162
Views
85
CrossRef citations to date
0
Altmetric
Original Article

Bacterial Alternative Nitrogen Fixation Systems

, &
Pages 1-14 | Published online: 02 Jul 2009

References

  • Bulen W. A., LeComte J. R. The nitrogenase system from Azotobacier: two enzyme requirement for N2 reduction, ATP-dependent hydrogen evolution, and ATP hydrolysis. Proc. Natl. Acad. Sci. U.S.A. 1966; 56: 979
  • Swisher R. H., Landt M. L., Reithel F. J. The molecular weight of and evidence for two types of subunits in, the molybdenum-iron protein of Azotobacier vinelandii nitrogenase. Biochem. J. 1977; 163: 427
  • Burgess B. K. Structure and reactivity of nitrogease — an overview. Advances in Nitrogen Fixation Research, W. E. Newton, C. Veeger. Nijhoff/Junk, The HagueThe Netherlands 1984; 103
  • Shah V. K., Ugalde R. A., Imperial J., Brill W. J. In vitro synthesis of the iron-molybdenum cofactor of nitrogenase. Proc. Natl. Acad. Sci. USA. 1986; 83: 1636
  • Orme-Johnson W. H. Molecular basis of biological nitrogen fixation. Annu. Rev. Biophys. Biophys. Chem. 1985; 14: 419
  • Nagatani H. H., Shah V. K., Brill W. J. Activation of inactive nitrogenase by acid-treated component I. J. Bacteriol. 1974; 120: 697
  • Shah V. K., Brill W. J. Isolation of an iron-molybdenum cofactor from nitrogenase. Proc. Natl. Acad. Sci. USA. 1977; 74: 3248
  • Bishop P. E., Jarlenski D. M. L., Hetherington D. R. Evidence for an alternative nitrogen fixation system in Azotobacter vinelandii. Proc. Natl. Acad. Sci. U.S.A. 1980; 77: 7342
  • Beijerinck M. W. Ueber oligonitrophile Mikroben. Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Abt. 1901; 2: 7, 561
  • Kremieniewski S. Untersuchungen ueber Azotobacter chroococcum. Zentralbl. Bakteriol. Parasitenkd. Infektionskr.. 1909; 23, 161, Abt. 2
  • Bortels H. Biokatalyse und Reaktionsempfindlickeit be niederen und hoeheren Pflanzen. Angew. Bot. 1929; 11: 285
  • Bortels H. Molybdaen als Katalysatorbei derbiologischen Stickstoffbindung. Arch. Mikrobiol. 1930; 1: 333
  • Bortels H. Kurze Notiz ueber die Katalyse der biologischen Stickstoffbindung. Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Abt 1933; 2: 87, 476
  • Burk D., Horner C. K. The specific catalytic role of molybdenum and vanadium in nitrogen fixation and amide utilization by Azotobacter. Trans. 3rd Int Congr. Soil Sci. 1935; 1: 152
  • Burk D., Lineweaver H. The influence of calcium and strontium upon the catalysis of nitrogen fixation by Azotobacter. Arch. Mikrobiol. 1930; 2: 155
  • Horner C. K., Burk D. Magnesium, calcium, and iron requirements for growth of Azotobacter in free and fixed nitrogen. J. Agric. Res. 1934; 48: 981
  • Bortels H. Weitere Untersuchungen ueber die Bedeutung von Molybdaen, Vanadium, Wolfram und andere Erdaschenstoffe fuer stickstoffbindende und andere Mikroorganismen. Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Abt. 1936; 2: 95, 193
  • Pienkos P. T., Shah V. K., Brill W. J. Molybdenum in nitrogenase. Molybdenum and Molybdenum-Containing Enzymes, M. Coughlan. Pergamon Press, New York 1980; 387
  • Bortels H. Ueber die Wirkung von Agar sowie Eisen, Molybdaen, Mangan und anderen Spurenelement in stickstofffreier Naehrloesung auf Azotobacter. Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Abt. 1939; 2: 100, 373
  • Horner C. K., Burk D., Allison F. E., Sherman M. S. Nitrogen fixation by Azotobacter as influenced by molybdenum and vanadium. J. Agric. Res. 1942; 65: 173
  • Esposito R. G., Wilson P. W. Trace metal requirement of Azotobacter. Proc. Soc. Exp. Med. 1956; 93: 564
  • Becking J. H. Species differences in molybdenum and vanadium requirements and combined nitrogen utilization by Azotobacteriaceae. Plant Soil 1962; 16: 171
  • Keeler R. F., Varner J. E. Tungstate as an antagonist of molybdate in Azotobacter vinelandii. Arch. Biochem. Biophys. 1957; 70: 585
  • Takahashi H., Nason A. Tungstate as a competitive inhibitor of molybdate in nitrate assimilation and N2 fixation by Azotobacter. Biochim. Biophys. Acta 1957; 23: 433
