2,083
Views
189
CrossRef citations to date
0
Altmetric
Review Article

Detection of pathogens in foods: the current state-of-the-art and future directions

&
Pages 40-63 | Received 23 Jun 2010, Accepted 02 Jul 2010, Published online: 07 Oct 2010

References

  • Abdulmawjood A, Roth S, Bulte M. (2002). Two methods for construction of internal amplification controls for the detection of Escherichia coli O157 by polymerase chain reaction. Mol Cell Probes 16 (5), 335–9.
  • Agoston R, Soni KA, McElhany K, Cepeda ML, Zuckerman U, Tzipori S, Mohacsi-Farkas C,Pillai SD. (2009). Rapid concentration of Bacillus and Clostridium spores from large volumes of milk, using continuous flow centrifugation. J Food Prot 72 (3), 666–8.
  • Aldus CF, Van Amerongen A, Ariens RM, Peck MW, Wichers JH, Wyatt GM. (2003). Principles of some novel rapid dipstick methods for detection and characterization of verotoxigenic Escherichia coli. J Appl Microbiol 95 (2), 380–9.
  • Amagliani G, Omiccioli E, Campo A, Bruce IJ, Brandi G, Magnani M. (2006). Development of a magnetic capture hybridization-PCR assay for Listeria monocytogenes direct detection in milk samples. J Appl Microbiol 100 (2), 375–83.
  • Baek MG, Stevens RC, Charych DH. (2000). Design and synthesis of novel glycopolythiophene assemblies for colorimetric detection of influenza virus and E coli. Bioconjug Chem 11 (6), 777–88.
  • Banada PP, Bhunia AK. (2008). Antibodies and Immunoassays for Detection of Bacterial Pathogens Edited by Zourob M, Elwary S and Turner A, Principles of Bacterial Detection, Biosensors, Recognition Receptors and Microsystems. New York, Springer.
  • Bauwens L, Vercammen F, Hertsens A. (2003). Detection of pathogenic Listeria spp in zoo animal faeces, use of immunomagnetic separation and a chromogenic isolation medium. Vet Microbiol 91 (2-3), 115–23.
  • Bennett AR, Davids FG, Vlahodimou S, Banks JG, Betts RP. (1997). The use of bacteriophage-based systems for the separation and concentration of Salmonella. J Appl Microbiol 83 (2), 259–65.
  • Berry ED, Siragusa GR. (1997). Hydroxyapatite adherence as a means to concentrate bacteria. Appl Environ Microbiol 63 (10), 4069–74.
  • Betts WB. (1995). The potential of dielectrophoresis for the real-time detection of microorganisms in foods. Trends in Food Science & Technology 6, 51.
  • Bohaychuk VM, Gensler GE, King RK, Wu JT, McMullen LM. (2005). Evaluation of detection methods for screening meat and poultry products for the presence of foodborne pathogens. J Food Prot 68 (12), 2637–47.
  • Brehm-Stecher B, Young C, Jaykus LA, Tortorello ML. (2009). Sample preparation, the forgotten beginning. J Food Prot 72 (8), 1774–89.
  • Bruno JG, Phillips T, Carrillo MP, Crowell R. (2009). Plastic-adherent DNA aptamer-magnetic bead and quantum dot sandwich assay for Campylobacter detection. J Fluoresc 19 (3), 427–35.
  • Bryan FL. (1982). Diseases transmitted by foods, a classification and summary 2 ed Atlanta (GA), Centers for Disease Control and Prevention.
  • Cai HY, Bell-Rogers P, Parker L, Prescott JF. (2005). Development of a real-time PCR for detection of Mycoplasma bovis in bovine milk and lung samples. J Vet Diagn Invest 17 (6), 537–45.
  • Call DR, Brockman FJ, Chandler DP. (2001). Detecting and genotyping Escherichia coli O157, H7 using multiplexed PCR and nucleic acid microarrays. Int J Food Microbiol 67 (1-2), 71–80.
  • CDC. (2009). Preliminary FoodNet Data on the incidence of infection with pathogens transmitted commonly through food–10 States 2008. MMWR Morb Mortal Wkly Rep 58 (13), 333–7.
  • Chandler DP, Brown J, Call DR, Wunschel S, Grate JW, Holman DA, Olson L, Stottlemyre MS, Bruckner-Lea CJ. (2001). Automated immunomagnetic separation and microarray detection of E coli O157, H7 from poultry carcass rinse. Int J Food Microbiol 70 (1-2), 143–54.
  • Chapman PA, Ashton R. (2003). An evaluation of rapid methods for detecting Escherichia coli O157 on beef carcasses. Int J Food Microbiol 87 (3), 279–85.
  • Chen F, Zhou J, Luo F, Mohammed AB, Zhang XL. (2007). Aptamer from whole-bacterium SELEX as new therapeutic reagent against virulent Mycobacterium tuberculosis. Biochem Biophys Res Commun 357 (3), 743–8.
  • Chen J, Griffiths MW. (1996). Luminescent Salmonella strains as real time reporters of growth and recovery from sublethal injury in food. Int J Food Microbiol 31 (1-3), 27–43.
