15
Views
36
CrossRef citations to date
0
Altmetric
Original Article

The Bioenergetics of Alkalophilic Bacilli

, , , &
Pages 15-36 | Published online: 02 Jul 2009

References

  • Garland P. B. Energy transduction and transmission in microbial systems. Symp. Soc. Gen. Microbiol. 1977; 27: 1
  • Horikoshi K., Akiba T. Alkalophilic Microorganisms. Springer-Verlag, New York 1982
  • Krulwich T. A. Bioenergetics of alkalophilic bacteria. J. Membr. Biol. 1986; 89: 113
  • Krulwich T. A., Guffanti A. A. Physiology of acidophilic and alkalophilic bacteria. Adv. Microb. Physiol. 1983; 24: 173
  • Guffanti A. A., Finkelthal O., Hicks D. B., Falk L., Sidhu A., Garro A., Krulwich T. A. Isolation and characterization of new facultatively alkalophilic strains of Bacillus. J. Bacteriol. 1986; 167: 766
  • Mitchell P. Coupling of phosphorylation to electron and hydrogen transfer by a chemiosmotic type of mechanism. Nature (London) 1961; 191: 144
  • Harold F. M. The Vital Force: A Study of Bioenergetics. W. H. Freeman, New York 1986
  • Krulwich T. A. The fine structure of obligately alkalophilic bacilli. FEMS Microbiol. Lett. 1982; 13: 299
  • Koga Y., Nishihara M., Morii H. Lipids of alkalophilic bacteria: identification, composition and metabolism. J. Univ. Occup. Environ. Health 1982; 4: 227
  • Clejan S., Krulwich T. A., Mondrus K. R., Seto-Young D. Membrane lipid composition of obligately and facultatively alkalophilic strains of Bacillus spp. J. Bacteriol. 1986; 168: 334
  • Nishihara M., Morii H., Koga Y. Bis(monoacyl glycerophosphate in alkalophilic bacteria. J. Biochem. 1982; 92: 1469
  • Taylor R. F. Bacterial triterpenoids. Microbiol. Rev. 1984; 48: 181
  • Ourisson G., Rohmer M., Poralla K. Prokaryotic hopanoids and other polyterpenoid sterol surrogates. Annu. Rev. Microbiol. 1987; 41: 301
  • Rohmer M., Bouvier P., Ourisson G. Molecular evolution of biomembranes: structural equivalents and phylogenetic precursors of sterols. Proc. Natl. Acad. Sci. U.S.A. 1979; 76: 847
  • Bisserat P., Wolff G., Albrecht A.-M., Tanaka T., Nakatani Y., Ourisson G. A direct study of the cohesion of lecithin bilayers: the effect of hopanoids and α,ω-dihydroxycarotenoids. Biochem. Biophys. Res. Commun. 1983; 110: 320
  • Kannenberg E., Blume A., McElhaney R. N., Poralla K. Monolayer and calorimetric studies of phosphatidylcholines containing branched-chain fatty acids and of their interactions with cholesterol and with a bacterial hopanoid in model membranes. Biochim. Biophys. Acta 1983; 733: 111
  • Milon A., Lazrak T., Albrecht A.-M., Wolff G., Weill G., Ourisson G., Nakatani Y. Osmotic swelling of unilamellar vesicles by the stopped-flow light scattering method, influence of vesicle size, solute, temperature, cholesterol and three α,ω-dihydroxycarotenoids. Biochim. Biophys. Acta 1986; 859: 1
  • Rilfors L., Khan A., Brentel I., Wieslander A., Lindblom G. Cubic liquid crystalline phase with phosphatidyl-ethanolamine from Bacillus megaterium containing branched acyl chains. FEBS Lett. 1982; 149: 293
  • Verkleij A. J. Lipidic intramembranous particles. Biochim. Biophys. Acta 1984; 779: 43
  • De Krruijff B., Cullis P. R. Cytochrome c specifically induces nonbilayer structures in cardiolipin-containing model membranes. Biochim. Biophys. Acta 1980; 602: 477
  • Koyama N., Takinishi H., Nosoh Y. A possible relation of membrane proteins to the alkalostability of a fundamentally alkalophilic Bacillus. FEMS Microbiol. Lett. 1983; 16: 213
