732
Views
58
CrossRef citations to date
0
Altmetric
Review Article

Lipid hydrolizing enzymes in virulence: Mycobacterium tuberculosis as a model system

, , &
Pages 259-269 | Received 07 Jan 2010, Accepted 31 Mar 2010, Published online: 25 May 2010

References

  • Aderem A, Underhill DM. (1999). Mechanisms of phagocytosis in macrophages. Annu Rev Immunol, 17, 593–623.
  • Anuchin AM, Mulyukin AL, Suzina NE, Duda VI, Registan GIE, Kaprelyants AS. (2009). Dormant forms of Mycobacterium smegmatis with distinct morphology. Microbiol, 155, 1071–1079.
  • Azuma I, Yamamoto F. (1963). Studies on the firmly bound lipids of human tubercle bacillus. II. Isolation of arabinose mycolate and identification of its chemical structure. J Biochem (Tokyo), 53, 274–281.
  • Banu S, Honore N, Joanis BS, Philpott D, Prevost MC, Cole ST. (2002). Are the PE-PGRS proteins of Mycobacterium tuberculosis variable surface antigens? Mol Microbiol, 44, 9–19.
  • Berka RM, Gray GL, Vasil ML. (1981). Studies of phospholipase C (heat labile hemolysin) in Pseudomonas aeruginosa. Infect Immun, 34, 1071–1074.
  • Berka RM, Vasil ML. (1982). Phospholipase C (heat-labile hemolysin) of Pseudomonas aeruginosa: purification and preliminary characterization. J Bacteriol, 152, 239–245.
  • Berto P, Commenil P, Belingheri L, Dehorter B. (1999). Occurrence of a lipase in spores of Alternaria brassicicola with a crucial role in the infection of cauliflower leaves. FEMS Microbiol Lett, 180, 183–189.
  • Boland JAV, Kocks C, Dramsi S, Ohayon H, Geoffroy C, Mengaud J, Cossart P. (1992). Nucleotide sequence of the lecithinase operon of Listeria monocytogenes and possible role of lecithinase in cell-to-cell spread. Infect Immun, 60, 219–230.
  • Bottai D, Brosch R. (2009). Mycobacterial PE, PPE and ESX clusters: novel insights into the secretion of these most unusual protein families. Mol Microbiol, 73, 325–8.
  • Brennan MJ, Delogu G. (2002). The PE multigene family: A ‘molecular mantra’ for mycobacteria. Trends Microbiol, 10, 246–249.
  • Camacho LR, Ensergueix D, Perez E, Gicquel B, Guilhot C. (1999). Identification of a virulence gene cluster of Mycobacterium tuberculosis by signature-tagged transposon mutagenesis. Mol Microbiol, 34, 257–267.
  • Canaan S, Maurin D, Chahinian H, Pouilly B, Durousseau C, Frassinetti F, Calvo LS, Cambillau C, Bourne Y. (2004). Expression and characterization of the protein Rv1399c from Mycobacterium tuberculosis. A novel carboxyl esterase structurally related to the HSL family. Eur J Biochem, 271, 3953–3961.
  • Cascioferro A, Delogu G, Colone M, Sali M, Stringaro A, Arancia G, Fadda G, Palu G, Manganelli R. (2007). PE is a functional domain responsible for protein translocation and localization on mycobacterial cell wall. Mol Microbiol, 66, 1536–1547.
  • Chahinian H, Nini L, Boitard E, Dubes JP, Comeau LC, Sarda L. (2002). Distinction between esterases and lipases: a kinetic study with vinyl esters and TAG. Lipids, 37, 653–662.
  • Choudhary RK, Mukhopadhyay S, Chakhaiyar P, Sharma N, Murthy KJR, Katoch VM, Hasnain SE. (2003). PPE Antigen Rv2430c of Mycobacterium tuberculosis Induces a Strong B-Cell Response. Infect Immun, 71, 6338–6343.
  • Christensen H, Garton NJ, Horobin RW, Minnikin DE, Barer MR. (1999). Lipid domains of mycobacteria studied with fluorescent molecular probes. Mol Microbiol, 31, 1561–1572.
  • Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, Gordon SV, Eiglmeier K, Gas S, Barry CE III, Tekaia F, Badcock K, Basham D, Brown D, Chillingworth T, Connor R, Davies R, Devlin K, Feltwell T, Gentles S, Hamlin N, Holroyd S, Hornsby T, Jagels K, Krogh A, McLean J, Moule S, Murphy L, Oliver K, Osborne J, Quail MA, Rajandream MA, Rogers J, Rutter S, Seeger K, Skelton J, Squares R, Squares S, Sulston JE, Taylor K, Whitehead S, Barrell BG. (1998). Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nat (London), 393, 537–544.
  • Cotes K, Dhouib R, Douchet I, Chahinian H, Caro AD, Carriere F, Canaan S. (2007). Characterization of an exported monoglyceride lipase from Mycobacterium tuberculosis possibly involved in the metabolism of host cell membrane lipids. Biochem J, 408, 417–427.
  • Cotes K, N’Goma JCB, Dhouib R, Douchet I, Maurin D, Carriere F, Canaan S. (2008). Lipolytic enzymes in Mycobacterium tuberculosis. Appl Microbiol Biotechnol, 78, 741–749.
  • Deb C, Daniel J, Sirakova TD, Abomoelak B, Dubey VS, Kolattukudy PE. (2006). A novel lipase belonging to the hormone-sensitive lipase family induced under starvation to utilize stored triacylglycerol in Mycobacterium tuberculosis. J Biol Chem, 281, 3866–3875.
  • Deb C, Lee CM, Dubey VS, Daniel J, Abomoelak B, Sirakova TD, Pawar S, Rogers L, Kolattukudy PE. (2009). A Novel In Vitro Multiple-Stress Dormancy Model for Mycobacterium tuberculosis Generates a Lipid-Loaded, Drug-Tolerant, Dormant Pathogen. PLoS One, 4, e6077.
  • Delogu G, Brennan MJ. (2001). Comparative immune response to PE and PE_PGRS antigens of Mycobacterium tuberculosis. Infect Immun, 69, 5606–5611.
  • Ernst JD. (1998). Macrophage receptors for Mycobacterium tuberculosis. Infect Immun, 66, 1277–1281.
  • Espitia C, Espinosa R, Saavedra R, Mancilla R, Romain F, Laqueyrerie A, Moreno C. (1995). Antigenic and structural similarities between Mycobacterium tuberculosis 50/55 kDa and Mycobacterium bovis BCG 45/47 kDa antigens. Infect Immun, 63, 580–584.
  • Espitia C, Laclette JP, Palomino MM, Amador A, Campuzano J, Martens A, Singh M, Cicero R, Zhang Y, Moreno C. (1999). The PE-PGRS glycine-rich proteins of Mycobacterium tuberculosis: a new family of fibronectin-binding proteins. Microbiol, 145, 3487–3495.
  • Farrell AM, Foster TJ, Holland KT. (1993). Molecular analysis and expression of the lipase of Staphylococcus epidermidis. J Gen Microbiol, 139, 267–277.
  • Fisher MA, Plikaytis BB, Shinnick TM. (2002). Microarray Analysis of the Mycobacterium tuberculosis Transcriptional Response to the Acidic Conditions Found in Phagosomes. J Bacteriol, 184, 4025–4032.
  • Fratti RA, Chua J, Vergne I, Deretic V. (2003). Mycobacterium tuberculosis Glycosylated Phosphatidylinositol Causes Phagosome Maturation Arrest. Proc Natl Acad Sci USA, 100, 5437–5442.
  • Garton NJ, Christensen H, Minnikin DE, Adegbola RA, Barer MR. (2002). Intracellular lipophilic inclusions of mycobacteria in vitro and in sputum. Microbiol, 148, 2951–2958.
  • Gatfield J, Pieters J. (2000). Essential Role for Cholesterol in Entry of Mycobacteria into Macrophages. Science, 288, 1647–50.
  • George KM, Yuan Y, Sherman DR, Barry CE 3rd. (1995). The biosynthesis of cyclopropanated mycolic acids in Mycobacterium tuberculosis. Identification and functional analysis of CMAS-2. J Biol Chem, 270, 27292–27298.
  • Ghannoum MA. (2000). Potential role of phospholipases in virulence and fungal pathogenesis. Clin Microbiol Rev, 13, 122–143.
  • Gilmore MS, Rodz ALC, Watcher ML, Kreft J, Goebel W. (1989). A Bacillus cereus cytolytic determinant, cereolysin AB, which comprises the phospholipase C and sphingomyelinase genes: nucleotide sequence and genetic linkage. J Bacteriol, 171, 744–753.
