87
Views
46
CrossRef citations to date
0
Altmetric
Research Article

Calcium and Microorganisms

Pages 83-97 | Published online: 25 Sep 2008

References

  • Youatt J., McKinnon I. Manganese (Mn22+) reverses the inhibition by EGTA of the growth of fungi. Microbios, in press
  • Iwasa Y., Yonemitsu K., Miyamoto E. A. calcium-dependent cyclic nucleotide phosphodiesterase from Escherichia coli. FEBS Lett. 1981; 124: 207
  • Steinberg R. A. Essentiality of calcium in the nutrition of fungi. Science 1948; 107: 423
  • Geiser J. R., Van Tuinen D., Brockenhoff S. E., Neff M. M., Davis T. N. Can calmodulin function without binding calcium?. Cell 1991; 65: 949
  • Klee C. B., Newton D. L., Ni W., Haich J. Regulation of the calcium signal by calmodulin. CIBA Symposium Calcium in the Cell, D. Evererd, J. Whelan. Wiley, UK 1986; 180
  • Hutner S. H. Organic growth essentials of the aerobic non-sulfur photosynthetic bacteria. J. Bacteriol. 1946; 52: 213
  • Youatt J. Oxygen and morphological changes in Allomyces macrogynus. Aust. J. Biol. Sci. 1986; 39: 233
  • Schmid J., Harold F. M. Dual role for calcium ions in apical growth in Neurospora crassa. J. Gen. Microbiol. 1988; 134: 2623
  • Tchan Y. T., Fernandes C. J. Etude du besoin en Ca des Beijerinkia. Ann. Inst. Pasteur 1969; 116: 799
  • Jakobsons A., Zell E. A., Wilson P. W. A reinvestigation of the calcium requirement of Azotobacter vinelandii using purified media. Arch Mikrobiol. 1962; 41: 1
  • Bard R. C., Gunsalus T. C. Glucose metabolism of Clostridium perfringens. J. Bacteriol. 1950; 59: 387
  • Machlis L. Growth and nutrition in the water mold Euallomyces. II. Am. J. Bot. 1953; 40: 450
  • Youatt J. Sporangium production by Allomyces in new chemically defined media. Trans. Br. Mycol. Soc 1973; 61: 257
  • Norris J. R., Jensen H. L. Calcium requirement of Azotobacter. Nature 1957; 180: 1493
  • Hughes M. N., Poole R. K. Metal speciation and microbial growth – the hard and soft facts. J. Gen. Microbiol. 1991; 137: 725
  • Esposito R. G., Wilson P. W. Trace metal requirements of Azotobacter. Proc. Soc. Exp. Biol. Med. 1956; 93: 564
  • Hendrix J. W., Guttman S. M. Sterol and calcium requirement of Phytophthora parasitica var. nicotineana for growth on nitrate nitrogen. Mycologia 1970; 62: 195
  • Meinke W. W., Holland B. R. Evidence for a calcium requirement for Lactobacillus delbrukii. J. Biol. Chem. 1950; 184: 251
  • Löhnis M. P. The action of manganese on the development of Aspergillus niger. Antonie van Leewenhoek 1944; 10: 101
  • Odergard K. On the physiology of Phycomyces blakesleeanus Burgeff. Physiol. Plant. 1952; 5: 583
  • Onoda T., Oshima A. Effects of Ca2+ and a protonophore on the growth of Escherichia coli L form. J. Gen. Microbiol. 1988; 134: 3071
  • Pitt D., Barnes J. C., Ugalde U. O. Differential uptake of calcium by strains of Penicillium notatum and relationships to calcium-induced conidiation. Trans. Br. Mycol. Soc 1988; 91: 489
  • Gilbert W. J., Hickey R. W. Production of conidia in submerged cultures of Penicillium notatum. J. Bacteriol. 1946; 51: 731
  • Lenney J. F., Klemmer M. W. Factors controlling sexual reproduction and growth in Pythium graminicola. Nature 1966; 209: 1365
  • Iida H., Sakaguchi S., Yagawa Y., Anraku Y. Cell cycle control by Ca2+ in Saccharomyces cerevisiae. J. Biol. Chem. 1990; 265: 21216
  • Charnetzky W. T., Brubaker R. RNA synthesis in Yersinia pestis during growth restriction in calcium-deficient medium. J. Bacteriol. 1982; 149: 1089
  • Steinberg R. A. A dibasal medium (minimal salt, maximum yield) solution for Aspergillus niger. Plant Physiol. 1945; 20: 600
  • Geigy C o. Chemical Abstracts. Patent 48, 11487, 1953
  • Raaflaub J. Komplexbildner als cofaktor isolierte Zellgranula. Helv. Chim. Acta 1955; 38: 27
