1,122
Views
73
CrossRef citations to date
0
Altmetric
Review Article

β-Lactamases identified in clinical isolates of Pseudomonas aeruginosa

&
Pages 245-258 | Received 17 Dec 2009, Accepted 27 Mar 2010, Published online: 20 May 2010

References

  • al Naiemi N, Duim B, Bart A. (2006). A CTX-M extended-spectrum β-lactamase in Pseudomonas aeruginosa and Stenotrophomonas maltophilia. J Med Microbiol 55, 1607–1608 .
  • Alibert-Franco S, Pradines B, Mahamoud A, Davin-Regli A, Pagès JM. (2009). Efflux mechanism, an attractive target to combat multidrug resistant Plasmodium falciparum and Pseudomonas aeruginosa. Curr Med Chem 16, 301–317.
  • Ambler RP. (1980). The structure of β-lactamases. Philos Trans R Soc Lond B Biol Sci 289, 321–331.
  • Andrade SS, Jones RN, Gales AC, Sader HS. (2003). Increasing prevalence of antimicrobial resistance among Pseudomonas aeruginosa isolates in Latin American medical centres: 5 year report of the SENTRY Antimicrobial Surveillance Program (1997–2001). J Antimicrob Chemother 52, 140–141.
  • Aubert D, Poirel L, Ali AB, Goldstein FW, Nordmann P. (2001a). OXA-35 is an OXA-10–related β–lactamase from Pseudomonas aeruginosa. J Antimicrob Chemother 48, 717–721.
  • Aubert D, Poirel L, Chevalier J, Leotard S, Pages JM, Nordmann P. (2001b). Oxacillinase-mediated resistance to cefepime and susceptibility to ceftazidime in Pseudomonas aeruginosa. Antimicrob Agents Chemother 45, 1615–1620.
  • Bahar G, Mazzariol A, Koncan R, Mert A, Fontana R, Rossolini GM, Cornaglia G. (2004). Detection of VIM-5 metallo-β-lactamase in a Pseudomonas aeruginosa clinical isolate from Turkey. J Antimicrob Chemother 54, 282–283.
  • Bassetti M, Nicolini L, Esposito S, Righi E, Viscoli C. (2009). Current status of newer carbapenems. Curr Med Chem 16, 564–575.
  • Bauernfeind A, Stemplinger I, Jungwirth R, Mangold P, Amann S, Akalin E, Anğ O, Bal C, Casellas JM. (1996). Characterization of β-lactamase gene blaPER–2, which encodes an extended-spectrum class A β-lactamase. Antimicrob Agents Chemother 40, 616–620.
  • Bonomo RA, Szabo D. (2006). Mechanisms of multidrug resistance in Acinetobacter species and Pseudomonas aeruginosa. Clin Infect Dis 43, S49–56.
  • Bradford PA. (2001). Extended-spectrum β-lactamases in the 21st century: characterization, epidemiology, detection of this important resistance threat. Clin Microbiol Rev 14, 933–951.
  • Burman LG, Park JT, Lindström EB, Boman HG. (1973). Resistance of Escherichia coli to penicillins: identification of the structural gene for the chromosomal penicillinase. J Bacteriol 116, 123–130.
  • Bush K. (1988). β-lactamase inhibitors from laboratory to clinic. Clin Microbiol Rev 1, 109–123.
  • Bush K, Jacoby GA, Medeiros AA. (1995). A functional classification scheme for β-lactamases and its correlation with molecular structures. Antimicrob Agents Chemother 39, 1211–1233.
  • Bush K, Jacoby GA. (2010). Updated functional classification of β–lactamases. Antimicrob Agents Chemother 54, 969–976.
  • Cagnacci S, Gualco L, Roveta S, Mannelli S, Borgianni L, Docquier JD, Dodi F, Centanaro M, Debbia E, Marchese A, Rossolini GM. (2008). Bloodstream infections caused by multidrug-resistant Klebsiella pneumoniae producing the carbapenem-hydrolysing VIM-1 metallo-β-lactamase: first Italian outbreak. J Antimicrob Chemother 61, 296–300.
  • Castanheira M, Bell JM, Turnidge JD, Mathai D, Jones RN. (2009). Carbapenem resistance among Pseudomonas aeruginosa strains from India: evidence for nationwide endemicity of multiple metallo-b-lactamase clones (VIM-2, -5, -6, and -11 and the newly characterized VIM–18). Antimicrob Agents Chemother 53, 1225–1227.
  • Castanheira M, Toleman MA, Jones RN, Schmidt FJ, Walsh TR. (2004). Molecular characterization of a β-lactamase gene, blaGIM–1, encoding a new subclass of metallo-β-lactamase. Antimicrob Agents Chemother 48, 4654–4661.