  • Chen W, Martinez G, Mulchandani A. (2000). Molecular beacons, a real-time polymerase chain reaction assay for detecting Salmonella. Anal Biochem 280(1), 166–72.
  • Cheng J, Sheldon EL, Wu L, Uribe A, Gerrue LO, Carrino J, Heller MJ, O’Connell JP. (1998). Preparation and hybridization analysis of DNA/RNA from E coli on microfabricated bioelectronic chips. Nat Biotechnol 16 (6), 541–6.
  • Cheng CM, Lin W, Van KT, Phan L, Tran NN, Farmer D. (2008). Rapid detection of Salmonella in foods using real-time PCR. J Food Prot 71(12), 2436–41.
  • Churruca E, Girbau C, Martinez I, Mateo E, Alonso R, Fernandez-Astorga A. (2007). Detection of Campylobacter jejuni and Campylobacter coli in chicken meat samples by real-time nucleic acid sequence-based amplification with molecular beacons. Int J Food Microbiol 117 (1), 85–90.
  • Connell I, Agace W, Klemm P, Schembri M, Marild S, Svanborg C. (1996). Type 1 fimbrial expression enhances Escherichia coli virulence for the urinary tract. Proc Natl Acad Sci U S A 93 (18), 9827–32.
  • Cook N. (2003). The use of NASBA for the detection of microbial pathogens in food and environmental samples. J Microbiol Methods 53 (2), 165–74.
  • Cremonesi P, Pisoni G, Severgnini M, Consolandi C, Moroni P, Raschetti M, Castiglioni B. (2009). Pathogen detection in milk samples by ligation detection reaction-mediated universal array method. J Dairy Sci 92 (7), 3027–39.
  • Cui S, Schroeder CM, Zhang DY, Meng J. (2003). Rapid sample preparation method for PCR-based detection of Escherichia coli O157, H7 in ground beef. J Appl Microbiol 95 (1), 129–34.
  • Cullison MA, Jaykus LA. (2002). Magnetized carbonyl iron and insoluble zirconium hydroxide mixture facilitates bacterial concentration and separation from nonfat dry milk. J Food Prot 65 (11), 1806–10.
  • Debretsion A, Habtemariam T, Wilson S, Nganwa D, Yehualaeshet T. (2007). Real-time PCR assay for rapid detection and quantification of Campylobacter jejuni on chicken rinses from poultry processing plant. Mol Cell Probes 21(3), 177–81.
  • Disney MD, Seeberger PH. (2004). The use of carbohydrate microarrays to study carbohydrate-cell interactions and to detect pathogens. Chem Biol 11 (12), 1701–7.
  • Dols CL, Bowers JM, Copfer AE. (2001). Preventing food- and water-borne illnesses. Am J Nurs 101 (6), 24AA–24HH.
  • Dubow MS. (1994). Bacterial identification- use of bacteriophages. In Encyclopedia of Virology, Webster RG and Granoff A (eds.). San Diego, California, Academic Press.
  • D’Urso OF, Poltronieri P, Marsigliante S, Storelli C, Hernandez M, Rodriguez-Lazaro D. (2009). A filtration-based real-time PCR method for the quantitative detection of viable Salmonella enterica and Listeria monocytogenes in food samples. Food Microbiol 26 (3), 311–6.
  • Elizaquivel P, Aznar R. (2008). A multiplex RTi-PCR reaction for simultaneous detection of Escherichia coli O157, H7, Salmonella spp and Staphylococcus aureus on fresh, minimally processed vegetables. Food Microbiol 25 (5), 705–13.
  • Elvers KT, Helps CR, Wassenaar TM, Allen V, Newell DG. (2008). Development of a strain-specific molecular method for quantitating individual Campylobacter strains in mixed populations. Appl Environ Microbiol 74 (8), 2321–31.
  • Feng P. (2007). Rapid Methods for the Detection of Foodborne Pathogens, Current and Next Generation Technologies, In Food Microbiology, Fundamentals and Frontiers, M P Doyle and L R Beuchat (eds.). Washington, DC, ASM Press.
  • Flekna G, Stefanic P, Wagner M, Smulders FJ, Mozina SS, Hein I. (2007). Insufficient differentiation of live and dead Campylobacter jejuni and Listeria monocytogenes cells by ethidium monoazide (EMA) compromises EMA/real-time PCR. Res Microbiol 158 (5), 405–12.
  • Fredriksson S, Gullberg M, Jarvius J, Olsson C, Pietras K, Gustafsdottir SM, Ostman A, Landegren U. (2002). Protein detection using proximity-dependent DNA ligation assays. Nat Biotechnol 20 (5), 473–7.
  • Fu Z, Rogelj S, Kieft TL. (2005). Rapid detection of Escherichia coli O157, H7 by immunomagnetic separation and real-time PCR. Int J Food Microbiol 99 (1), 47–57.
  • Fukushima H, Katsube K, Hata Y, Kishi R, Fujiwara S. (2007). Rapid separation and concentration of food-borne pathogens in food samples prior to quantification by viable-cell counting and real-time PCR. Appl Environ Microbiol 73 (1), 92–100.