  • Kitada M., Krulwich T. A. Purification and characterization of the cytochrome oxidase from alkalophilic Bacillus firmus RAB. J. Bacteriol. 1984; 158: 963
  • Davidson M. W., Gray K. A., Knaff D. B., Krulwich T. A. Purification and characterization of two soluble cytochromes from the alkalophile Bacillus firmus RAB. Biochim. Biophys. Acta
  • Krulwich T. A., Agus R., Schneier M., Guffanti A. A. The buffering capacity of bacilli that grow in different ranges of pH. J. Bacteriol. 1985; 162: 768
  • Kitada M., Guffanti A. A., Krulwich T. A. Bioenergetic properties and viability of the alkalophilic Bacillus firmus RAB as a function of pH and Na+ content of the medium. J. Bacteriol. 1982; 152: 1096
  • Lewis R. J., Krulwich T. A., Reynafarje B., Lehninger A. L. Respiration-dependent proton translocation in alkalophilic Bacillus firmus RAB and its non-alkalophilic mutant derivative. J. Biol. Chem. 1983; 258: 2109
  • Clejan S., Krulwich T. A. Permeability of cells and liposomes from facultatively and obligately alkalophilic strains of. Bacillus, 9th Int. Biophys. Congr. IUPAB, Jerusalem 1987; 208
  • Lewis R. J., Belkina S., Krulwich T. A. Alkalophiles have much higher cytochrome contents than conventional bacteria and than their own non-alkalophilic mutant derivatives. Biochem. Biophys. Res. Commun. 1980; 95: 857
  • Lewis R. J., Prince R., Dutton P. L., Knaff D., Krulwich T. A. The respiratory chain of Bacillus alcalophilus and its non-alkalophilic mutant derivative. J. Biol Chem. 1981; 256: 10543
  • Kitada M., Lewis R. J., Krulwich T. A. The respiratory chain of the alkalophilic bacterium Bacillus firmus RAB and its non-alkalophilic mutant derivative. J. Bacteriol. 1983; 154: 330
  • Guffanti A. A., Susman P., Blanco R., Krulwich T. A. The protonmotive force and α-aminoisobutyric acid transport in an obligately alkalophilic bacterium. J. Biol. Chem. 1978; 253: 708
  • Tokuda H., Unemoto T. Characterization of the respiration-dependent Na+ pump in the marine bacterium Vibrio alginolyticus. J. Biol. Chem. 1982; 257: 10007
  • Tokuda H., Udagawa T., Unemoto T. Generation of the electrochemical potenital of Na+ by the Na+-motive NADH oxidase in inverted membrane vesicles of Vibrio alginolyticus. FEBS Lett. 1985; 183: 95
  • Ken-Dror S., Preger R., Avi-Dor Y. Functional characterization of the uncoupler-insenstive Na+ pump of the halotolerant bacterium, Ba1. Arch. Biochem. Biophys. 1986; 244: 122
  • Hayashi M., Unemoto T. Subunit component and their roles in the sodium-transport NADH:quinone reductase of a marine bacterium. Vibrio alginolyticus, Biochim. Biophys. Acta 1987; 890: 47
  • Sugiyama S., Matsukura H., Imae Y. Relationship between Na+-dependent cytoplasmic pH homeostasis and Na+-dependent flagellar rotation and amino acid transport in alkalophilic Bacillus. Biochim. Biophys. Acta 1986; 852: 38
  • Koyama N., Nosoh Y. Effect of potassium and sodium ions on the cytoplasmic pH of an alkalophilic Bacillus. Biochim. Biophys. Acta 1985; 812: 206
  • Sugiyama S., Matsukura H., Imae Y. Relationship between Na+-dependent cytoplasmic pH homeostasis and Na+-dependent flagellar rotation and amino acid transport in alkalophilic Bacillus. FEBS Lett. 1985; 182: 265
  • Hirota N., Imae Y. Na+-driven flagellar motors of an alkalophilic Bacillus strain YN-1. J. Biol. Chem. 1983; 258: 10577
  • Kitada M., Horikoshi K. Bioenergetic properties of alkalophilic Bacillus sp. strain C-59 on an alkaline medium containing K2CO3. J. Bacteriol. 1987; 169: 5761
  • Krulwich T. A., Guffanti A. A., Bornstein R. F., Hoffstein J. A sodium requirement for growth, solute transport, and pH homeostasis in Bacillus firmus RAB. J. Biol. Chem. 1982; 257: 1885