  • Celenza G, Pellegrini C, Caccamo M, Segatore B, Amicosante G, Perilli M. (2006). Spread of blaCTX-M-type and blaPER–2 β-lactamase genes in clinical isolates from Bolivian hospitals. J Antimicrob Chemother 57, 975–978.
  • Chanawong A, M’Zali FH, Heritage J, Lulitanond A, Hawkey PM. (2001). SHV-12, SHV-5, SHV-2a and VEB-1 extended-spectrum β-lactamases in gram-negative bacteria isolated in a university hospital in Thailand. J Antimicrob Chemother 48, 839–852.
  • Chaïbi EB, Sirot D, Paul G, Labia R. (1999). Inhibitor-resistant TEM β-lactamases: phenotypic, genetic and biochemical characteristics. J Antimicrob Chemother 43, 447–458.
  • Couture F, Lachapelle J, Levesque RC. (1992). Phylogeny of LCR–1 and OXA–5 with class A and class D β-lactamases. Mol Microbiol 6, 1693–1705.
  • Crespo MP, Woodford N, Sinclair A, Kaufmann ME, Turton J, Glover J, Velez JD, Castaneda CR, Recalde M, Livermore DM. (2004). Outbreak of carbapenem-resistant Pseudomonas aeruginosa producing VIM-8, a novel metallo-β-lactamase, in a tertiary care center in Cali, Colombia. J Clin Microbiol 42, 5094–5101.
  • Danel F, Hall LM, Duke B Gur D, Livermore DM. (1999). OXA-17, a further extended-spectrum variant of OXA-10 β-lactamase, isolated from Pseudomonas aeruginosa. Antimicrob Agents Chemother 43, 1362–1366.
  • Danel F, Hall LM, Gur D, Livermore DM. (1995). OXA–14, another extended-spectrum variant of OXA-10. (PSE-2). β-lactamase from Pseudomonas aeruginosa. Antimicrob Agents Chemother 39, 1881–1884.
  • Danel F, Hall LM, Gur D, Livermore DM. (1997). OXA-15, an extended-spectrum variant of OXA-2 β-lactamase, isolated from a Pseudomonas aeruginosa strain. Antimicrob Agents Chemother 41, 785–790.
  • Danel F, Hall LM, Gur D, Livermore DM. (1998). OXA–16, a further extended–spectrum variant of OXA-10 β-lactamase, from two Pseudomonas aeruginosa isolates. Antimicrob Agents Chemother 42, 3117–3122.
  • Datta N, Kontomichalou P. (1965). Penicillinase synthesis controlled by infectious R factors in Enterobacteriaceae. Nature 208, 239–241.
  • Drawz SM, Bonomo RA. (2010). Three decades of β–lactamase inhibitors. Clin Microbiol Rev 23, 160–201.
  • Dubois V, Arpin C, Noury P, Quentin C. (2002a). Clinical strain of Pseudomonas aeruginosa carrying a blaTEM–21 gene located on a chromosomal interrupted TnA type transposon. Antimicrob Agents Chemother 46, 3624–3626.
  • Dubois V, Poirel L, Marie C, Arpin C, Nordmann P, Quentin C. (2002b). Molecular characterization of a novel class 1 integron containing blaGES-1 and a fused product of aac3-Ib/aac6′–Ib’ gene cassettes in Pseudomonas aeruginosa Antimicrob. Agents Chemother 46, 638–645.
  • Duljasz W, Gniadkowski M, Sitter S, Wojna A, Jebelean C. (2009). First organisms with acquired metallo-β-lactamases. (IMP-13, IMP-22, VIM-2). reported in Austria. Antimicrob Agents Chemother 53, 2221–2222.
  • Empel J, Filczak K, Mrówka A, Hryniewicz W, Livermore DM, Gniadkowski M. (2007). Outbreak of Pseudomonas aeruginosa infections with PER-1 extended-spectrum β-lactamase in Warsaw, Poland: further evidence for an international clonal complex. J Clin Microbiol 45, 2829–2834.
  • Galani I, Souli M, Chryssouli Z, Orlandou K, Giamarellou H. (2005). Characterization of a new integron containing blaVIM-1 and aac(6′)-IIc in an Enterobacter cloacae clinical isolate from Greece. J Antimicrob Chemother 55, 634–638.
  • Gales AC, Menezes LC, Silbert S, Sader HS. (2003). Dissemination in distinct Brazilian regions of an epidemic carbapenem-resistant Pseudomonas aeruginosa producing SPM metallo-β-lactamase. J Antimicrob Chemother 52, 699–702.
  • Garza-Ramos U, Morfin-Otero R, Sader HS, Jones RN, Hernández E, Rodriguez-Noriega E, Sanchez A, Carrillo B, Esparza-Ahumada S, Silva-Sanchez J. (2008). Metallo-β-lactamase gene blaIMP-15 in a class 1 integron, In95, from Pseudomonas aeruginosa clinical isolates from a hospital in Mexico. Antimicrob Agents Chemother 52, 2943–2946.