  • Geng T, Hahm BK, Bhunia AK. (2006). Selective enrichment media affect the antibody-based detection of stress-exposed Listeria monocytogenes due to differential expression of antibody-reactive antigens identified by protein sequencing. J Food Prot 69 (8), 1879–86.
  • Gonzalez-Escalona N, Hammack TS, Russell M, Jacobson AP, De Jesus AJ, Brown EW, Lampel KA. (2009). Detection of live Salmonella sp cells in produce by a TaqMan-based quantitative reverse transcriptase real-time PCR targeting invA mRNA. Appl Environ Microbiol 75 (11), 3714–20.
  • Goodridge L, Griffiths M. (2002). Reporter bacteriophage assays as a means to detect foodborne pathogenic bacteria. Food Research International 35 (9), 863–870.
  • Goodridge L, Chen J, Griffiths M. (1999). The use of a fluorescent bacteriophage assay for detection of Escherichia coli O157, H7 in inoculated ground beef and raw milk. Int J Food Microbiol 47 (1-2), 43–50.
  • Grant KA, Dickinson JH, Payne MJ, Campbell S, Collins MD, Kroll RG. (1993). Use of the polymerase chain reaction and 16S rRNA sequences for the rapid detection of Brochothrix spp in foods. J Appl Bacteriol 74 (3), 260–7.
  • Guan J, Chan M, Allain B, Mandeville R, Brooks BW. (2006). Detection of multiple antibiotic-resistant Salmonella enterica serovar Typhimurium DT104 by phage replication-competitive enzyme-linked immunosorbent assay. J Food Prot 69 (4), 739–42.
  • Guatelli JC, Whitfield KM, Kwoh DY, Barringer KJ, Richman DD, Gingeras TR. (1990). Isothermal, in vitro amplification of nucleic acids by a multienzyme reaction modeled after retroviral replication. Proc Natl Acad Sci U S A 87 (19), 7797.
  • Gustafsdottir SM, Nordengrahn A, Fredriksson S, Wallgren P, Rivera E, Schallmeiner E, Merza M, Landegren U. (2006). Detection of individual microbial pathogens by proximity ligation. Clin Chem 52 (6), 1152–60.
  • Hadjinicolaou AV, Demetriou VL, Emmanuel MA, Kakoyiannis CK, Kostrikis LG. (2009). Molecular beacon-based real-time PCR detection of primary isolates of Salmonella Typhimurium and Salmonella Enteritidis in environmental and clinical samples. BMC Microbiol 9, 97.
  • Hahm BK, Bhunia AK. (2006). Effect of environmental stresses on antibody-based detection of Escherichia coli O157, H7, Salmonella enterica serotype Enteritidis and Listeria monocytogenes. J Appl Microbiol 100 (5), 1017–27.
  • Hara-Kudo Y, Kumagai S, Masuda T, Goto K, Ohtsuka K, Masaki H, Tanaka H, Tanno K, Miyahara M, Konuma H. (2001). Detection of Salmonella Enteritidis in shell and liquid eggs using enrichment and plating. Int J Food Microbiol 64 (3), 395–9.
  • Hein I, Flekna G, Krassnig M, Wagner M. (2006). Real-time PCR for the detection of Salmonella spp in food, An alternative approach to a conventional PCR system suggested by the FOOD-PCR project. J Microbiol Methods 66(3), 538–47.
  • Hong BX, Jiang LF, Hu YS, Fang DY, Guo HY. (2004). Application of oligonucleotide array technology for the rapid detection of pathogenic bacteria of foodborne infections. J Microbiol Methods 58 (3), 403–11.
  • Hong J, Jung WK, Kim JM, Kim SH, Koo HC, Ser J, Park YH. (2007). Quantification and differentiation of Campylobacter jejuni and Campylobacter coli in raw chicken meats using a real-time PCR method. J Food Prot 70(9), 2015–22.
  • Hoorfar J, Cook N, Malorny B, Wagner M, De Medici D, Abdulmawjood A, Fach P. (2004). Diagnostic PCR, making internal amplification control mandatory. Lett Appl Microbiol 38 (2), 79–80.
  • Houseman BT, Mrksich M. (2002). Carbohydrate arrays for the evaluation of protein binding and enzymatic modification. Chem Biol 9 (4), 443–54.
  • Hsih HY, Tsen HY. (2001). Combination of immunomagnetic separation and polymerase chain reaction for the simultaneous detection of Listeria monocytogenes and Salmonella spp in food samples. J Food Prot 64 (11), 1744–50.
  • Hsu CF, Tsai TY, Pan TM. (2005). Use of the duplex TaqMan PCR system for detection of Shiga-like toxin-producing Escherichia coli O157. J Clin Microbiol 43 (6), 2668–73.
  • Hsu KL, Mahal LK. (2006). A lectin microarray approach for the rapid analysis of bacterial glycans. Nat Protoc 1 (2), 543–9.
  • Hudson JA, Lake RJ, Savill MG, Scholes P, McCormick RE. (2001). Rapid detection of Listeria monocytogenes in ham samples using immunomagnetic separation followed by polymerase chain reaction. J Appl Microbiol 90 (4), 614–21.
