. 1984; 38: 359
  • Levinson S. L., Krulwich T. A. Alternate pathways of l-rhamnose transport in Arthrobacter pyridinolis. Arch. Biochem. Biophys. 1974; 160: 445
  • Levinson S. L., Krulwich T. A. Metabolism of l-rhamnose in Arthrobacter pyridinolis. J. Gen. Microbiol. 1976; 95: 277
  • Liberman E. S., Bleiweis A. S. Glucose phosphoenolpyruvate-dependent phosphotransferase system of Streptococcus mutans GS5 studied by using cell-free extracts. Infect. Immun. 1984; 44: 486
  • Lin E. C. C. Glycerol dissimilation and its regulation in bacteria. Annu. Rev. Microbiol. 1976; 30: 535
  • Lindgren V., Rutberg L. Glycerol metabolism in Bacillus subtilis: gene-enzyme relationships. J. Bacteriol. 1974; 119: 431
  • Lindgren V., Rutberg L. Genetic Control of the glp system in Bacillus subtilis. J. Bacteriol. 1976; 127: 1047
  • Liu K. D., Roseman S. Kinetic characterization and regulation of phosphoenolpyruvate-dependent methyl-α-d-glucopyranoside transport by Salmonella ryphimurium membrane vesicles. Proc. Natl. Acad. Sci. U.S.A. 1983; 80: 7142
  • Loikema J. S., Robillard G. T. Phosphoenolpyruvate-dependent fructose phosphotransferase system in Rhodopseudomonas sphaeroides. Eur. J. Biochem. 1985; 147: 69
  • London J. Pentitol transport and metabolism in lactic acid bacteria. Sugar Transport and Metabolism in Gram-Positive Bacteria, J. Reizer, A. Peterkofsky. Ellis Horwood, ChichesterUK 1987; 150
  • London J., Hausman S. Z. Purification and characterization of the IIIxtl phosphocarrier protein of the phosphoenolpyruvate-dependent xylitol: phosphotransferase found in Lactobacillus casei CL-83. J. Bacteriol. 1983; 156: 611
  • Lopez J. M., Thomas B. Role of sugar uptake and metabolic intermediates on catabolite repression in Bacillus subtilis. J. Bacteriol. 1977; 129: 217
  • Makinen K. K. Enzyme dynamics of a cariogenic Streptococcus: the effect of xylitol and sorbitol. J. Dent. Res. 1972; 51(Suppl. 2)403
  • Makinen K. K. Biochemical principles of the use of xylitol in medicine and nutrition with special consideration of dental aspects. Experientia 1978; 30: 1
  • Maloney P. C., Ambudkar S. V., Thomas J., Schiller L. Phosphate/hexose 6-phosphate antiport in Streptococcus lactis. J. Bacteriol. 1984; 158: 238
  • Maniloff J. Evolution of wall-less prokaryotes. Annu. Rev. Microbiol. 1983; 37: 477
  • Marquet M., Creignou M.-C., Dedonder R. The phosphoenolpyruvate:methyl-α-d-glucoside phosphotransferase system in Bacillus subtilis Marburg: kinetic studies of enzyme II and evidence for a phosphoryl enzyme II intermediate. Biochimie 1978; 60: 1283
  • Marquet M., Creignou M. C., Dedonder R. The phosphoenolpyruvate:methyl-α-glucoside phosphotransferase system in Bacillus subtilis Marburg, 168:a. Purification and identification of the phosphocarrier protein (HPr). Biochimie 1976; 58: 435
  • Marquet M., Wagner M.-C., Delobbe A., Gay P., Rapoport G. Mise en évidence de systèmes de phosphotransferases dans le transport du glucose, du fructose et du saccharose chez Bacillus subtilis. C. R. Acad. Sci. 1970; 271: 449
  • Marquet M., Wagner M.-C., Dedonder R. Separation of components of the phosphoenolpyruvate-glucose phosphotransferase system from Bacillus subtilis Marburg. Biochimie 1971; 53: 1131
  • Maryanski J. H., Wittenberger C. L. Mannitol transport in Streptococcus mutans. J. Bacteriol. 1975; 124: 1475