  • Gibb AP, Tribuddharat C, Moore RA, Louie TJ, Krulicki W, Livermore DM, Palepou MF, Woodford N. (2002). Nosocomial outbreak of carbapenem-resistant Pseudomonas aeruginosa with a new blaIMP allele, blaIMP-7. Antimicrob Agents Chemother 46, 255–258.
  • Gilbert DN, Moellering RC, Eliopoulos GM, Sande MA. (2005). The Sanford Guide to Antimicrobial Therapy 2005, 35th ed. Hyde Park, VT: Antimicrobial Therapy.
  • Girlich D, Naas T, Leelaporn A, Poirel L, Fennewald M, Nordmann P. (2002). Nosocomial spread of the integron-located veb-1-like cassette encoding an extended-spectrum β-lactamase in Pseudomonas aeruginosa in Thailand. Clin Infect Dis 34, 603–611.
  • Girlich D, Naas T, Nordmann P. (2004). Biochemical characterization of the naturally occurring oxacillinase OXA–50 of Pseudomonas aeruginosa. Antimicrob Agents Chemother 48, 2043–2048.
  • Giuliani F, Docquier JD, Riccio ML Pagani, L Rossolini, GM. (2005). OXA-46, a new class D β–lactamase of narrow substrate specificity encoded by a blaVIM–1-containing integron from a Pseudomonas aeruginosa clinical isolate. Antimicrob Agents Chemother 49, 1973–1980.
  • Giwercman B, Lambert PA, Rosdahl VT, Shand GH, Høiby N. (1990). Rapid emergence of resistance in Pseudomonas aeruginosa in cystic fibrosis patients due to in–vivo selection of stable partially derepressed β-lactamase producing strains. J Antimicrob Chemother 26, 247–259.
  • Hall LM, Livermore DM, Gur D, Akova M, Akalin HE. (1993). OXA–11, an extended-spectrum variant of OXA–10. (PSE–2). β-lactamase from Pseudomonas aeruginosa. Antimicrob Agents Chemother 37, 1637–1644.
  • Hanson ND, Hossain A, Buck L, Moland ES, Thomson KS. (2006). First occurrence of a Pseudomonas aeruginosa isolate in the United States producing an IMP metallo-β-lactamase, IMP–18. Antimicrob Agents Chemother 50, 2272–2273.
  • Herbert S, Halvorsen DS, Leong T, Franklin C, Harrington G, Spelman D. (2007). Large outbreak of infection and colonization with gram-negative pathogens carrying the metallo-β-lactamase gene blaIMP-4 at a 320-bed tertiary hospital in Australia. Infect Control Hosp Epidemiol 28, 98–101.
  • Hu Z, Zhao WH. (2009). Identification of plasmid- and integron-borne blaIMP-1 and blaIMP-10 in clinical isolates of Serratia marcescens. J Med Microbiol 58, 217–221.
  • Iyobe S, Kusadokoro H, Takahashi A, Yomoda S, Okubo T, Nakamura A, O’Hara K. (2002). Detection of a variant metallo-β-lactamase, IMP-10, from two unrelated strains of Pseudomonas aeruginosa and an Alcaligenes xylosoxidans strain. Antimicrob Agents Chemother 46, 2014–2016.
  • Jacoby GA. (2009). AmpC β-lactamases. Clin Microbiol Rev 22, 161–182.
  • Jacoby GA, Matthew M. (1979). The distribution of β-lactamase genes on plasmids found in Pseudomonas. Plasmid 2, 41–47.
  • Juan C, Beceiro A, Gutiérrez O, Albertí S, Garau M, Pérez JL, Bou G, Oliver A. (2008). Characterization of the new metallo-β-lactamase VIM–13 and its integron-borne gene from a Pseudomonas aeruginosa clinical isolate in Spain. Antimicrob Agents Chemother 52, 3589–3596.
  • Juan C, Mulet X, Zamorano L, Albertí S, Pérez JL, Oliver A. (2009). Detection of the novel extended-spectrum β-lactamase OXA–161 from a plasmid-located integron in Pseudomonas aeruginosa clinical isolates from Spain. Antimicrob Agents Chemother 53, 5288–5290.
  • Kliebe C, Nies BA, Meyer JF, Tolxdorff-Neutzling RM, Wiedemann B. (1985). Evolution of plasmid-coded resistance to broad-spectrum cephalosporins. Antimicrob Agents Chemother 28, 302–307.
  • Kong KF, Jayawardena SR, Del Puerto A, Wiehlmann L, Laabs U, Tümmler B, Mathee K. (2005). Characterization of poxB, a chromosomal-encoded Pseudomonas aeruginosa oxacillinase. Gene 358, 82–92.