  • Ibrahim GF, Lyons MJ, Walker RA, Fleet GH. (1985). Rapid detection of salmonellae by immunoassays with titanous hydroxide as the solid phase. Appl Environ Microbiol 50 (3), 670–5.
  • Jacobsen CS, Rasmussen OF. (1992). Development and Application of a New Method To Extract Bacterial DNA from Soil Based on Separation of Bacteria from Soil with Cation-Exchange Resin. Appl Environ Microbiol 58 (8), 2458–2462.
  • Jany JL, Barbier G. (2008). Culture-independent methods for identifying microbial communities in cheese. Food Microbiol 25 (7), 839–48.
  • Jassim SA, Griffiths MW. (2007). Evaluation of a rapid microbial detection method via phage lytic amplification assay coupled with Live/Dead fluorochromic stains. Lett Appl Microbiol 44 (6), 673–8.
  • Jensen AN, Andersen MT, Dalsgaard A, Baggesen DL, Nielsen EM. (2005). Development of real-time PCR and hybridization methods for detection and identification of thermophilic Campylobacter spp in pig faecal samples. J Appl Microbiol 99(2), 292–300.
  • Josephson KL, Gerba CP, Pepper IL. (1993). Polymerase chain reaction detection of nonviable bacterial pathogens. Appl Environ Microbiol 59 (10), 3513–5.
  • Joshi R, Janagama H, Dwivedi HP, Senthil Kumar TM, Jaykus LA, Schefers J, Sreevatsan S. (2009). Selection, characterization, application of DNA aptamers for the capture and detection of Salmonella enterica serovars. Mol Cell Probes 23 (1), 20–8.
  • Jothikumar N, Griffiths MW. (2002). Rapid detection of Escherichia coli O157, H7 with multiplex real-time PCR assays. Appl Environ Microbiol 68 (6), 3169–71.
  • Kennedy JF, Barker SA, Humphreys JD. (1976). Microbial cells living immobilised on metal hydroxides. Nature 261 (5557), 242–4.
  • Khan I, Desai DV, Kumar A. (2004). Carbochips, a new energy for old biobuilders. J Biosci Bioeng 98 (5), 331–7.
  • King MD, Seo S, Kim J, Cheng M, Higgins S, Young R, McIntyre DH, Thien B, McFarland AR, Kish LB. (2006). Noise for Health, Phage-Based Rapid Bacterial Identification Method. In: Understanding Complex Systems. Salvatore Baglio and Adi Bulsara (Eds) Heidelberg: Springer Berlin.
  • Klaus D, Simske S, Todd P, Stodieck L. (1997). Investigation of space flight effects on Escherichia coli and a proposed model of underlying physical mechanisms. Microbiology 143 ( Pt 2), 449–55.
  • Klussmann S, Nolte A, Bald R, Erdmann VA, Furste JP. (1996). Mirror-image RNA that binds D-adenosine. Nat Biotechnol 14 (9), 1112–5.
  • Kretzer, JW, Lehmann R, Schmelcher M, Banz M, Kim KP, Korn C, Loessner MJ. (2007). Use of high-affinity cell wall-binding domains of bacteriophage endolysins for immobilization and separation of bacterial cells. Appl Environ Microbiol 73 (6), 1992–2000.
  • Lakshmanan RS, Guntupalli R, Hu J, Kim DJ, Petrenko VA, Barbaree JM, Chin BA. (2007). Phage immobilized magnetoelastic sensor for the detection of Salmonella Typhimurium. J Microbiol Methods 71 (1), 55–60.
  • Lapizco-Encinas BH, Simmons BA, Cummings EB, Fintschenko Y. (2004). Dielectrophoretic concentration and separation of live and dead bacteria in an array of insulators. Anal Chem 76 (6), 1571–9.
  • Laplace-Builhe C, Hahne K, Hunger W, Tirilly Y, Drocourt JL. (1993). Application of flow cytometry to rapid microbial analysis in food and drinks industries. Biol Cell 78 (1-2), 123–8.
  • Lee HJ, Kim BC, Kim KW, Kim YK, Kim J, Oh MK. (2009). A sensitive method to detect Escherichia coli based on immunomagnetic separation and real-time PCR amplification of aptamers. Biosens Bioelectron 24 (12), 3550–5.
  • Leonard P, Hearty S, Quinn J, O’Kennedy R. (2004). A generic approach for the detection of whole Listeria monocytogenes cells in contaminated samples using surface plasmon resonance. Biosens Bioelectron 19 (10), 1331–5.
  • Leung W, Chan CP, Rainer TH, Ip M, Cautherley GWH, Renneberg R. (2008). InfectCheck CRP barcode-style lateral flow assay for semi-quantitative detection of C-reactive protein in distinguishing between bacterial and viral infections. J Immunological Methods 336 (1), 30–36.
  • Leutenegger CM. (2001). The real-time Taqman PCR and applications in veterinary medicine Veterinary Sciences Tomorrow Online issue 1 (http://wwwvetsciteorg/issue1/tools/txt_leut_0800htm).