  • Mason P. W., Carbone D. P., Cushman R. A., Waggoner A. S. The importance of inorganic phosphate in regulation of energy metabolism of Streptococcus lactis. J. Biol. Chem. 1981; 256: 1861
  • McKay L., Miller A., III, Sandine W. E., Elliker P. R. Mechanisms of lactose utilization by lactic acid streptococci: enzymatic and genetic analyses. J. Bacteriol. 1970; 102: 804
  • Meadow N. D., Kukuruzinska M. A., Roseman S. The bacterial phosphoenolpyruvate: sugar phosphotransferase system. The Enzymes of Biological Membranes2nd ed., A. Martonosi. Plenum Press, New York 1985; Vol. 3: 523
  • Mimura C. S., Eisenberg L. B., Jacobson G. R. Resolution of the phosphotransferase enzymes of Streptococcus mutans: purification and preliminary characterization of a heat-stable phosphocarrier protein. Infect, lmmun. 1984; 44: 708
  • Mimura C. S., Jacobson G. R. Identification of ATP-dependent protein kinase activities in membrane and cytoplasmic fractions of Streptococcus mutans. Abstr. Annu. Meet. Am. Soc. Microbiol.. 1985; 185
  • Mindich L. Pathway for oxidative dissimilation of glycerol in Bacillus subtilis. J. Bacteriol. 1968; 96: 565
  • Morse M. L., Hill K. L., Egan J. B., Hengstenberg W. Metabolism of lactose by Staphylococcus aureus and its genetic basis. J. Bacteriol. 1968; 95: 2270
  • Mugharbil U., Cirillo V. P. Mycoplasma phosphoenolpyruvate-dependent sugar phosphotransferase system: glucose-negative mutant and regulation of intracellular cyclic AMP. J. Bacteriol. 1978; 133: 203
  • Muhlemann H. R., Schmid R., Noguchi T., Imfeld T., Hirsch R. S. Some dental effects of xylitol under laboratory and in vivo conditions. Caries Res. 1977; 11: 263
  • Niaudet B., Gay P., Dedonder R. Identification of the structural gene of the PEP-phosphotrans-ferase enzyme I in Bacillus subtilis Marburg. Mol. Gen. Genet. 1975; 136: 337
  • Oh Y. K., Freese E. B., Freese E. Abnormal septation and inhibition of sporulation by accumulation of l-α-glycerophosphate in Bacillus subtilis mutants. J. Bacteriol. 1973; 113: 1034
  • Ounine K., Petitdemange H., Raval G., Gay R. Regulation and butanol inhibition of d-xylose and d-glucose uptake in Clostridium acetoburylicum. Appl. Environ. Microbiol. 1985; 49: 874
  • Park Y. H., McKay L. L. Distinct galactose phosphoenolpyruvate-dependent phosphotransferase system in Streptococcus lactis. J. Bacterial. 1982; 149: 420
  • Pelliccione N., Jaffin B., Sobel M. E., Krulwich T. A. Induction of the phosphoenolpyru-vate:hexose phosphotransferase system associated with relative anaerobiosis in an obligate aerobe. Eur. J. Biochem. 1979; 95: 69
  • Perret J., Gay P. Kinetic study of a phosphoryl exchange reaction between fructose and fructose-1-phosphate catalyzed by the membrane-bound enzyme II of the phosphoenolpyruvate-fructose I-phosphotransferase system of Bacillus subtilis. Eur. J. Biochem. 1979; 102: 237
  • Postma P. W. Enzymes II of the phosphotransferase system do not catalyze sugar transport in the absence of phosphorylation. J. Bacterial. 1980; 141: 476
  • Postma P. W. Defective Enzyme II-Bglc of the phosphoenolpyruvate: sugar phosphotransferase system leading to uncoupling of transport and phosphorylation in Salmonella typhimurium. J. Bacteriol. 1981; 147: 382
  • Postma P. W., Lengeler J. W. Phosphoenolpyruvate: carbohydrate phosphotransferase system of bacteria. Microbiol. Rev. 1985; 49: 232
  • Postma P. W., Roseman S. The bacterial phosphoenolpyruvate sugar phosphotransferase system. Biochim. Biophys. Acta 1976; 457: 213