  • Lachapelle J, Dufresne J, Levesque RC. (1991). Characterization of the blaCARB–3 gene encoding the carbenicillinase-3 β-lactamase of Pseudomonas aeruginosa. Gene 102, 7–12.
  • Lauretti L, Riccio ML, Mazzariol A, Cornaglia G, Amicosante G, Fontana R, Rossolini GM. (1999). Cloning and characterization of blaVIM, a new integron-borne metallo-β-lactamase gene from a Pseudomonas aeruginosa clinical isolate. Antimicrob Agents Chemother 43, 1584–1590.
  • Lister PD. (2000). β-Lactamase inhibitor combinations with extended-spectrum penicillins: factors influencing antibacterial activity against enterobacteriaceae and Pseudomonas aeruginosa. Pharmacotherapy 20, 213S–218S.
  • Lister PD. (2002). Chromosomally-encoded resistance mechanisms of Pseudomonas aeruginosa: therapeutic implications. Am J Pharmacogenomics 2, 235–243.
  • Lister PD. (2007). Carbapenems in the USA: focus on doripenem. Expert Rev Anti Infect Ther 5, 793–809.
  • Livermore DM. (1995). β-Lactamases in laboratory and clinical resistance. Clin Microbiol Rev 8, 557–584.
  • Lodge JM, Minchin SD, Piddock LJ, Busby SJ. (1990). Cloning, sequencing and analysis of the structural gene and regulatory region of the Pseudomonas aeruginosa chromosomal ampC β-lactamase. Biochem J 272, 627–631.
  • Lombardi G, Luzzaro F, Docquier JD, Riccio ML, Perilli M, Colì A, Amicosante G, Rossolini GM, Toniolo A. (2002). Nosocomial infections caused by multidrug-resistant isolates of Pseudomonas putida producing VIM–1 metallo-β-lactamase. J Clin Microbiol 40, 4051–4055.
  • Marchandin H, Jean-Pierre H, De Champs C, Sirot D, Darbas H, Perigault PF, Carriere C. (2000). Production of a TEM-24 plasmid-mediated extended-spectrum β-lactamase by a clinical isolate of Pseudomonas aeruginosa. Antimicrob Agents Chemother 44, 213–216.
  • Matthew M, Hedges RW, Smith JT. (1979). Types of β-lactamase determined by plasmids in gram-negative bacteria. J Bacteriol 138, 657–662.
  • Mavroidi A, Tzelepi E, Tsakris A, Miriagou V, Sofianou D, Tzouvelekis LS. (2001). An integron-associated β-lactamase (IBC-2) from Pseudomonas aeruginosa is a variant of the extended-spectrum β-lactamase IBC-1. J Antimicrob Chemother 48, 627–630.
  • Mazel D. (2006). Integrons: agents of bacterial evolution. Nat Rev Microbiol 4, 608–620.
  • Mendes RE, Toleman MA, Ribeiro J, Sader HS, Jones RN, Walsh TR. (2004). Integron carrying a novel metallo-β-lactamase gene, blaIMP-16, a fused form of aminoglycoside-resistant gene aac(6′)-30/aac(6′)-Ib’: report from the SENTRY Antimicrobial Surveillance Program. Antimicrob Agents Chemother 48, 4693–4702.
  • Mitsuhashi S, Inoue M. (1981). Mechanisms of resistance to β-lactam antibiotics, In S Mitsuhashi. (ed), Beta-lactam antibiotics. Springer-Verlag, New York, pp. 41–56.
  • Mugnier P, Casin I, Bouthors AT, Collatz E. (1998a). Novel OXA-10-derived extended-spectrum β-lactamases selected in vivo or in vitro. Antimicrob Agents Chemother 42, 3113–3116.
  • Mugnier P, Dubrous P, Casin I, Arlet G, Collatz E. (1996). A TEM-derived extended-spectrum β-lactamase in Pseudomonas aeruginosa. Antimicrob Agents Chemother 40, 2488–2493.
  • Mugnier P, Podglajen I, Goldstein FW, Collatz E. (1998b). Carbapenems as inhibitors of OXA-13, a novel, integron-encoded β-lactamase in Pseudomonas aeruginosa. Microbiology 144, 1021–1031.
  • Naas T, Philippon L, Poirel L, Ronco E, Nordmann P. (1999a). An SHV-derived extended-spectrum β-lactamase in Pseudomonas aeruginosa. Antimicrob Agents Chemother 43, 1281–1284.
  • Naas T, Poirel L, Karim A, Nordmann P. (1999b). Molecular characterization of In50, a class 1 integron encoding the gene for the extended-spectrum β-lactamase VEB-1 in Pseudomonas aeruginosa. FEMS Microbiol Lett 176, 411–419.
  • Naas T, Sougakoff W, Casetta A, Nordmann P. (1998). Molecular characterization of OXA-20, a novel class D β-lactamase, its integron from Pseudomonas aeruginosa. Antimicrob Agents Chemother 42, 2074–2083.