  • Gonzales M, Saviola B. (2009). Mutational analysis of the -10 region from the Mycobacterium tuberculosis lipF promoter. Mol Biol Rep, 36, 1225–1229.
  • Greco E, Santucci MB, Sali M, Angelis FRD, Papi M, Spirito MD, Delogu G, Colizzi V, Fraziano M. (2010). Natural lysophospholipids reduce Mycobacterium tuberculosis-induced cytotoxicity and induce anti-mycobacterial activity by a phagolysosome maturation-dependent mechanism in A549 type II alveolar epithelial cells. Immunol, 129, 125–32.
  • Gribbon EM, Cunliffe WJ, Holland KT. (1993). Interaction of Propionibacterium acnes with skin lipids in vitro. J Gen Microbiol, 139, 1745–1751.
  • Grover A, Ahmed MF, Verma I, Sharma P, Khuller GK. (2006). Expression and purification of the Mycobacterium tuberculosis complex-restricted antigen CFP21 to study its immunoprophylactic potential in mouse model. Prot Exp Purif, 48, 274–280.
  • Hackbarth CJ, Unsal I, Chambers HF. (1997). Cloning and Sequence Analysis of a Class A β-Lactamase from Mycobacterium tuberculosis H37Ra. Antimicrob. Agents Chemoth, 41, 1182–1185.
  • Heffernan BJ, Thomason B, Palmer AH, Hanna P. (2006). Bacillus anthracis anthrolysin O and three phospholipases C are functionally redundant in a murine model of inhalation anthrax. FEMS Microbiol Lett, 271, 98– 105.
  • Hotelier T, Renault L, Cousin X, Negre V, Marchot P, Chatonnet A. (2004). ESTHER, the database of the alpha/beta-hydrolase fold superfamily of proteins. Nucleic Acids Res, 32, D145–D147.
  • Hugonnet JE, Tremblay LW, Boshoff HI, Barry CE 3rd, Blanchard JS. (2009). Meropenem-clavulanate is effective against extensively drug-resistant Mycobacterium tuberculosis. Science, 323, 1215–8.
  • Ibrahim ASF, Mirbod SG, Filler Y, Banno GT, Cole Y, Kitajima JE, Edwards Jr., Nozawa Y, Ghannoum MA. (1995). Evidence implicating phospholipase as a virulence factor of Candida albicans. Infect Immun, 63, 1993–1998.
  • Jaeger KE, Ransac S, Dijkstra BW, Colson C, Heuvel MV, Misset O. (1994). Bacterial lipases. FEMS Microbiol Rev, 15, 29–63.
  • Johansen KA, Gill RE, Vasil ML. (1996). Biochemical and molecular analysis of phospholipase C and phospholipase D activity in mycobacteria. Infect Immun, 64, 3259–3266.
  • Kasik JE. (1979). Mycobacterial β-lactamases. In Hamilton-Miller JMT, Smith JT, ed. Beta-Lactamases. Academic Press, London, 339–350.
  • Kaul D, Anand PK, Verma I. (2004). Cholesterol-sensor initiates M. tuberculosis entry into human macrophages. Mol Cell Biochem, 258, 219–222.
  • Keane J, Sablinska, MKB, Remold HG, Chupp GL, Meek BB, Fenton MJ, Kornfeld H. (1997). Infection by Mycobacterium tuberculosis promotes human alveolar macrophage apoptosis. Infec Immun, 65, 298–304.
  • King CH, Mundayoor S, Crawford JT, Shinnick TM. (1993). Expression of contact-dependent cytolytic activity by Mycobacterium tuberculosis and isolation of the genomic locus that encodes the activity. Infect Immun, 61, 2708–2712.
  • Leao SC, Rocha CL, Murillo LA, Parra CA, Patarroyo ME. (1995). A species-specific nucleotide sequence of Mycobacterium tuberculosis encodes a protein that exhibits hemolytic activity when expressed in Escherichia coli. Infect Immun, 63, 4301–4306.
  • Logan AJ, Williamson ED, Titball RW, Percival DA, Shuttleworth AD, Conlan JW, Kelly DC. (1991). Epitope mapping of the alpha-toxin of Clostridium perfringens. Infect Immun, 59, 4338–4342.