  • Little MC, Andrews J, Moore R, Bustos S, Jones L, Embres C, Durmowicz G, Harris J, Berger D, Yanson K, Rostkowski C, Yursis D, Price J, Fort T, Walters A, Collis M, Llorin O, Wood J, Failing F, O’Keefe CB, Scrivens, B. Pope, T. Hansen, K. Marino, K. Williams, et al. (1999). Strand displacement amplification and homogeneous real-time detection incorporated in a second-generation DNA probe system, BDProbeTecET. Clin Chem 45 (6 Pt 1), 777–84.
  • Lucore LA, Cullison MA, Jaykus LA. (2000). Immobilization with metal hydroxides as a means to concentrate food-borne bacteria for detection by cultural and molecular methods. Appl Environ Microbiol 66 (5), 1769–76.
  • Lund M, Madsen M. (2006). Strategies for the inclusion of an internal amplification control in conventional and real time PCR detection of Campylobacter spp in chicken fecal samples. Mol Cell Probes 20 (2), 92–9.
  • Madonna AJ, Van Cuyk S, Voorhees KJ. (2003). Detection of Escherichia coli using immunomagnetic separation and bacteriophage amplification coupled with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 17 (3), 257–63.
  • Malorny B, Bunge C, Helmuth R. (2007). A real-time PCR for the detection of Salmonella Enteritidis in poultry meat and consumption eggs. J Microbiol Methods 70 (2), 245–51.
  • Malorny B, Paccassoni E, Fach P, Bunge C, Martin A, Helmuth R. (2004). Diagnostic real-time PCR for detection of Salmonella in food. Appl Environ Microbiol 70 (12), 7046–52.
  • Malorny B, Hoorfar J, Hugas M, Heuvelink A, Fach P, Ellerbroek L, Bunge C, Dorn C, Helmuth R. (2003). Interlaboratory diagnostic accuracy of a Salmonella specific PCR-based method. Int J Food Microbiol 89 (2-3), 241–9.
  • Mammen M, Choi SK, GM Whitesides. (1998). Polyvalent interactions in biological systems, implications for design and use of multivalent ligands and inhibitors. Angew Chem Int Ed 37, 2755–2794.
  • Markx GH, Dyda PA, Pethig R. (1996). Dielectrophoretic separation of bacteria using a conductivity gradient. J Biotechnol 51 (2), 175–80.
  • Markx GH, Talary MS, Pethig R. (1994). Separation of viable and non-viable yeast using dielectrophoresis. J Biotechnol 32 (1), 29–37.
  • Masters CI, Shallcross JA, Mackey BM. (1994). Effect of stress treatments on the detection of Listeria monocytogenes and enterotoxigenic Escherichia coli by the polymerase chain reaction. J Appl Bacteriol 77 (1), 73–9.
  • McCarthy N, Reen FJ, Buckley JF, Frye JG, Boyd EF, Gilroy D. (2009). Sensitive and Rapid Molecular Detection Assays for Salmonella enterica Serovars Typhimurium and Heidelberg. J Food Prot 72(11), 2350–7.
  • McClelland RG, Pinder AC. (1994). Detection of Salmonella Typhimurium in dairy products with flow cytometry and monoclonal antibodies. Appl Environ Microbiol 60 (12), 4255–62.
  • Mead PS, Slutsker L, Dietz V, McCaig LF, Bresee JS, Shapiro C, Griffin PM, Tauxe RV. (1999). Food-related illness and death in the United States. Emerg Infect Dis 5 (5), 607–25.
  • Meeusen C, Alocilja EC, Osburn W. (2005). Detection of E coli O157, H7 Using a Miniaturized Surface Plasmon Resonance Biosensor. Transactions of the ASAE 48(6), 2409–2416.
  • Mercanoglu B, Griffiths MW. (2005). Combination of immunomagnetic separation with real-time PCR for rapid detection of Salmonella in milk, ground beef, alfalfa sprouts. J Food Prot 68 (3), 557–61.
  • Moore MM, Feist MD. (2007). Real-time PCR method for Salmonella spp targeting the stn gene. J Appl Microbiol 102(2), 516–30.
  • Morales-Morales HA, Vidal G, Olszewski J, Rock CM, Dasgupta D, Oshima KH, Smith GB. (2003). Optimization of a reusable hollow-fiber ultrafilter for simultaneous concentration of enteric bacteria, protozoa, viruses from water. Appl Environ Microbiol 69 (7), 4098–102.
  • Mosier-Boss PA, Lieberman SH, Andrews JM, Rohwer FL, Wegley LE, Breitbart M. (2003). Use of fluorescently labeled phage in the detection and identification of bacterial species. Applied Spectroscopy 57(9), 1138–1144.
  • Nadal A, Coll A, Cook N, Pla M. (2007). A molecular beacon-based real time NASBA assay for detection of Listeria monocytogenes in food products, role of target mRNA secondary structure on NASBA design. J Microbiol Methods 68 (3), 623–32.
  • Naja G, Bouvrette P, Hrapovic S, Luong JH. (2007). Raman-based detection of bacteria using silver nanoparticles conjugated with antibodies. Analyst 132 (7), 679–86.