  • Krulwich T. A., Guffanti A. A., Fong M. Y., Falk L., Hicks D. B. Alkalophilic Bacillus firmus RAB generates variants which can grow at lower Na+ concentrations than the parental strain. J. Bacteriol. 1986; 165: 884
  • Kitada M., Wijayanti L., Horikoshi K. Biochemical properties of a thermophilic alkalophile. Agric. Biol. Chem. 1987; 51: 2429
  • Krulwich T. A., Federbush J. G., Guffanti A. A. Presence of a nonmetabolizable solute that is translocated with Na+ enhances Na+-dependent pH homeostasis in an alkalophilic Bacillus. J. Biol. Chem. 1985; 260: 4055
  • Koyama N., Ishikawa Y., Nosoh Y. Dependence of the growth of pH-sensitive mutants of a facultatively alkalophilic Bacillus on the regulation of cytoplasmic pH. FEMS Microbiol. Lett. 1986; 34: 195
  • McLaggan D., Selwyn M. J., Dawson A. P. Dependence on Na+ of control of cytoplasmic pH in a facultative alkalophile. FEBS Lett. 1984; 165: 254
  • Zilberstein D., Agmon V., Schuldiner S., Padan E. The sodium/proton antiporter is part of the pH homeostasis mechanism in Escherichia coli. J. Biol. Chem. 1982; 257: 3687
  • Ishikawa T., Hama H., Tsuda M., Tsuchiya T. Isolation and properties of a mutant of Escherichia coli possessing defective Na+/H+ antiporter. J. Biol. Chem. 1987; 262: 7443
  • Goldberg E. B., Arbel T., Chen J., Karpel R., Mackie G. A., Schuldiner S., Padan E. Characterization of a Na+/H+ antiporter gene of Escherichia coli. Proc. Natl. Acad. Sci. USA. 1987; 84: 2615
  • MacNab R. M., Castle A. M. A variable stoichiometry model for pH homeostasis in bacteria. Biophys. J. 1987; 52: 637
  • Garcia M. L., Guffanti A. A., Krulwich T. A. Characterization of the Na+/H+ antiporter of alkalophiic bacilli in vivo: Δ±-dependent 22Na+ efflux from whole cells. J. Bacteriol. 1983; 156: 1151
  • Bassilana M., Dramiano E., Leblanc G. Kinetic properties of Na+-H+ antiport in Escherichia coli membrane vesicles: effects of imposed electrical potential, proton gradient and internal pH. Biochemistry 1984; 23: 5288
  • Mandel K. G., Guffanti A. A., Krulwich T. A. Monovalent cation/proton antiporters in membrane vesicles from Bacillus alcalophilus. J. Biol. Chem. 1980; 255: 7391
  • Guffanti A. A. ATP-dependent Na+/H+ antiport activity in Bacillus alcalophilus requires generation of an electrochemical gradient of protons. FEMS Microbiol. Lett. 1983; 17: 307
  • Seto- Young D., Garcia M. L., Krulwich T. A. Reconstitution of a bacterial Na+/H+ antiporter. J. Biol. Chem. 1985; 260: 11393
  • Nakamura T., Hsu C.-M., Rosen B. P. Cation/proton antiport systems in Escherichia coli. J. Biol. Chem. 1986; 261: 678
  • Booth I. R., Kroll R. G. Regulation of cytoplasmic pH (pHin) in bacteria and its relationship to metabolism. Biochem. Soc. Trans. 1983; 11: 29
  • Lanyi J. K. The role of Na+ in transport processes of bacterial membranes. Biochim. Biophys. Acta 1979; 559: 377
  • Ohta K., Kiyomiya A., Koyama N., Nosoh Y. The basis of the alkalophilic property of a species of Bacillus. J. Gen. Microbiol. 1975; 86: 259
  • Koyama N., Kiyomiya A., Nosoh Y. Na+-dependent uptake of amino acids by an alkalophilic Bacillus. FEMS Microbiol. Lett. 1976; 72: 77
  • Kitada M., Horikoshi K. Sodium ion-stimulated ‘1-14C’-aminoisobutyric acid uptake in alkalophilic Bacillus species. J. Bacteriol. 1977; 131: 784
  • Guffanti A. A., Blanco R., Benenson R. A., Krulwich T. A. Bioenergetic properties of alkaline-tolerant and alkalophilic strains of Bacillus firmus. J. Gen. Microbiol. 1980; 119: 79