  • Longhi S, Cambillau C. (1999). Structure-activity of cutinase, a small lipolytic enzyme. Biochim Biophys Acta, 1441, 185–196.
  • Lonon MK, Woods DE, Straus DC. (1988). Production of lipase by clinical isolates of Pseudomonas cepacia. J Clin Microbiol, 26, 979–984.
  • Lun S, Bishai WR. (2007). Characterization of a Novel Cell Wall-anchored Protein with Carboxylesterase Activity Required for Virulence in Mycobacterium tuberculosis. J Biol Chem, 282, 18348–18356.
  • Madduri S, Sona R, Yeddula N, Beenu J, Katoch VM, Ram R, Balajji KN. (2008). Functional characterization of the phospholipase C activity of Rv3487c and its localization on the cell wall of Mycobacterium tuberculosis. J Biosciences, 33(2), 221–230.
  • Matsui T, Carneiro CRW, Leao SC. (2000). Evidence for the expression of native Mycobacterium tuberculosis phospholipase C: recognition by immune sera and detection of promoter activity. Braz J Med Biol Res, 33, 1275–1282.
  • McDonough KA, Kress Y, Bloom BR. (1993). Pathogenesis of tuberculosis: interaction of Mycobacterium tuberculosis with macrophages. Infect Immun, 61, 2763–2773.
  • McNeil M, Daffe M, Brennan PJ. (1991). Location of the mycolyl ester substituents in the cell walls of mycobacteria. J Biol Chem, 266, 13217–13223.
  • Meer-Janssen YPMV, Galen JV, Batenburg JJ, Helms JB. (2010). Lipids in host-pathogen interactions: Pathogens exploit the complexity of the host cell lipidome. Prog Lipid Res, 49, 1–26.
  • Mishra KC, Chastellier CD, Narayana Y, Bifani P, Brown AK, Besra GS, Katoch VM, Joshi B, Balaji KN, Kremer L. (2008). Functional Role of the PE Domain and Immunogenicity of the Mycobacterium tuberculosis Triacylglycerol Hydrolase LipY. Infect Immun, 76(1), 127–140.
  • Mullen T, Markey K, Murphy P, McClean S, Callaghan M. (2007). Role of lipase in Burkholderia cepacia complex (Bcc) invasion of lung epithelial cells. Eur J Clin Microbiol Infect Dis, 26, 869–877.
  • Mumy KL, Bien JD, Pazos MA, Gronert K, Hurley BP, McCormick BA. (2008). Distinct Isoforms of Phospholipase A2 Mediate the Ability of Salmonella enterica Serotype Typhimurium and Shigella flexneri To Induce the Transepithelial Migration of Neutrophils. Infect Immun, 76, 3614–3627.
  • Nampoothiri KM, Rubex R, Patel AK, Narayanan SS, Krishna S, Das SM, Pandey A. (2008). Molecular cloning, overexpression and biochemical characterization of hypothetical beta-lactamases of Mycobacterium tuberculosis H37Rv. J Appl Microbiol, 105, 59–67.
  • Narayana Y, Joshi B, Katoch VM, Mishra KC, Balaji KN. (2007). Differential B-Cell Responses Are Induced by Mycobacterium tuberculosis PE Antigens Rv1169c, Rv0978c, and Rv1818c. Clin Vac Immunol, 14, 1334–1341.
  • Niero CV, Haas PED, Soolingen DV, Leao SC. (2004). Analysis of genetic polymorphisms affecting the four phospholipase C (plc) genes in Mycobacterium tuberculosis complex clinical isolates. Microbiol, 150, 967–978.
  • Noll H, Bloch H, Asselineau J, Lederer E. (1956). The chemical structure of the cord factor of Mycobacterium tuberculosis. Biochim Biophys Acta, 20, 299–309.
  • Noll H, Bloch H. (1955). Studies on the chemistry of the cord factor of Mycobacerium tuberculosis. J Biol Chem, 214, 251–265.
  • Parker SK, Barkley RM, Rino JG, Vasil ML. (2009). Mycobacterium tuberculosis Rv3802c Encodes a Phospholipase/Thioesterase and Is Inhibited by the Antimycobacterial Agent Tetrahydrolipstatin. PLoS ONE, 4, e4281.
  • Parker SK, Curtin KM, Vasil ML. (2007). Purification and characterization of mycobacterial phospholipase A: an activity associated with mycobacterial cutinase. J Bacteriol, 189, 4153–4160.