  • Raaflaub J. Applications of metal buffers and metal indicators in biochemistry. Methods Biochem. Anal. 1956; 3: 301
  • Holloway J. H., Reilly C. N. Metal chelate stability constants of amino polycarboxylate ligands. Anal. Chem. 1960; 32: 249
  • Kroll H., Gordon M. The effect of structural modifications on the polyamineacetic acid chelating agents. Ann. N.Y. Acad. Sci. 1960; 88: 341
  • Darich D., Neuhaus O. W. Purification and properties of bovine synovial fluid phosphatase. J. Biol. Chem. 1966; 241: 415
  • Bukau B., Brass J. M., Boos W. Ca-induced permeabilisation of the Escherichia coli outer membrane: comparison of transformation and reconstitution of protein-dependent transport. J. Bacteriol. 1985; 163: 61
  • Holmes R. P., Stewart J. R. The response of Physarum polycephalum to extracellular calcium. J. Gen. Microbiol. 1979; 113: 275
  • Griffin D. Effect of electrolytes on differentiation in Achlya species. Plant Physiol. 1966; 41: 1254
  • Pfeiffer D. R., Reed P. W., Lardy H. A. Ultraviolet and fluorescent spectral properties of the divalent cation ionophore A23187. Biochemistry 1974; 13: 4007
  • Pfeiffer D. R., Lardy H. A. Ionophore A23187: the effect of H+ concentration on complex formations with divalent and monovalent cations and the demonstration of K+ transport in mitochondria mediated by A23187. Biochemistry 1976; 15: 935
  • Hovi T., Williams S. C., Allison A. C. Divalent cation ionophore A23187 forms lipid soluble complexes with leucine and other amino acids. Nature 1975; 256: 70
  • Grynkiewicz G., Poemie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J. Biol. Chem. 1985; 260: 3440
  • Schuster S. M., Olson M. S. Energy dependent release of magnesium from beef heart sub-mitochondrial particles. J. Biol. Chem. 1973; 248: 8370
  • Isutzu K. T., Felton S. P., Siegel I. A., Yoda W. T., Chen A. C. N. Aequorin: its ionic specificity. Biochem. Biophys. Res. Commun. 1972; 49: 1034
  • Read N. D., Allan W. T. G., Knight H., Knight M. R., Malko R., Russell A., Shacklock P. S., Trewavas A. J. Imaging and measurement of cytosolic free calcium in plant and fungal cells. J. Microsc 1992; 166: 57
  • Hoyle B., Beveridge T. J. Binding of metallic ions to the outer membrane of Escherichia coli. Appl. Environ. Microbiol. 1983; 46: 749
  • Norris P. R., Kelly D. P. Accumulation of cadmium and cobalt by Saccharomyces cerevisiae. J. Gen. Microbiol. 1977; 99: 317
  • Cameron L. E., Léjohn M. B. On the involvement of calcium in the amino acid transport and growth of the fungus Achlya. J. Biol. Chem. 1972; 247: 4729
  • Silver S. Active transport of magnesium in Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 1969; 62: 764
  • Chang C, Shuman H., Somlyo A. P. Electron probe analysis, electron mapping and electron energy loss spectroscopy of calcium and magnesium and monovalent ions in the log phase and in dividing Escherichia coli B cells. J. Bacteriol. 1986; 167: 935
  • Hagiwara S., Byerly R. Calcium channels. Annu. Rev. Neurosci. 1981; 4: 69
  • Rothstein A., Hayes A., Jennings D., Hooper D. The active transport of Mg2+ and Mn2+ into the yeast cell. J. Gen. Physiol. 1958; 41: 585
  • Hutner S. H. Inorganic nutrition. Annu. Rev. Microbiol. 1972; 26: 313
  • Ohsumi Y., Anraku Y. Calcium transport driven by proton motive force in vacuolar membranes of Saccharomyces cerevisiae. J. Biol. Chem. 1983; 258: 5614
  • Borbolla M., Pena A. Some characteristics of Ca2+ uptake in yeast cells. J. Membrane Biol. 1980; 54: 149
  • Chapman C. J., Puri A. K., Taylor R. W., Pfeiffer D. R. Equilibria between ionophore A23187 and divalent cations: stability of 1:1 complexes in solution in 80% methanol-water. Biochemistry 1987; 26: 5009