  • Naas T, Nordmann P. (1999). OXA-type β-lactamases. Curr Pharm Des 5, 865–879.
  • Naiemi NA, Duim B, Savelkoul PH, Spanjaard L, de Jonge E, Bart A, Vandenbroucke-Grauls CM, de Jong MD. (2005). Widespread transfer of resistance genes between bacterial species in an intensive care unit: implications for hospital epidemiology. J Clin Microbiol 43, 4862–4864.
  • Nordmann P, Cuzon G, Naas T. (2009). The real threat of Klebsiella pneumoniae carbapenemase-producing bacteria. Lancet Infect Dis 9, 228–236.
  • Nordmann P, Ronco E, Naas T, Duport C, Michel-Briand Y, Labia R. (1993). Characterization of a novel extended-spectrum β-lactamase from Pseudomonas aeruginosa. Antimicrob Agents Chemother 37, 962–969.
  • Nordmann P, Guibert M. (1998). Extended-spectrum β-lactamases in Pseudomonas aeruginosa. J Antimicrob Chemother 42, 128–132.
  • Obritsch MD, Fish DN, MacLaren R, Jung R. (2005). Nosocomial infections due to multidrug-resistant Pseudomonas aeruginosa: epidemiology and treatment options. Pharmacotherapy 25, 1353–1364.
  • Osano E, Arakawa Y, Wacharotayankun R, Ohta M, Horii T, Ito H, Yoshimura F, Kato N. (1994). Molecular characterization of an enterobacterial metallo β-lactamase found in a clinical isolate of Serratia marcescens that shows imipenem resistance. Antimicrob Agents Chemother 38, 71–78.
  • Pasteran F, Faccone D, Petroni A, Rapoport M, Galas M, Vázquez M, Procopio A. (2005). Novel variant blaVIM–11 of the metallo-β-lactamase blaVIM family in a GES-1 extended-spectrum-β-lactamase-producing Pseudomonas aeruginosa clinical isolate in Argentina. Antimicrob Agents Chemother 49, 474–475.
  • Paterson DL, Bonomo RA. (2005). Extended-spectrum β-lactamases: a clinical update. Clin Microbiol Rev 18, 657–686.
  • Petroni A, Melano RG, Saka HA, Garutti A, Mange L, Pasterán F, Rapoport M, Miranda M, Faccone D, Rossi A, Hoffman PS, Galas MF. (2004). CARB-9, a carbenicillinase encoded in the VCR region of Vibrio cholerae non-O1, non-O139 belongs to a family of cassette-encoded β-lactamases. Antimicrob Agents Chemother 48, 4042–4046.
  • Philippon AM, Paul GC, Jacoby GA. (1983). Properties of PSE-2 β-lactamase and genetic basis for its production in Pseudomonas aeruginosa. Antimicrob Agents Chemother 24, 362–369.
  • Philippon AM, Paul GC, Jacoby GA. (1986). New plasmid-mediated oxacillin-hydrolyzing β–lactamase in Pseudomonas aeruginosa. J Antimicrob Chemother 17, 415–422.
  • Philippon LN, Naas T, Bouthors AT, Barakett V, Nordmann P. (1997). OXA–18, a class D clavulanic acid-inhibited extended-spectrum β-lactamase from Pseudomonas aeruginosa. Antimicrob Agents Chemother 41, 2188–2195.
  • Picão RC, Poirel L, Gales AC, Nordmann P. (2009). Further identification of CTX–M–2 extended-spectrum β-lactamase in Pseudomonas aeruginosa. Antimicrob Agents Chemother 53, 2225–2226.
  • Poirel L, Brinas L, Fortineau N, Nordmann P. (2005a). Integron-encoded GES-type extended-spectrum β-lactamase with increased activity toward aztreonam in Pseudomonas aeruginosa. Antimicrob Agents Chemother 49, 3593–3597.
  • Poirel L, Brinas L, Verlinde A, Ide L, Nordmann P. (2005b). BEL-1, a novel clavulanic acid-inhibited extended-spectrum β-lactamase, the class 1 integron In120 in Pseudomonas aeruginosa. Antimicrob Agents Chemother 49, 3743–3748.
  • Poirel L, Gerome P, De Champs C, Stephanazzi J, Naas T, Nordmann P. (2002a). Integron-located oxa–32 gene cassette encoding an extended-spectrum variant of OXA-2 β-lactamase from Pseudomonas aeruginosa. Antimicrob Agents Chemother 46, 566–569.
  • Poirel L, Girlich D, Naas T, Nordmann P. (2001a). OXA-28, an extended-spectrum variant of OXA–10 β–lactamase from Pseudomonas aeruginosa and its plasmid- and integron-located gene. Antimicrob Agents Chemother 45, 447–453.