  • Ngundi MM, Kulagina NV, Anderson GP, Taitt CR. (2006). Nonantibody-based recognition, alternative molecules for detection of pathogens. Expert Rev Proteomics 3 (5), 511–24.
  • Nickerson CA, Ott CM, Wilson JW, Ramamurthy R, Pierson DL. (2004). Microbial responses to microgravity and other low-shear environments. Microbiol Mol Biol Rev 68 (2), 345–61.
  • Nocker A, Camper AK. (2006). Selective removal of DNA from dead cells of mixed bacterial communities by use of ethidium monoazide. Appl Environ Microbiol 72 (3), 1997–2004.
  • Nocker A, Cheung CY, Camper AK. (2006). Comparison of propidium monoazide with ethidium monoazide for differentiation of live vs dead bacteria by selective removal of DNA from dead cells. J Microbiol Methods 67 (2), 310–20.
  • Nocker, A, Sossa KE, Camper AK. (2007). Molecular monitoring of disinfection efficacy using propidium monoazide in combination with quantitative PCR. J Microbiol Methods 70 (2), 252–60.
  • Nogva, HK, Bergh A, Holck A, Rudi K. (2000). Application of the 5'-nuclease PCR assay in evaluation and development of methods for quantitative detection of Campylobacter jejuni. Appl Environ Microbiol 66(9), 4029–36.
  • Nordengrahn, A, Gustafsdottir SM, Ebert K, Reid SM, King DP, Ferris NP, Brocchi E, Grazioli S, Landegren U, Merza M. (2008). Evaluation of a novel proximity ligation assay for the sensitive and rapid detection of foot-and-mouth disease virus. Vet Microbiol 127 (3-4), 227–36.
  • Oliveira TC, Barbut S, Griffiths MW. (2005). Detection of Campylobacter jejuni in naturally contaminated chicken skin by melting peak analysis of amplicons in real-time PCR. Int J Food Microbiol 104 (1), 105–11.
  • Olsen EV, Sorokulova IB, Petrenko VA, Chen IH, Barbaree JM, Vodyanoy VJ. (2006). Affinity-selected filamentous bacteriophage as a probe for acoustic wave biodetectors of Salmonella Typhimurium. Biosens Bioelectron 21 (8), 1434–42.
  • Oyofo BA, Rollins DM. (1993). Efficacy of filter types for detecting Campylobacter jejuni and Campylobacter coli in environmental water samples by polymerase chain reaction. Appl Environ Microbiol 59 (12), 4090–5.
  • Ozbek A, Michel FC, Strother M, Motiwala AS, Byrum BR, Shulaw WP, Thornton CG, Sreevatsan S. (2003). Evaluation of two recovery methods for detection of Mycobacterium avium subsp paratuberculosis by PCR, direct-dilution–centrifugation and C(18)-carboxypropylbetaine processing. FEMS Microbiol Lett 229 (2), 145–51.
  • Pai S, Ellington AD, Levy M. (2005). Proximity ligation assays with peptide conjugate ‘burrs’ for the sensitive detection of spores. Nucleic Acids Res 33 (18), e162.
  • Pan Q, Zhang XL, Wu HY, He PW, Wang F, Zhang MS, Hu JM, Xia B, Wu J. (2005). Aptamers that preferentially bind type IVB pili and inhibit human monocytic-cell invasion by Salmonella enterica serovar Typhi. Antimicrob Agents Chemother 49(10), 4052–60.
  • Pan Y, Breidt F, Jr. (2007). Enumeration of viable Listeria monocytogenes cells by real-time PCR with propidium monoazide and ethidium monoazide in the presence of dead cells. Appl Environ Microbiol 73 (24), 8028–31.
  • Patchett RA, Kelly AF, Kroll RG. (1991). The adsorption of bacteria to immobilized lectins. J Appl Bacteriol 71 (3), 277–84.
  • Payne MJ, Campbell S, Patchett RA, Kroll RG. (1992). The use of immobilized lectins in the separation of Staphylococcus aureus, Escherichia coli, Listeria and Salmonella spp from pure cultures and foods. J Appl Bacteriol 73 (1), 41–52.
  • Payne MJ, Kroll RG. (1991). Methods for the separation and concentration of bacteria from foods. Trends in Food Sci & Tech 2, 315.
  • Pieken WA, Olsen DB, Benseler F, Aurup H, Eckstein F. (1991). Kinetic characterization of ribonuclease-resistant 2'-modified hammerhead ribozymes. Science 253 (5017), 314–7.
  • Rasooly A. (2001). Surface plasmon resonance analysis of staphylococcal enterotoxin B in food. J Food Prot 64 (1), 37–43.
  • Rawsthorne H, Dock CN, Jaykus LA. (2009). PCR-based method using propidium monoazide to distinguish viable from nonviable Bacillus subtilis spores. Appl Environ Microbiol 75 (9), 2936–9.
  • Reiser R, Conaway D, Bergdoll MS. (1974). Detection of staphylococcal enterotoxin in foods. Appl Microbiol 27 (1), 83–5.
  • Rodrigues-Szulc UM, Ventoura G, Mackey BM, Payne MJ. (1996). Rapid physicochemical detachment, separation and concentration of bacteria from beef surfaces. J Appl Bacteriol 80 (6), 673–81.