  • Bulen W. A. Effect of tungstate on the uptake and function of molybdate in Azotobacter agilis. J. Bacteriol. 1961; 82: 130
  • Benemann J. R., Smith G. M., Kostel P. J., McKenna C. E. Tungsten incorporation into Azotobacter vinelandii nitrogenase. FEBS Lett. 1973; 29: 219
  • Pienkos P. T., Klevickis S., Brill W. J. In vitro activation of inactive nitrogenase component I with molybdate. J. Bacteriol. 1981; 145: 248
  • Riddle G. D., Simmons J. G., Hales R. J., Braymer H. D. Nitrogen fixation system of tungsten-resistant mutants of Azotobacter vinelandii. J. Bacteriol. 1982; 152: 72
  • Bishop P. E., Jarlenski D. M. L., Hetherington D. R. Expression of an alternative nitrogen fixation system in Azotobacter vinelandii. J. Bacteriol. 1982; 150: 1244
  • Hales B. J., Case E. E. Nitrogen fixation by Azotobacter vinelandii in tungsten-containing medium. J. Biol. Chem. 1987; 262: 16205
  • Premakumar R., Lemos E. M., Bishop P. E. Evidence for two dinitrogenase reductases under regulatory control by molybdenum in Azotobacter vinelandii. Biochim. Biophys. Acta 1984; 797: 64
  • Bishop P. E., Premakumar R., Dean D. R., Jacobson M. R., Chisnell J. R., Rizzo T. M., Kopczynski J. Nitrogen fixation by Azotobacter vinelandii strains having deletions in structural genes for nitrogenase. Science 1986; 232: 92
  • Bishop P. E., Hawkins M. E., Eady R. R. Nitrogen fixation in Mo-deficient continuous culture by a strain of Azotobacter vinelandii carrying a deletion of the structural genes for nitrogenase (nifHDK). Biochem. J. 1986; 238: 437
  • Eady R. R., Robson R. L. Characteristics of N2 fixation in Mo-limited batch and continuous cultures of Azotobacter vinelandii. Biochem. J. 1984; 224: 853
  • Chisnell J. R., Premakumar R., Bishop P. E. Purification of a second alternative nitrogenase from a nifHDK deletion strain of Azotobacter vinelandii. J. Bacteriol. 1988; 170: 22
  • Burns R. C., Fuchsman W. H., Hardy R. W. F. Nitrogenase from vanadium-grown Azotobacter: isolation, characterization, and mechanistic implications. Biochem. Biophys. Res. Commun. 1971; 42: 353
  • Benemann J. R., McKenna C. E., Lie R. F., Traylor T. G., Kamen M. D. The vanadium effect in nitrogen fixation by Azotobacter. Biochim. Biophys. Acta 1972; 264: 25
  • Burns R. C., Stasny J. T., Hardy R. W. F. Isolation and characteristics of a modified nitrogenase from Azotobacter vinelandii including “vanadium-Fe” protein from cells grown on medium enriched in vanadium. Proc. 1st Int. Symp. Nitrogen Fixation, W. E. Newton, C. J. Nyman. Washington State University Press, Pullman 1976; Vol. 1: 196
  • Page W. J., Collinson S. K. Molybdenum enhancement of nitrogen fixation in a Mo-starved Azotobacter vinelandii Nif mutant. Can. J. Microbiol. 1982; 28: 1173
  • Robson R. L., Eady R. R., Richardson T. H., Miller R. W., Hawkins M., Postgate J. R. The alternative nitrogen fixation system of Azotobacter chroococcum is a vanadium enzyme. Nature London 1986; 322: 388
  • Robson R. L. Nitrogen fixation in strains of Azotobacter chroococcum bearing deletions of a cluster of genes coding for nitrogenase. Arch. Microbiol. 1986; 146: 74
  • Eady R. R., Robson R. L., Richardson T. H., Miller R. W., Hawkins M. The vanadium nitrogenase of Azotobacter chroococcum: purification and properties of the VFe protein. Biochem. J. 1987; 244: 197
  • Hales B. J., Case E. E., Morningstar J. E., Dzeda M. F., Mauterer L. A. Isolation of a new vanadium-containing nitrogenase from Azotobacter vinelandii. Biochem. J. 1986; 25: 7251
  • Dilworth M. J., Eady R. R., Robson R. L., Miller R. W. Ethane formation from acetylene as a potential test for vanadium nitrogenase in vivo. Nature (London) 1987; 327: 167
  • Joerger R. D., Premakumar R., Bishop P. E. Tn5-induced mutants of Azotobacter vinelandii affected in nitrogen fixation under Mo-deficient and under Mo-sufficient conditions. J. Bacteriol. 1986; 168: 673
  • Kennedy C., Gamal R., Humphrey R., Ramos J., Brigle K., Dean D. The nifH, nifM and nifN genes of Azotobacter vinelandii: characterization by Tn5 mutagenesis and isolation from pLAFRI gene banks. Mol. Gen. Genet. 1986; 205: 318