  • Richter L, Saviola B. (2009). The lipF promoter of Mycobacterium tuberculosis is upregulated specifically by acidic pH but not by other stress conditions. Microbiol Res, 164, 228–232.
  • Richter L, Tai W, Felton J, Saviola B. (2007). Determination of the minimal acid-inducible promoter region of the lipF gene from Mycobacterium tuberculosis. Gene, 395, 22–28.
  • Rollof J, Braconier JH, Soderstrom C, Ehle PN. (1988). Interference of Staphylococcus aureus lipase with human granulocyte function. Euro J Clin Microbiol Infect Dis, 7, 505–510.
  • Ronning DR, Klabunde T, Besra GS, Vissa VD, Belisle JT, Sacchettini JC. (2000). Crystal structure of the secreted form of antigen 85C reveals potential targets for mycobacterial drugs and vaccines. Nat Struct Biol, 7, 141–146.
  • Sassetti CM, Boyd DH, Rubin EJ. (2003). Genes required for mycobacterial growth defined by high-density mutagenesis. Mol Microbiol, 48, 77–84.
  • Schu M, Maurin D, Dhouib R, N’Goma JCB, Delorme V, Lambeau G, Carriere F, Canaan S. (2010). Two cutinase-like proteins secreted by Mycobacterium tuberculosis show very different lipolytic activities reflecting their physiological function. FASEB J, In press.
  • Shanahan ER, Pinto R, Triccas JA, Britton WJ, West NP. (2010). Cutinase-like protein-6 of Mycobacterium tuberculosis is recognised in tuberculosis patients and protects mice against pulmonary infection as a single and fusion protein vaccine. Vaccine, 28, 1341–1346.
  • Sheline KD, France AM, Talarico S, Foxman B, Zhang L, Marrs CF, Bates JH, Cave MD, Yang Z. (2009). Does the lipR gene of tubercle bacilli have a role in tuberculosis transmission and pathogenesis? Tuberculosis, 89, 114–9.
  • Titball RW, Hunter SEC, Martin KL, Morris BC, Shuttleworth AD, Rubidge T, Anderson DW, Kelly DC. (1989). Molecular cloning and nucleotide sequence of the alpha-toxin (phospholipase-C) of Clostridium perfringens. Infect Immun, 57, 367–376.
  • Todar K. (2004). Online Textbook of Bacteriology, “The Good, the Bad, and the Deadly”. Science Magazine, 304, 1421.
  • Tsuboi R, Komatsuzaki H, Ogawa H. (1996). Induction of an extracellular esterase from Candida albicans and some of its properties. Infect Immun, 64, 2936–2940.
  • Voigt CA, Schafer W, Salomon S. (2005). A secreted lipase of Fusarium graminearum is a virulence factor required for infection of cereals. Plant J, 42, 364– 375.
  • West NP, Chow FME, Randall EJ, Wu J, Chen J, Ribeiro JMC, Britton WJ. (2009). Cutinase-like proteins of Mycobacterium tuberculosis: characterization of their variable enzymatic functions and active site identification. FASEB J, 23, 1694–1704.
  • Wilson J, Schurr M, LeBlanc C, Ramamurthy R, Buchanan K, Nickerson C. (2002). Mechanisms of bacterial pathogenicity. Postgrad Med J, 78, 216–224.
  • Wilson RA, Maughan WN, Kremer L, Besra GS, Futterer K. (2004). The structure of Mycobacterium tuberculosis MPT51 (FbpC1) defines a new family of non-catalytic alpha/beta hydrolases. J Mol Biol, 335, 519–30.
  • World Health Organization. (2007). Tuberculosis facts. Available at http://www.who.int/tb/publications/2007/factsheet_2007.pdf. Accessed January 14, 2008.
  • Yuan Y, Lee RE, Besra GS, Belisle JT, Barry CE 3rd. (1995). Identification of a gene involved in the biosynthesis of cyclopropanated mycolic acids in Mycobacterium tuberculosis. Proc Natl Acad Sci USA, 3, 6630–6634.
  • Zhang M, Wang JD, Li ZF, Xie J, Yang YP, Zhong Y, Wang HH. (2005). Expression and characterization of the carboxyl esterase Rv3487c from Mycobacterium tuberculosis. Protein Expr Purif, 42, 59–66.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.