  • Ronner AC, Lindmark H. (2007). Quantitative detection of Campylobacter jejuni on fresh chicken carcasses by real-time PCR. J Food Prot 70(6), 1373–8.
  • Rowe-Taitt CA, Hazzard JW, Hoffman KE, Cras JJ, Golden JP, Ligler FS. (2000). Simultaneous detection of six biohazardous agents using a planar waveguide array biosensor. Biosens Bioelectron 15 (11-12), 579–89.
  • Rudi K, Flateland SL, Hanssen JF, Bengtsson G, Nissen H. (2002). Development and evaluation of a 16S ribosomal DNA array-based approach for describing complex microbial communities in ready-to-eat vegetable salads packed in a modified atmosphere. Appl Environ Microbiol 68 (3), 1146–56.
  • Rudi K, Naterstad K, Dromtorp SM, Holo H. (2005). Detection of viable and dead Listeria monocytogenes on gouda-like cheeses by real-time PCR. Lett Appl Microbiol 40 (4), 301–6.
  • Ruiz-Palacios GM, Cervantes LE, Ramos P, Chavez-Munguia B, Newburg DS. (2003). Campylobacter jejuni binds intestinal H(O) antigen (Fuc alpha 1, 2Gal beta 1, 4GlcNAc), fucosyloligosaccharides of human milk inhibit its binding and infection. J Biol Chem 278 (16), 14112–20.
  • Sails AD, Fox AJ, Bolton FJ, Wareing DR, Greenway DL. (2003). A real-time PCR assay for the detection of Campylobacter jejuni in foods after enrichment culture. Appl Environ Microbiol 69(3), 1383–90.
  • Sakamoto C, Yamaguchi N, Nasu M. (2005). Rapid and simple quantification of bacterial cells by using a microfluidic device. Appl Environ Microbiol 71 (2), 1117–21.
  • Sapsford KE, Rasooly A, Taitt CR, Ligler FS. (2004). Detection of campylobacter and Shigella species in food samples using an array biosensor. Anal Chem 76 (2), 433–40.
  • Seo KH, Valentin-Bon IE, Brackett RE. (2006). Detection and enumeration of Salmonella Enteritidis in homemade ice cream associated with an outbreak, comparison of conventional and real-time PCR methods. J Food Prot 69 (3), 639–43.
  • Sharon N. (2006). Carbohydrates as future anti-adhesion drugs for infectious diseases. Biochim Biophys Acta 1760 (4), 527–37.
  • Siddique N, Sharma D, Al-Khaldi SF. (2009). Detection of Yersinia enterocolitica in alfalfa, mung bean, cilantro, mamey sapote (Pouteria sapota) food matrices using DNA microarray chip hybridization. Curr Microbiol 59 (3), 233–9.
  • Singh J, Batish VK, Grover S. (2009a). A Molecular Beacon-Based Duplex Real-Time Polymerase Chain Reaction Assay for Simultaneous Detection of Escherichia coli O157, H7 and Listeria monocytogenes in Milk and Milk Products. Foodborne Pathog Dis 6(10), 1195–1201.
  • Singh J, Batish VK, Grover SA. (2009b). Scorpion probe-based real-time PCR assay for detection of E coli O157, H7 in dairy products. Foodborne Pathog Dis 6 (3), 395–400.
  • Skerra A. (2008). Alternative binding proteins, anticalins - harnessing the structural plasticity of the lipocalin ligand pocket to engineer novel binding activities. Febs J 275 (11), 2677–83.
  • So HM, Park DW, Jeon EK, Kim YH, Kim BS, Lee CK, Choi SY, Kim SC, Chang H, Lee JO. (2008). Detection and titer estimation of Escherichia coli using aptamer-functionalized single-walled carbon-nanotube field-effect transistors. Small 4 (2), 197–201.
  • Stancik LM, Stancik DM, Schmidt B, Barnhart DM, Yoncheva YN, Slonczewski JL. (2002). pH-dependent expression of periplasmic proteins and amino acid catabolism in Escherichia coli. J Bacteriol 184 (15), 4246–58.
  • Su XL, Li Y. (2004). A self-assembled monolayer-based piezoelectric immunosensor for rapid detection of Escherichia coli O157, H7. Biosens Bioelectron 19 (6), 563–74.
  • Sun W, Brovko L, Griffiths M. (2001). Use of bioluminescent Salmonella for assessing the efficiency of constructed phage-based biosorbent. J Ind Microbiol Biotechnol 27 (2), 126–8.
  • Taitt CR, Shubin YS, Angel R, Ligler FS. (2004). Detection of Salmonella enterica serovar typhimurium by using a rapid, array-based immunosensor. Appl Environ Microbiol 70 (1), 152–8.
  • Tanji Y, Furukawa C, Na SH, Hijikata T, Miyanaga K, Unno H. (2004). Escherichia coli detection by GFP-labeled lysozyme-inactivated T4 bacteriophage. J Biotechnol 114 (1-2), 11–20.