  • Powers D. A., Roseman S. The primary structure of Salmonella typhimurium HPr, a phosphocarrier protein of the phosphoenolpyruvate.glycose phosphotransferase system. J. Biol. Chem. 1984; 259: 15212
  • Premi L., Sandine W. E., Elliker P. R. Lactose-hydrolysing enzymes of Lactobacillus species. Appl. Microbiol. 1972; 24: 51
  • Reiner A. M. Xylitol and d-arabitol toxicities due to derepressed fructose, galactitol, and sorbitol phosphotransferases of Escherichia coli. J. Bacteriol. 1977; 132: 166
  • Reizer J., Panos C. Regulation of β-galactoside phosphate accumulation in Streptococcus pyogenes by an expulsion mechanism. Proc. Natl. Acad. Sci. U.S.A. 1980; 77: 5497
  • Sugar Transport and Metabolism in Gram-Positive Bacteria, J. Reizer, A. Peterkofsky. Ellis Horwood, ChichesterUK 1987
  • Reizer J., Saier M. H., Jr. Involvement of the lactose Enzyme II of the phosphotransferase system in rapid expulsion of free galactosides from Streptococcus pyogenes. J. Bacteriol. 1983; 156: 236
  • Reizer J., Epstein I., Grossowicz N. Temperature-induced metabolic alterations in a thermophilic Bacillus. Eur. J. Biochem. 1977; 77: 463
  • Reizer J., Deutscher J., Sutrina S., Thompson J., Saier M. H., Jr. Sugar accumulation in gram-positive bacteria: exclusion and expulsion mechanisms. Trends Biochem. Sci. 1985; 10: 32
  • Reizer J., Novotny M. J., Panos C., Saier M. H., Jr. Mechanism of inducer expulsion in Streptococcus pyogenes: a two-step process activated by ATP. J. Bacteriol. 1983; 156: 354
  • Reizer J., Novotny M. J., Hengstenberg W., Saier M. H., Jr. Properties of ATP-dependent protein kinase from Streptococcus pyogenes that phosphorylates a seryl residue in HPr, a phosphocarrier protein of the phosphotransferase system. J. Bacteriol. 1984; 160: 333
  • Reizer J., Novotny M. J., Stuiver I., Saier M. H., Jr. Regulation of glycerol uptake by the phosphoenolpyruvate-sugar phosphotransferase system in Bacillus subtilis. J. Bacteriol. 1984; 159: 243
  • Reizer J., Thalenfeld B., Grossowicz N. Methyl-α-glucoside uptake and splitting by a thermophilic bacillus. Nature (London) 1976; 260: 433
  • Reizer J., Peterkofsky A. Regulatory mechanisms for sugar transport in gram-positive bacteria. Sugar Transport and Metabolism in Gram-Positive Bacteria, I. Reizer, A. Peterkofsky. Ellis Horwood, ChichesterUK 1987; 333
  • Rephaeli A. W., Saier M. H., Jr. Kinetic analyses of the sugar phosphate:sugartransphosphorylation reaction catalyzed by the glucose enzyme II complex of the bacterial phosphotransferase system. J. Biol. Chem. 1978; 253: 7595
  • Robillard G. T. The enzymology of the bacterial phosphoenolpyruvate-dependent sugar transport systems. Mol. Cell. Biochem. 1982; 46: 3
  • Romano A. H., Eberhard S. J., Dingle S. L., McDowell T. D. Distribution of the phosphoen-olpyruvate:glucose phosphotransferase system in bacteria. J. Bacteriol. 1970; 104: 808
  • Romano A. H., Trifone J. D., Brustolon M. Distribution of the phosphoenolpyruvate. glucose phosphotransferase system in fermentative bacteria. J. Bacteriol. 1979; 139: 93
  • Roseman S. The transport of carbohydrates by a bacterial phosphotransferase system. J. Gen. Physiol. 1969; 54: 138
  • Rottem S., Razin S. Sugar transport in Mycoplasma gallisepticum. J. Bacteriol. 1969; 97: 787
  • Rudas B. Streptozotocin. Arzneim. Forsch. 1972; 22: 830