  • Poirel L, Le Thomas I, Naas T, Karim A, Nordmann P. (2000a). Biochemical sequence analyses of GES–1, a novel class A extended-spectrum β-lactamase, the class 1 integron In52 from Klebsiella pneumonia. Antimicrob Agents Chemother 44, 622–632.
  • Poirel L, Lebessi E, Castro M, Fèvre C, Foustoukou M, Nordmann P. (2004a). Nosocomial outbreak of extended-spectrum β-lactamase SHV-5-producing isolates of Pseudomonas aeruginosa in Athens, Greece. Antimicrob Agents Chemother 48, 2277–2279.
  • Poirel L, Magalhaes M, Lopes M, Nordmann P. (2004b). Molecular analysis of metallo-β-lactamase gene blaSPM-1-surrounding sequences from disseminated Pseudomonas aeruginosa isolates in Recife, Brazil. Antimicrob Agents Chemother 48, 1406–1409.
  • Poirel L, Naas T, Guibert M, Chaibi EB, Labia R, Nordmann P. (1999a). Molecular and biochemical characterization of VEB-1, a novel class A extended-spectrum β-lactamase encoded by an Escherichia coli integron gene. Antimicrob Agents Chemother 43, 573–581.
  • Poirel L, Naas T, Nicolas D, Collet L, Bellais S, Cavallo JD, Nordmann P. (2000b). Characterization of VIM-2, a carbapenem-hydrolyzing metallo-β-lactamase and its plasmid- and integron-borne gene from a Pseudomonas aeruginosa clinical isolate in France. Antimicrob Agents Chemother 44, 891–897.
  • Poirel, L, Naas, T, Nordmann, P. (2010). Diversity, epidemiology, genetics of class D beta-lactamases. Antimicrob Agents Chemother 54, 24–38.
  • Poirel L, Ronco E, Naas T, Nordmann P. (1999b). Extended-spectrum β-lactamase TEM-4 in Pseudomonas aeruginosa. Clin Microbiol Infect 5, 651–652.
  • Poirel L, Rotimi VO, Mokaddas EM, Karim A, Nordmann P. (2001b). VEB-1-like extended-spectrum β-lactamases in Pseudomonas aeruginosa, Kuwait. Emerg Infect Dis 7, 468–470.
  • Poirel L, Weldhagen GF, De Champs C, Nordmann P. (2002b). A nosocomial outbreak of Pseudomonas aeruginosa isolates expressing the extended-spectrum β-lactamase GES-2 in South Africa. J Antimicrob Chemother 49, 561–565.
  • Poirel L, Weldhagen GF, Naas T, De Champs C, Dove MG, Nordmann P. (2001c). GES-2, a class A β-lactamase from Pseudomonas aeruginosa with increased hydrolysis of imipenem. Antimicrob Agents Chemother 45, 2598–2603.
  • Pournaras S, Tsakris A, Maniati M, Tzouvelekis LS, Maniatis AN. (2002). Novel variant blaVIM-4 of the metallo-β-lactamase gene blaVIM-1 in a clinical strain of Pseudomonas aeruginosa. Antimicrob Agents Chemother 46, 4026–4028.
  • Queenan AM, Bush K. (2007). Carbapenemases, the versatile β–lactamases. Clin Microbiol Rev 20, 440–458.
  • Rasmussen BA, Bush K. (1997). Carbapenem-hydrolyzing β-lactamases. Antimicrob Agents Chemother 41, 223–232 .
  • Riccio ML, Pallecchi L, Fontana R, Rossolini GM. (2001). In70 of plasmid pAX22, a blaVIM-1-containing integron carrying a new aminoglycoside phosphotransferase gene cassette. Antimicrob Agents Chemother 45, 1249–1253.
  • Rodríguez-Martínez JM, Poirel L, Nordmann P. (2009). Extended-spectrum cephalosporinases in Pseudomonas aeruginosa. Antimicrob Agents Chemother 53, 1766–1771.
  • Rossolini GM, Luzzaro F, Migliavacca R, Mugnaioli C, Pini B, De Luca F, Perilli M, Pollini S, Spalla M, Amicosante G, Toniolo A, Pagani L. (2008). First countrywide survey of acquired metallo-β-lactamases in gram-negative pathogens in Italy. Antimicrob Agents Chemother 52, 4023–4029.
  • Ryoo NH, Lee K, Lim JB, Lee YH, Bae IK, Jeong SH. (2009). Outbreak by meropenem-resistant Pseudomonas aeruginosa producing IMP-6 metallo-β-lactamase in a Korean hospital. Diagn Microbiol Infect Dis 63, 115–117.
  • Sader HS, Reis AO, Silbert S, Gales AC. (2005). IMPs, VIMs and SPMs, the diversity of metallo-β-lactamases produced by carbapenem-resistant Pseudomonas aeruginosa in a Brazilian hospital. Clin Microbiol Infect 11, 73–76.