  • Kitada M., Horikoshi K. Further properties of sodium ion stimulated ‘l-14C’ aminoisobutyric acid uptake in alkalophilic Bacillus No. 8–1. J. Biochem. 1980; 87: 1279
  • Kitada M., Horikoshi K. Sodium ion-stimulated amino acid uptake in membrane vesicles of alkalophilic Bacillus No. 8–1. J. Biochem. 1980; 88: 1757
  • Bonner S., Mann M. J., Guffanti A. A., Krulwich T. A. Na+/solute symport in membrane vesicles from Bacillus alcalophilus. Biochim. Biophys. Acta 1982; 679: 315
  • Ando A., Yabuki M., Kusaka I. Na+-driven Ca++ transport in alkalophilic Bacillus. Biochim. Biophys. Acta 1981; 640: 179
  • Ando A., Irie S., Masuda L. M., Matsushita T., Fujii T., Yabuki M., Kusaka I. H+- or K+- dependent transport systems of phosphate in alkalophilic Bacillus. Biochim. Biophys. Acta 1983; 734: 290
  • Guffanti A. A., Blanco R., Krulwich T. A. A requirement for ATP for B-galactoside transport by Bacillus alcalophilus. J. Biol. Chem. 1979; 254: 1033
  • Kitada M., Horikoshi K. Alkaline protease production from methylacetate by alkalophilic Bacillus sp. J. Fermentation Technol. 1976; 54: 383
  • Guffanti A. A., Eisenstein H. C. Purification and characterization of flagella from the alkalophilic Bacillus firmus RAB. J. Gen. Microbiol. 1983; 129: 3239
  • Hirota N., Kitada M., Imae Y. Flagellar motors of alkalophilic Bacillus are powered by an electrochemical potential gradient of Na+. FEBS Lett. 1981; 132: 278
  • Chernyak B. V., Dibrov P. A., Glagolev A. N., Sherman M. Y., Skulachev V. P. A novel type of energetics in a marine alkali-tolerant bacterium: Δ±Na+-driven motility and sodium cycle. FEBS Lett. 1983; 164: 38
  • Dibrov P. A., Kostyrko V. A., Lasarova R. L., Skulachev V. P., Smirnova I. A. The sodium cycle. I. Na+-dependent motility and modes of membrane energization in the marine alkalotolerant Vibrio alginolyticus. Biochim. Biophys. Acta 1986; 850: 449
  • Koyama N., Koshiya K., Nosoh Y. Purification and properties of ATPase from an alkalophilic Bacillus. Arch. Biochem. Biophys. 1980; 199: 103
  • Hicks D. B., Krulwich T. A. The membrane ATPase of alkalophilic Bacillus firmus RAB is an F1-type ATPase. J. Biol. Chem. 1986; 261: 12896
  • Foster D. L., Fillingame R. H. Stoichiometry of subunits in the H+-ATPase complex of Escherichia coli. J. Biol. Chem. 1982; 257: 2009
  • Saraste M., Gay N. H., Eberle A., Runswick M. J., Walker J. E. The ATP operon: nucleotide sequence of the genes for the α,β, and γ subunits of Escherichia coli ATP synthase. Nucleic Acids Res. 1981; 9: 5287
  • Hicks D. B., Krulwich T. A. Purification and characterization of the F1 ATPase from Bacillus subtilis and its uncoupler-resistant mutant derivatives. J. Bacteriol. 1987; 169: 4743
  • Hochman Y., Carmeli C. Correlation between the kinetics of activation and inhibition of adenosine triphosphatase activity by divalent metal cations and the binding of manganese to chloroplast coupling factor 1. Biochemistry 1981; 20: 6287
  • Carper S. W., Lancaster J. R., Jr. An electrogenic sodium-translocating ATPase in Methanococcus voltae. FEBS Lett. 1986; 200: 177
  • Dharmavaram R. M., Konisky J. Identification of a vanadate-sensitive, membrane-bound ATPase in the archaebacterium Methanococcus voltae. J. Bacteriol. 1987; 169: 3921
  • Kinoshita N., Unemoto T., Kobayashi H. Sodium-stimulated ATPase in Streptococcus faecalis. J. Bacteriol. 1984; 158: 844
  • Hilpert W., Schink B., Dimroth P. Life by a new decarboxylation-dependent energy conservation mechanism with Na+ as coupling ion. EMBO J. 1984; 3: 1665