  • Saheb S. A. Etude de deux mutants du metabolisme du glycerol chez Bacillus subtilis. Can. J. Microbiol. 1972; 18: 1315
  • Saheb S. A. Permeation du glycerol et sporulation chez Bacillus subtilis. Can. J. Microbiol. 1972; 18: 1307
  • Saier M. H., Jr., Simoni R. D., Roseman S. Sugar transport. Properties of mutant bacteria defective in proteins of the phosphoenolpyruvate: sugar phosphotransferase system. J. Biol. Chem. 1976; 251: 6584
  • Saier M. H., Jr. Mechanisms and Regulation of Carbohydrate Transport in Bacteria. Academic Press, Orlando, Florida 1985
  • Saier M. H., Jr. Bacterial phosphoenolpyruvate: sugar phosphotransferase systems: structural, functional, and evolutionary interrelationships. Bacterial. Rev. 1977; 41: 856
  • Saier M. H., Jr., Cox D. F., Feucht B. U., Novotny M. J. Evidence for the functional association of Enzyme I and HPr of the phosphoenolpyruvate-sugar phosphotransferase system with the membrane in sealed vesicles of Escherichia coli. J. Cell. Biochem. 1982; 18: 231
  • Saier M. H., Jr., Bromberg F. G., Roseman S. Characterization of constitutive galactose permease mutants in Salmonella typhimurium. J. Bacteriol. 1973; 113: 512
  • Saier M. H., Jr., Feucht B. U., Roseman S. Phosphoenolpyruvate-dependent fructose phosphorylation in photosynthetic bacteria. J. Biol. Chem. 1971; 246: 7819
  • Saier M. H., Jr., Grenier F. C., Lee C. A., Waygood E. B. Evidence for the evolutionary relatedness of the proteins of the bacterial phosphoenol-pyruvate:sugar phosphotransferase system. J. Cell. Biochem. 1985; 27: 43
  • Saier M. H., Jr., Schmidt M. R., Lin P. Phosphoryl exchange reaction catalyzed by enzyme I of the bacterial phosphoenolpyruvate:sugar phosphotransferase system. J. Biol. Chem. 1980; 255: 8579
  • Saier M. H., Jr., Young W. S.HI, Roseman S. Utilization and transport of hexoses by mutant strains of Salmonella typhimurium lacking Enzyme I of the phosphoenolpyruvate-dependent phosphotransferase system. J. Biol. Chem. 1971; 246: 5838
  • Saier M. H., Jr., Simoni R. D. Regulation of carbohydrate uptake in gram-positive bacteria. J. Biol. Chem. 1976; 251: 893
  • Saier M. H., Jr., Stiles C. D. Molecular Dynamics in Biological Membranes. Springer-Verlag, New York 1975
  • Schafer A., Schrecker O., Hengstenberg W. The staphylococcal phosphoenolpyruvate-dependent phosphotransferase system: purification and characterization of the galactoside-specific membrane-component Enzyme II. Eur. J. Biochem. 1981; 113: 289
  • Schmidt-Aderjan J., Rösch P., Frank R., Hengstenberg W. The phosphoenolpyruvate-dependent phosphotransferase system of Staphylococcus aureus. Complete tyrosine assignments in the 1H nuclear-magnetic-resonance spectrum of the phosphocarrier protein, HPr. Eur. J. Biochem. 1979; 96: 43
  • Schrecker O., Hengstenberg W. Purification of the lactose specific Factor III of the S. aureus PEP-dependent phosphotransferase system. FEBS Lett. 1971; 13: 209
  • Schrecker O., Hengstenberg W. Studies of the phosphocarrier protein Factor IIIlac. Symp. Biochemistry of Membrane Transport, Poster 140. Zurich 1976
  • Simon J. P., Wargnies B., Stalon V. Control of enzyme synthesis in the arginine deiminase pathway of Streptococcus faecalis. J. Bacteriol. 1982; 150: 1085
  • Simoni R. D., Nakazawa T., Hays J. B., Roseman S. Sugar transport. IV. Isolation and characterization of the lactose phosphotransferase system in Staphylococcus aureus. J. Biol. Chem. 1973; 248: 932