  • Sanschagrin F, Bejaoui N, Levesque RC. (1998). Structure of CARB–4 and AER–1 carbenicillin-hydrolyzing β-lactamases. Antimicrob Agents Chemother 42, 1966–1972.
  • Schneider I, Keuleyan E, Rasshofer R, Markovska R, Queenan AM, Bauernfeind A. (2008). VIM–15 and VIM–16, two new VIM-2-like metallo-β-lactamases in Pseudomonas aeruginosa isolates from Bulgaria and Germany. Antimicrob Agents Chemother 52, 2977–2979.
  • Scoulica EV, Neonakis IK, Gikas AI, Tselentis YJ. (2004). Spread of blaVIM–1–producing E coli in a university hospital in Greece Genetic analysis of the integron carrying the blaVIM–1 metallo-β-lactamase gene. Diagn Microbiol Infect Dis 48, 167–172.
  • Shahid M, Sobia F, Singh A, Malik A, Khan HM, Jonas D, Hawkey PM. (2009). β-lactams and β-lactamase-inhibitors in current- or potential-clinical practice, a comprehensive update. Crit Rev Microbiol 35, 81–108 .
  • Shibata N, Doi Y, Yamane K, Yagi T, Kurokawa H, Shibayama K, Kato H, Kai K, Arakawa Y. (2003). PCR typing of genetic determinants for metallo-β-lactamases and integrases carried by gram–negative bacteria isolated in Japan, with focus on the class 3 integron. J Clin Microbiol 41, 5407–5413.
  • Siarkou VI, Vitti D, Protonotariou E, Ikonomidis A, Sofianou D. (2009). Molecular epidemiology of outbreak-related Pseudomonas aeruginosa strains carrying the novel variant blaVIM–17 metallo-β-lactamase gene. Antimicrob Agents Chemother 53, 1325–1330.
  • Stokes HW, Hall RM.(1989). A novel family of potentially mobile DNA elements encoding site-specific gene-integration functions, integrons. Mol Microbiol 3, 1669–1683.
  • Tam VH, Schilling AN, LaRocco MT, Gentry LO, Lolans K, Quinn JP, Garey KW. (2007). Prevalence of AmpC over-expression in bloodstream isolates of Pseudomonas aeruginosa. Clin Microbiol Infect 13, 413–418.
  • Tassios PT, Gennimata V, Spaliara-Kalogeropoulou L, Kairis D, Koutsia C, Vatopoulos AC, Legakis NJ. (1997). Multiresistant Pseudomonas aeruginosa serogroup O,11 outbreak in an intensive care unit. Clin Microbiol Infect 3, 621–628.
  • Toleman MA, Biedenbach D, Bennett D, Jones RN, Walsh TR. (2003a). Genetic characterization of a novel metallo-β-lactamase gene, blaIMP–13, harboured by a novel Tn5051-type transposon disseminating carbapenemase genes in Europe, report from the SENTRY worldwide antimicrobial surveillance programme. J Antimicrob Chemother 52, 583–590.
  • Toleman MA, Rolston K, Jones RN, Walsh TR. (2003b). Molecular and biochemical characterization of OXA-45, an extended-spectrum class 2d’ β-lactamase in Pseudomonas aeruginosa. Antimicrob Agents Chemother 47, 2859–2863.
  • Toleman MA, Rolston K, Jones RN, Walsh TR. (2004). blaVIM–7, an evolutionarily distinct metallo-β-lactamase gene in a Pseudomonas aeruginosa isolate from the United States. Antimicrob Agents Chemother 48, 329–332.
  • Toleman MA, Simm AM, Murphy TA, Gales AC, Biedenbach DJ, Jones RN, Walsh TR. (2002). Molecular characterization of SPM-1, a novel metallo-β-lactamase isolated in Latin America, report from the SENTRY antimicrobial surveillance programme. J Antimicrob Chemother 50, 673–679.
  • Tsakris A, Ikonomidis A, Pournaras S, Tzouvelekis LS, Sofianou D, Legakis NJ, Maniatis AN. (2006). VIM-1 metallo-β-lactamase in Acinetobacter baumannii. Emerg Infect Dis 12, 981–983.
  • Tzouvelekis LS, Bonomo RA. (1999). SHV-type β-lactamases. Curr Pharm Des 5, 847–864.
  • Vahaboglu H, Oztürk R, Aygün G, Coşkunkan F, Yaman A, Kaygusuz A, Leblebicioglu H, Balik I, Aydin K, Otkun M. (1997). Widespread detection of PER-1-type extended-spectrum β–lactamases among nosocomial Acinetobacter and Pseudomonas aeruginosa isolates in Turkey, a nationwide multicenter study. Antimicrob Agents Chemother 41, 2265–2269.