  • Laubinger W., Dimroth P. Characterization of the Na+-stimulated ATPase of Propionigenium modestum as an ezyme of the F1F0 type. Eur. J. Biochem. 1987; 168: 475
  • Skulachev V. P. Membrane-linked energy transductions. Bioenergetic functions of sodium: H+ is not unique as coupling ion. Eur. J. Biochem. 1985; 151: 199
  • Dibrov P. A., Lazarova R. L., Skulachev V. P., Verkhovskaya M. L. The sodium cycle. II. Na+-coupled oxidative phosphorylation in Vibrio alginolyticus cells. Biochim. Biophys. Acta 1986; 850: 458
  • Tokuda H., Unemoto T. Growth of a marine Vibrio alginolyticus and moderately haiophilic V. costicola becomes uncoupler resistant when the respiration-dependent Na+ pump functions. J. Bacteriol. 1983; 156: 636
  • Hamaide F., Kushner D., Sprott G. D. Protonmotive force and Na+/H+ antiport in a moderate halophile. J. Bacteriol. 1983; 156: 537
  • Kakinuma Y., Unemoto T. Sucrose uptake is driven by the Na+ electrochemical potential in the marine bacterium Vibrio alginolyticus. J. Bacteriol. 1985; 163: 1293
  • Buchanan R. E., Gibbons N. E. Bergey's Manual of Determinative Bacteriology8th ed. Williams & Wilkins, Baltimore 1975
  • Tokuda H., Unemoto T. Na+ is translocated at NADH:quinone oxidoreductase segment in the respiratory chain of Vibrio alginolyticus. J. Biol. Chem. 1984; 259: 7785
  • Unemoto T., Hayashi M., Hayashi M. Na+ dependent activation of NADH oxidase in membrane fractions from haiophilic Vibrio alginolyticus and V. costicolus. J. Biochem. 1977; 82: 1389
  • Tokuda H., Unemoto T. A respiration-dependent primary sodium extrusion system functioning at alkaline pH in the marine bacterium Vibrio alginolyticus. Biochem. Biophys. Res. Commun. 1981; 102: 265
  • Nakumura T., Tokuda H., Unemoto T. K+/H+ antiporter functions as a regulator of cytoplasmic pH in a marine bacterium. Vibrio alginolyticus, Biochim. Biophys. Acta 1984; 776: 330
  • Guffanti A. A., Fuchs R. T., Schneier M., Chiu E., Krulwich T. A. A transmembrane electrical potential generated by respiration is not equivalent to a diffusion potential of the same magnitude for ATP synthesis by Bacillus firmus RAB. J. Biol. Chem. 1984; 259: 2971
  • Guffanti A. A., Chiu E., Krulwich T. A. Failure of an alkalophilic bacterium to synthesize ATP in response to a valinomycin-induced potassium diffusion potential at high pH. Arch. Biochem. Biophys. 1985; 239: 327
  • Guffanti A. A., Bornstein R. F., Krulwich T. A. Oxidative phosphorylation by membrane vesicles from Bacillus alcalophilus. Biochim. Biophys. Acta 1981; 635: 619
  • Ferguson S. J., Sorgato M. C. The phosphorylation potential generated by respiring bovine heart submitochondrial particles. Biochem. J. 1977; 168: 299
  • Ferguson S. J. Fully delocalized chemiosmotic or localized proton flow pathways in energy coupling? A scrutiny of the experimental evidence. Biochim. Biophys. Acta 1985; 811: 47
  • Williams R. J. P. Possible functions of chains of catalysts. J. Theor. Biol. 1961; 1: 1
  • Rottenberg H. Proton-coupled energy conservation: chemiosomotic and intramembrane coupling. Mod. Cell Biol. 1985; 4: 47
  • Westerhoff H. V., Melandri B. A., Venturoli G., Azzone G. F., Kell D. B. A minimal hypothesis for membrane-linked free energy transduction: the role of independent, small coupling units. Biochim. Biophys. Acta 1984; 768: 257
  • Hicks D. B., unpublished
  • Clejan S., unpublished
  • Clejan S., Krulwich T. A., unpublished
  • Seto-Young D., unpublished
  • Hicks D., unpublished
  • Guffanti A., unpublished

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.