  • Simoni R. D., Roseman S. Sugar transport. VII. Lactose transport in Staphylococcus aureus. J. Biol. Chem. 1973; 248: 966
  • Singh S. P., Bishop C. J., Vink R., Rogers P. J. Regulation of the glucose phosphotransferase system in Brochothrix thermosphacta by membrane energization. J. Bacteriol. 1985; 164: 367
  • Sobek H. M., Stuber K., Beyreuther K., Hengstenberg W., Deutscher J. Staphylococcal phosphoenolpyruvate-dependent phosphotransferase system: purification and characterization of a defective lactose-specific Factor III protein. Biochemistry 1984; 23: 4460
  • Sobel M. E., Wolfson E. B., Krulwich T. A. Abolition of crypticity toward glucose and α-glucosides by tricarboxylic acid cycle intermediates. J. Bacteriol. 1973; 116: 271
  • Sobel M. E., Krulwich T. A. Metabolism of d-fructose by Arthrobacterpyridinolis. J. Bacteriol. 1973; 113: 907
  • Solomon E., Miyal K., Lin E. C. C. Membrane translocation of mannitol in Escherichia coli without phosphorylation. J. Bacteriol. 1973; 114: 723
  • St. Martin E. J., Gibson E. M. Identification of a maltose phosphotransferase activity in Streptococcus mutans. Abstr. Annu. Meet. Am. Soc. Microbiol. 1980; K106: 144
  • Stein R., Schrecker O., Lauppe H. F., Hengstenberg W. The staphylococcal PEP-dependent phosphotransferase system: demonstration of a phosphorylated intermediate of the Enzyme I component. FEBS Lett. 1974; 42: 98
  • Stüber K., Deutscher J., Sobek H. M., Hengstenberg W., Beyreuther K. Amino acid sequence of the amphiphilic phosphocarrier protein Factor IIILac of the lactose-specific phosphotransferase system of Staphylococcus aureus. Biochemistry 1985; 24: 1164
  • Tarshis M. A., Fedotov N. S. Evidence of the active nature of glucose transport by Acholeplasma laidlawii membrane vesicles. Biofizika 1977; 22: 276
  • Tarshis M. A., Kapitanov A. B. Symport H +/carbohydrate transport into Acholeplasma laidlawii cells. FEBS Lett. 1978; 89: 73
  • Tarshis M. A., Bekkouzhin A. G., Ladygina V. G., Panchenko L. F. Properties of the 3-O-methyl-d-glucose transport system in Acholeplasma laidlawii. J. Bacterid. 1976; 125: I
  • Tarshis M. A., Demikova N. S., Migoushina V. L. Energetics of the active transport of carbohydrates into Mycoplasma cells. Biochemistry 1977; 43: 398
  • Tarshis M. A., Migoushina V. L., Panchenko L. F. On the phosphorylation of sugars in Acholeplasma laidlawii. FEBS Lett. 1973; 31: 111
  • Tarshis M. A., Migoushina V. L., Panchenko L. F., Fedotov N. S., Bourd H. I. Studies of sugar transport in Acholeplasma laidlawii cells. Eur. J. Biochem. 1973; 40: 171
  • Taylor D. C., Costilow R. N. Uptake of glucose and maltose by Bacillus popilliae. Appl. Environ. Microbiol. 1977; 34: 102
  • Thibault L., Vadeboncoeur C. Phosphoenolpyruvate-sugar phosphotransferase transport system of Streptococcus mutans: purification of HPr and Enzyme I and determination of their intracellular concentrations by rocket immunoelectrophoresis. Infect. Immun. 1985; 50: 817
  • Thompson J. Galactose transport systems in Streptococcus lactis. J. Bacteriol. 1980; 144: 683
  • Thompson J. Sugar transport in the lactic acid bacteria. Sugar Transport and Metabolism in Gram-Positive Bacteria, J. Reizer, A. Peterkofsky. Ellis Horwood, ChichesterUK 1987; 13
  • Thompson J. In vivo regulation of glycolysis and characterization of suganphosphotransferase systems in Streptococcus lactis. J. Bacteriol. 1978; 136: 465