  • Walker G. M., Duffus J. H. Magnesium ions and the control of the cell cycle in yeast. J. Cell Sci. 1980; 42: 329
  • Iida H., Yagawa Y., Anraku Y. Essential role for induced Ca2+ influx followed by [Ca2+], rise in maintaining viability of yeast cells later in the mating pheromone response pathway. J. Biol. Chem. 1990; 265: 13391
  • Nakajima-Shimada J., Iida H., Tsuji F. I., Anraku Y. Monitoring of intracellular calcium in Saccharomyces cerevisiae with an apoaequorin cDNA expression sytem. Proc. Natl. Acad. Sci. U.S.A. 1991; 88: 6878
  • Borst-Pauwels G. W. Ion transport in yeast. Biochim. Biophys. Acta 1981; 650: 88
  • Rothstein A., Hayes A. D. The relationship of the cell surface to metabolism. XIII. The cation binding properties of the yeast cell surface. Arch. Biochem. Biophys. 1956; 63: 87
  • Romero P. A., Herscovics A. Glycoprotein biosynthesis in Saccharomyces cerevisiae. J. Biol. Chem. 1989; 264: 1946
  • Robson G. D., Wiebe M. G., Trinci A. P. J. Low calcium concentrations induce increased branching in Fusarium graminarum. Mycol. Res. 1991; 95: 561
  • Chart H., Buck M., Stevenson P., Griffiths E. Iron-regulated outer membrane proteins of Escherichia coli. J. Gen. Microbiol. 1986; 132: 1373
  • Silver S., Kralovic M. L. Manganese accumulation by Escherichia coli: evidence for a specific transport system. Biochem. Biophys. Res. Commun. 1969; 34: 640
  • Silver S., Toth K., Scribner H. Facilitated transport of calcium by cell and subcellular membranes of Bacillus subtilis and Escherichia coli. J. Bacteriol. 1975; 122: 880
  • Leive L. The barrier function of the Gram negative envelope. Ann. N.Y. Acad. Sci. 1974; 235: 109
  • Brown M. R. W., Melling J. Loss of sensitivity to EDTA by Pseudomonas aeruginosa grown under conditions of Mg-limitation. J. Gen. Microbiol. 1968; 54: 439
  • Brown M. R. W., Melling J. Role of divalent cations in the action of polymyxin B and EDTA on Pseudomonas aeruginosa. J. Gen. Microbiol. 1969; 59: 263
  • Roberts N. A., Gray G. W., Wilkinson S. G. The bactericidal function of ethylenediaminetetra-acetic acid on Pseudomonas aeruginosa. Microbios 1970; 2: 189
  • Elsbach P., Weiss J., Kao L. The role of intramembrane Ca2+ in the hydrolysis of phospholipids of Escherichia coli by Ca2+-dependent phospholipases. J. Biol. Chem. 1985; 260: 1618
  • Moncany M. L. J., Kellenberger E. High magnesium content of Escherichia coli B. Experientia 1981; 37: 846
  • Bovallius A., Zacharias B. Variations in the metal content of some commercial media and their effect on microbial growth. Appl. Microbiol. 1971; 22: 260
  • Gangola P., Rosen B. Maintenance of intracellular calcium in Escherichia coli. J. Biol. Chem. 1987; 262: 12570
  • Harmon A. C., Prasher D., Cormier M. J. High affinity calcium binding proteins of Escherichia coli. Biochem. Biophys. Res. Commun. 1985; 127: 31
  • Shyu Y., Foegeding P. M. Presence of cal-modulin-like binding protein in Bacillus cereus T spores. FEMS Lett. 1989; 59: 235
  • Muthukumar G., Nickerson A. W., Nickerson N. W. Calmodulin levels in yeasts and filamentous fungi. FEMS Lett. 1987; 41: 253
  • Van den Bosch H. Intracellular phospholipases. Biochim. Biophys. Acta 1980; 604: 191
  • Scandella C. J., Kornberg A. A membrane-bound phospholipase Al purified from Escherichia coli. Biochemistry 1971; 10: 4447
  • Nishijima M., Nakaike S., Tanori Y., Nojima S. Detergent resistant phospholipase A of Escherichia coli K12. Eur. J. Biochem. 1977; 73: 115
  • Shipolini R. A., Callewaert G. L., Cottrell R. C., Doonan S., Vernon C. A., Banks B. E., Phospholipase A from bee venom. Eur. J. Biochem. 1971; 20: 459
  • Williams R. P. J. Physics and chemistry of calcium-binding proteins. CIBA Symp. Calcium and the Cell, D. Evererd, J. Whelen. Wiley, UK 1986; 160

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.