  • Villegas MV, Lolans K, Correa A, Kattan JN, Lopez JA, Quinn JP, Colombian Nosocomial Resistance Study Group. (2007). First identification of Pseudomonas aeruginosa isolates producing a KPC-type carbapenem-hydrolyzing β-lactamase. Antimicrob Agents Chemother 51, 1553–1555 .
  • Vourli S, Tsorlini H, Katsifa H, Polemis M, Tzouvelekis LS, Kontodimou A, Vatopoulos AC. (2006). Emergence of Proteus mirabilis carrying the bla metallo-β-lactamase gene. Clin Microbiol Infect 12, 691–694.
  • Waley SG. (1992). β–Lactamase, mechanism of action, p 198–228 In M I Page. (ed), The chemistry of β-lactams. Chapman and Hall, London.
  • Walsh TR, Toleman MA, Poirel L, Nordmann P. (2005). Metallo-β-lactamases, the quiet before the storm? Clin Microbiol Rev 18, 306–325.
  • Walther-Rasmussen J, Høiby N. (2007). Class A carbapenemases. J Antimicrob Chemother 60, 470–482.
  • Wang C, Cai P, Chang D, Mi Z. (2006). A Pseudomonas aeruginosa isolate producing the GES-5 extended-spectrum β-lactamase. J Antimicrob Chemother 57, 1261–1262.
  • Watanabe M, Iyobe S, Inoue M, Mitsuhashi S. (1991). Transferable imipenem resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 35, 147–151 .
  • Weile J, Rahmig H, Gfröer S, Schroeppel K, Knabbe C, Susa M. (2007). First detection of a VIM-1 metallo-β-lactamase in a carbapenem-resistant Citrobacter freundii clinical isolate in an acute hospital in Germany. Scand J Infect Dis 39, 264–266.
  • Weldhagen GF, Poirel L, Nordmann P. (2003). Ambler class A extended-spectrum β-lactamases in Pseudomonas aeruginosa, novel developments and clinical impact. Antimicrob Agents Chemother 47, 2385–2392.
  • Wisplinghoff H, Bischoff T, Tallent SM, Seifert H, Wenzel RP, Edmond MB. (2004). Nosocomial bloodstream infections in US hospitals, analysis of 24,179 cases from a prospective nationwide surveillance study. Clin Infect Dis 39, 309–317.
  • Wolter DJ, Kurpiel PM, Woodford N, Palepou MF, Goering RV, Hanson ND. (2009). Phenotypic and enzymatic comparative analysis of the novel KPC variant KPC-5 and its evolutionary variants, KPC-2 and KPC-4. Antimicrob Agents Chemother 53, 557–562.
  • Woodford N, Zhang J, Kaufmann ME, Yarde S, Tomas Mdel M, Faris C, Vardhan MS, Dawson S, Cotterill SL, Livermore DM. (2008). Detection of Pseudomonas aeruginosa isolates producing VEB-type extended-spectrum β-lactamases in the United Kingdom. J Antimicrob Chemother 62, 1265–1268.
  • Xiong J, Hynes MF, Ye H, Chen H, Yang Y, M’zali F, Hawkey PM, Guangzhou Antibiotic Resistance Study Group. (2006). blaIMP-9 and its association with large plasmids carried by Pseudomonas aeruginosa isolates from the People’s Republic of China. Antimicrob Agents Chemother 50, 355–358.
  • Yan JJ, Hsueh PR, Ko WC, Luh KT, Tsai SH, Wu HM, Wu JJ. (2001). Metallo-β-lactamases in clinical Pseudomonas isolates in Taiwan and identification of VIM–3, a novel variant of the VIM-2 enzyme. Antimicrob Agents Chemother 45, 2224–2228.
  • Yan JJ, Hsueh PR, Lu JJ, Chang FY, Ko WC, Wu JJ. (2006). Characterization of acquired β-lactamases and their genetic support in multidrug–resistant Pseudomonas aeruginosa isolates in Taiwan, the prevalence of unusual integrons. J Antimicrob Chemother 58, 530–536.
  • Yigit H, Queenan AM, Anderson GJ, Domenech-Sanchez A, Biddle JW, Steward CD, Alberti S, Bush K, Tenover FC. (2001). Novel carbapenem-hydrolyzing β-lactamase, KPC-1, from a carbapenem-resistant strain of Klebsiella pneumonia. Antimicrob Agents Chemother 45, 1151–1161.
  • Yoshimura F, Nikaido H. (1982). Permeability of Pseudomonas aeruginosa outer membrane to hydrophilic solutes. J Bacteriol 152, 636–642.
  • Zhao WH, Chen G, Ito R, Hu ZQ. (2009). Relevance of resistance levels to carbapenems and integron-borne blaIMP-1, blaIMP-7, blaIMP-10 and blaVIM-2 in clinical isolates of Pseudomonas aeruginosa. J Med Microbiol 58, 1080–1085.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.