  • Thompson J. Lactose metabolism in Streptococcus lactis: phosphorylation of galactose and glucose moieties in vivo. J. Bacteriol. 1979; 140: 774
  • Thompson J., Chassy B. M. Uptake and metabolism of sucrose by Streptococcus lactis. J. Bacteriol. 1981; 147: 543
  • Thompson J., Chassy B. M. Intracellular hexose-6-phosphate:phosphohydrolase from Streptococcus lactis: purification, properties, and function. J. Bacteriol. 1983; 156: 70
  • Thompson J., Chassy B. M. Intracellular phosphorylation of glucose analogs via the phosphoen-olpyruvate: mannose-phosphotransferase system in Streptococcus lactis. J. Bacteriol. 1985; 162: 224
  • Thompson J., Saier M. H., Jr. Regulation of methyl-β-d-thiogalactopyranoside-6-phosphate accumulation in Streptococcus lactis by exclusion and expulsion mechanisms. J. Bacteriol. 1981; 146: 885
  • Thompson J., Turner K. W., Thomas T. D. Catabolite inhibition and sequential metabolism of sugars by Streptococcus lactis. J. Bacteriol. 1978; 133: 1163
  • Thompson J., Chassy B. M. Novel phosphoenolpyruvate-dependent futile cycle in Streptococcus lactis: 2-deoxy-d-glucose uncouples energy production from growth. J. Bacteriol. 1982; 151: 1454
  • Thompson J., Thomas T. D. Phosphoenolpyruvate and 2-phosphoglycerate: endogenous energy source(s) for sugar accumulation by starved cells of Streptococcus lactis. J. Bacteriol. 1977; 130: 583
  • Thompson J., Torchia D. A. Use of 31P-nuclear magnetic resonance spectroscopy and 14C-fluorography in studies of glycolysis and regulation of pyruvate kinase in Streptococcus lactis. J. Bacteriol. 1984; 158: 791
  • Trahan L., Bareil M., Gauthier L., Vadeboncoeur C. Transport and phosphorylation of xylitol by a fructose PTS in Streptococcus mutans. Caries Res. 1985; 19: 53
  • Ullah A. H. J., Cirillo V. P. Mycoplasma phosphoenolpyruvate-dependent sugar phosphotransferase system: purification and characterization of the phosphocarrier protein. J. Bacteriol. 1976; 127: 1298
  • Ullah A. H. J., Cirillo V. P. Mycoplasma phosphoenolpyruvate-dependent sugar phosphotransferase system: purification and characterization of Enzyme I. J. Bacteriol. 1977; 131: 988
  • Vadeboncoeur C., Proulx M., Trahan L. Purification of proteins similar to HPr and Enzyme I from the oral bacterium Streptococcus salivarius. Biochemical and immunochemical properties. Can. J. Microbiol. 1983; 29: 1694
  • Vadeboncoeur C., Proulx M. Lactose transport in Streptococcus mutans: isolation and characterization of factor IIIlac, a specific protein component of the phosphoenolpyruvate-lactose phosphotransferase system. Infect. Immun. 1984; 46: 213
  • Van Demark P. J., Plackett P. Evidence for a phosphoenolpyruvate-dependent sugar phosphotransferase in Mycoplasma strain Y. J. Bacteriol. 1972; Ill: 454
  • Waygood E. B. Resolution of the phosphoenolpyruvate.fructose phosphotransferase system of Escherichia coli into two components; enzyme IIfructose and fructose-induced HPr-like protein (FPr). Can. J. Biochem. 1980; 58: 1144
  • Waygood E. B., Mattoo R. L., Peri K. G. Phosphoproteins and the phosphoenolpyruvate: sugar phosphotransferase in Salmonella ryphimurium and Escherichia coli: evidence for IIIMannose IIIFructose, IIIGlucitol, and the phosphorylation of Enzyme IIMannitol and Enzyme IIN-acetylglucosamine. J. Cell. Biochem. 1984; 25: 139