  • Kennedy C., Toukdarian A. Genetics of Azotobacters: applications to nitrogen fixation and related aspects of metabolism. Ann. u Rev. Microbiol. 1987; 41: 227
  • Toukdarian A., Kennedy C. Regulation of nitrogen metabolism in Azotobacter vinelandii: isolation of ntr and glnA genes and construction of ntr mutants. EMBO J. 1986; 5: 399
  • Kennedy C., personal communication
  • Dean D. R., personal communication
  • Joerger R. D., Bishop P. E. Nucleotide sequence and genetic analysis of the nifB-nifQ region from Azotobacter vinelandii. J. Bacteriol. 1988; 170: 1475
  • Dean D. R., Brigle K. E. Azotobacter vinelandii nifD- and nifE-encoded polypeptides share structural homology. Proc. Natl. Acad. Sci. U.S.A. 1985; 82: 5720
  • Brigle K. E., Weiss M. C., Newton W. E., Dean D. R. Products of the iron-molybdenum-cofactor specific biosynthesis genes, nifE and nifN are structurally homologous to the products of the nitrogenase molybdenum-iron protein genes, nifD and nifK respectively. J. Bacteriol. 1987; 169: 1547
  • Jacobson M. R., Premakumar R., Bishop P. E. Transcriptional regulation of nitrogen fixation by Azotobacter vinelandii. J. Bacteriol. 1986; 167: 480
  • Robson R. L., Woodley P. R., Jones R. Second gene (nifH*) coding for a nitrogenase iron-protein in Azotobacter chroococcum is adjacent to a gene coding for a ferredoxin-like protein. EMBO J. 1986; 5: 1159
  • Simon B. H., Bishop P. E., unpublished results
  • Jacobson M. R. Transcriptional Regulation of Nitrogen Fixation. Azotobacter vinelandii, Molybdenum. Ph.D. thesis, North Carolina State University, Raleigh 1987
  • Joerger R. D., Premakumar R., Wolfinger E. D., Bishop P. E., unpublished results
  • Pienkos P. T., Brill W. J. Molybdenum accumulation and storage in Klebsiella pneumoniae and Azotobacter vinelandii. J. Bacteriol. 1981; 145: 743
  • Premakumar R., Bishop P. E., unpublished results
  • Nagatani H. H., Brill W. J. Nitrogenase. V. The effect of Mo, W, and V on the synthesis of nitrogenase components in Azotobacter vinelandii. Biochim. Biophys. Acta 1974; 362: 160
  • Dalton D., Premakumar R., Bishop P. E., unpublished results
  • Quinto C., de la Vega H., Flores M., Leemans J., Cevallos M. A., Pardo M. A., Azpiroz R., Girard M. D. L., Calva E., Palacios R. Nitrogenase reductase: a functional multigene family in Rhizobium phaseoli. Proc. Natl. Acad. Sci. U.SA. 1985; 82: 1170
  • Scolnik P. A., Haselkorn R. Activation of extra copies of genes coding for nitrogenase in Rhodopseudomonas capsulata. Nature (London) 1984; 307: 289
  • Chen K. C.-K., Chen J.-S., Johnson J. L. Structural features of multiple nifH-like sequences and very biased codon usage in nitrogenase genes of Clostridium pasteurianum. J. Bacteriol. 1986; 166: 162
  • Jensen H. L. The influence of molybdenum and vanadium on nitrogen fixation by Clostridium butyricum and related organisms. Proc. Linn. Soc. N. S. W. 1947; 72: 73
  • Rice D., Mazur B. J., Haselkorn R. Isolation and physical mapping of nitrogen fixation genes from the cyanobacterium Anabaena 7120. J. Biol. Chem. 1982; 257: 13157
  • Kallas T., Rebiere M.-C., Rippka R., de Marsac N. T. The structural nif genes of the cyanobacteria Gloeothece sp., and Calothrix sp. share homology with those of Anabaena sp., but the Gloeothece genes have a different arrangement. J. Bacteriol. 1983; 155: 427
  • Jensen H. L. Azotobacter macrocytogenes n. sp., a nitrogen-fixing bacterium resistant to acid reaction. Acta Agric. Scand. 1955; 5: 280
  • Page W. J., Collinson S. K. Characterization of Azomonas macrocytogenes strains isolated from Alberta soils. Can. J. Microbiol. 1987; 33: 830
  • Bomar M., Knoll K., Widdel F. Fixation of molecular nitrogen by Methanosarcinia barkeri. FEMS Microbiol. Ecol. 1985; 31: 47
  • Howarth R. W., Cole J. J. Molybdenum availability, nitrogen limitation, and phytoplankton growth in natural waters. Science 1985; 229: 653

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.