  • Thomas DS. (1988). Electropositively charged filters for the recovery of yeasts and bacteria from beverages. J Appl Bacteriol 65 (1), 35–41.
  • Tombelli S, Minunni M, Mascini M. (2005). Analytical applications of aptamers. Biosens Bioelectron 20 (12), 2424–34.
  • Tuerk C, Gold L. (1990). Systematic evolution of ligands by exponential enrichment, RNA ligands to bacteriophage T4 DNA polymerase. Science 249 (4968), 505–10.
  • Tully E, Hearty S, Leonard P, O’Kennedy R. (2006). The development of rapid fluorescence-based immunoassays, using quantum dot-labelled antibodies for the detection of Listeria monocytogenes cell surface proteins. Int J Biol Macromol 39 (1-3), 127–34.
  • Varshney M, Yang L, Su XL, Li Y. (2005). Magnetic nanoparticle-antibody conjugates for the separation of Escherichia coli O157, H7 in ground beef. J Food Prot 68 (9), 1804–11.
  • Vivekananda J, Kiel JL. (2006). Anti-Francisella tularensis DNA aptamers detect tularemia antigen from different subspecies by Aptamer-Linked Immobilized Sorbent Assay. Lab Invest 86 (6), 610–8.
  • Walls I, Sheridan JJ, Welch RW, McDowell DA. (1990). Separation of micro-organisms from meat and their rapid enumeration using a membrane filtration-epifluorescent microscopy technique. Lett Appl Microbiol 10 (1), 23–6.
  • Wang M, Cao B, Gao Q, Sun Y, Liu P, Feng L, Wang L. (2009). Detection of Enterobacter sakazakii and other pathogens associated with powdered infant formula using a DNA microarray. J Clin Microbiol 47 (10), 3178–84.
  • Wang RF, Cao WW, Johnson MG. (1992). 16S rRNA-based probes and polymerase chain reaction method to detect Listeria monocytogenes cells added to foods. Appl Environ Microbiol 58 (9), 2827–31.
  • Wang S, Levin RE. (2006). Discrimination of viable Vibrio vulnificus cells from dead cells in real-time PCR. J Microbiol Methods 64 (1), 1–8.
  • Wang XB, Huang Y, Burt JPH, Markx GH, Pethig R. (1993). Selective dielectrophoretic confinement of bioparticles in potential energy wells. J Phys D, Appl Phys 26 1278–1285.
  • Wang XB, Yang J, Huang Y, Vykoukal J, Becker FF, Gascoyne PR. (2000). Cell separation by dielectrophoretic field-flow-fractionation. Anal Chem 72 (4), 832–9.
  • Warner HR, Snustad P, Jorgensen SE, Koerner JF. (1970). Isolation of bacteriophage T4 mutants defective in the ability to degrade host deoxyribonucleic acid. J Virol 5 (6), 700–8.
  • Wilson IG. (1997). Inhibition and facilitation of nucleic acid amplification. Appl Environ Microbiol 63 (10), 3741–51.
  • Wilson WJ, Strout CL, DeSantis TZ, Stilwell JL, Carrano AV, Andersen GL. (2002). Sequence-specific identification of 18 pathogenic microorganisms using microarray technology. Mol Cell Probes 16 (2), 119–27.
  • Wolber PK, Green RL. (1990). Detection of bacteria by transduction of ice nucleation genes. Trends Biotechnol 8 (10), 276–9.
  • Wolffs PF, Glencross K, Thibaudeau R, Griffiths MW. (2006). Direct quantitation and detection of salmonellae in biological samples without enrichment, using two-step filtration and real-time PCR. Appl Environ Microbiol 72 (6), 3896–900.
  • Yakes BJ, Lipert RJ, Bannantine JP, Porter MD. (2008). Detection of Mycobacterium avium subsp paratuberculosis by a sonicate immunoassay based on surface-enhanced Raman scattering. Clin Vaccine Immunol 15 (2), 227–34.
  • Yamaguchi N, Ohba H, Nasu M. (2006). Simple detection of small amounts of Pseudomonas cells in milk by using a microfluidic device. Lett Appl Microbiol 43 (6), 631–6.
  • Yang C, Jiang Y, Huang K, Zhu C, Yin Y. (2003). Application of real-time PCR for quantitative detection of Campylobacter jejuni in poultry, milk and environmental water. FEMS Immunol Med Microbiol 38(3), 265–71.
  • Younts S, Alocilja EC, Osburn WN, Marquie S, Grooms DL. (2002). Differentiation of Escherichia coli 0157, H7 from non–0157, H7 E coli serotypes using a gas sensor–based, computer–controlled detection system. Trans ASAE 45(5), 1681–1685.
  • Zarrinkar PP, Mainquist JK. Zamora M. Stern D. Welsh JB. Sapinoso LM. Hampton GM. Lockhart DJ. (2001). Arrays of arrays for high-throughput gene expression profiling. Genome Res 11 (7), 1256–61.
  • Zhen B, Song YJ, Guo ZB, Wang J, Zhang ML, Yu SY, Yang RF. (2002). [In vitro selection and affinity function of the aptamers to Bacillus anthracis spores by SELEX]. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai) 34 (5), 635–42.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.