  • Waygood E. B., Mattoo R. L., Erickson E., Vadeboncoeur C. Phosphoproteins and the phos-phoenolpyruvate:sugar phosphotransferase system of Streptococcus salivarius. Detection of two different ATP-dependent phosphorylations of the phosphocarrier protein HPr. Can. J. Microbiol. 1986; 32: 310
  • Waygood E. B., Mattoo R. L. A novel phosphoprotein dependent on the bacterial phosphoenol-pyruvate-sugar phosphotransferase system. Can. J. Biochem. Cell. Biol. 1983; 61: 150
  • Weigel N., Kukuruzinska M. A., Nakazawa A., Waygood E. B., Roseman S. Sugar transport by the bacterial phosphotransferase system. Phosphoryl transfer reactions catalyzed by Enzyme I of Salmonella typhimurium. J. Biol. Chem. 1982; 257: 14477
  • White R. J. The role of the phosphoenolpyruvate phosphotransferase system in the transport of N-acetyl-d-glucosamine by Escherichia coli. Biochem. J. 1970; 118: 89
  • Wiame J. M., Bourgeois S., Lambion R. Oxidative dissimilation of glycerol studied with variants of Bacillus subtilis. Nature (London) 1954; 174: 37
  • Wittenberger C., Palumbo M., Klein I. Two forms of pyruvate kinase from Streptococcus faecalis. 9th Int. Congr. Biochem. Abstr.. 1973; 62, 2c 15
  • Wolfson E. B., Sobel M. E., Blanco R., Krulwich T. A. Pathways of d-fructose transport in Arthrobacter pyridinolis. Arch. Biochem. Biophys. 1974; 160: 440
  • Wolfson E. B., Sobel M. E., Krulwich T. A. Phosphoenolpyruvate:fructose phosphotransferase activity in whole cells and membrane vesicles of Arthrobacter pyridinolis. Biochim. Biophys. Acta 1973; 321: 181
  • Wolfson E. B., Krulwich T. A. Requirement for a functional respiration-coupled d-fructose transport system for induction of phosphoenolpyruvate: d-fructose phosphotransferase activity. Proc. Natl. Acad. Sci. U.S.A. 1974; 71: 1739
  • Würsch P., Koellreutter B. Maltotriitol inhibition of maltose metabolism in Streptococcus mutans via maltose transport, amylomaltase and phospho-α-glucosidase activities. Caries Res. 1985; 19: 439
  • Kalbitzer H. R., et al, personal communciation
  • Grenier F. C., Saier M. H., Jr., unpublished data
  • Reizer J., Peterkofsky A., Romano A., unpublished data
  • Reizer J., Panos C., unpublished data
  • Sutrina S., Chin M., Saier M. H., Jr., unpublished data
  • Sutrina S., Saier M. H., unpublished data
  • Hengstenberg W., Saier M. H., Jr., unpublished data
  • Reizer J., Hengstenberg W., unpublished data
  • Hengstenberg W., unpublished data
  • Deutscher J., unpublished data
  • Deutscher J., Reiche B., Hengstenberg W., unpublished data
  • Sobek H. M. Ph.D. thesis, 1983
  • Deutscher J., et al, in press
  • Reizer J., Peterkofsky A., Reddy P., unpublished data
  • Schnierow B., Yamada M., Saier M. H., Jr., unpublished data
  • Delbaere L. T. J., El-Kabbani O. A. L., personal communication
  • Stiiber A. Ph.D. thesis, 1983
  • Kessler U. thesis, 1983
  • Neidig A. thesis, 1983
  • Mimura C. S., Jacobson G. R., unpublished data
  • Reizer J., Saier M. H., Jr., unpublished data
  • Novotny M. J., Reizer J., Saier M. H., Jr., unpublished data
  • Reizer J., Rottem S., Peterkofsky A., unpublished data
  • Reizer J., Saier M. H., Jr., unpublished data
  • Saier M. H., Jr., unpublished data
  • Reizer J., Grossowicz N., unpublished data
  • Stewart G. C., personal communication
  • Beyreuther K., in preparation
  • Meyer A., Deutscher J., unpublished data

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.