1,506
Views
134
CrossRef citations to date
0
Altmetric
Review Article

Role of oxygenases in guiding diverse metabolic pathways in the bacterial degradation of low-molecular-weight polycyclic aromatic hydrocarbons: A review

, &
Pages 64-90 | Received 05 May 2010, Accepted 28 Jul 2010, Published online: 16 Sep 2010

References

  • Adachi K, Iwabuchi T, Sano H, Harayama S. (1999). Structure of the ring cleavage product of 1-hydroxy-2-naphthoate, an intermediate of the phenanthrene-degradative pathway of Nocardioides sp. strain KP7. J Bacteriol, 181, 757–63.
  • Aitken MD, Stringfellow WT, Nagel RD, Kazunga C, Chen SH. (1998). Characteristics of phenanthrene-degrading bacteria isolated from soils contaminated with polycyclic aromatic hydrocarbons. Can J Microbiol, 44, 743–52.
  • Akhtar NM, Boyd DR, Thompson MJ, Koreeda M, Gibson DT, Mahadevan V, Jerina DM. (1975). Absolute stereochemistry of the dihydroanthracene-cis- and trans-1,2-diols produced from anthracene by mammals and bacteria. J Chem Soc, Perkin Trans I, 1, 2506–11.
  • Allen CCR, Boyd C, Larkin MJ, Reid KA, Sharma ND, Wilson K. (1997). Metabolism of Naphthalene, 1-Naphthol, Indene, and Indole by Rhodococcus sp. Strain NCIMB 12038. Appl Environ Microbiol, 63, 151–5.
  • Andreoni V, Cavalca L, Rao MA, Nocerino G, Bernasconi S, Dell’Amico E, Colombo M, Gianfreda L. (2004). Bacterial communities and enzyme activities of PAHs polluted soils. Chemosphere, 57, 401–12.
  • Andreoni V, Gianfreda L. (2007). Bioremediation and monitoring of aromatic-polluted habitats. Appl Microbiol Biotechnol, 76, 287–308.
  • Annweiler E, Richnow HH, Antranikian G, Hebenbrock S, Garms C, Franke S, Franke W, Michaelis W. (2000). Naphthalene degradation and incorporation of naphthalene-derived carbon into biomass of the thermophile Bacillus thermoleovorans. Appl Environ Microbiol, 66, 518–23.
  • Balashova NV, Kosheleva IA, Golovchenko NP, Boronin AM. (1999). Phenanthrene metabolism by Pseudomonas and Burkholderia strains. Proc Biochem, 35, 291–6.
  • Barnsley EA. (1975). The induction of the enzymes of naphthalene metabolism in pseudomonads by salicylate and 2-aminobenzoate. J Gen Microbiol, 88, 193–6.
  • Barnsley EA. (1976a). Role and regulation of the ortho and meta pathways of catechol metabolism in pseudomonads metabolizing naphthalene and salicylate. J Baeteriol, 125, 404–8.
  • Barnsley EA. (1976b). Naphthalene metabolism by Pseudomonas: the oxidation of 1,2-dihydroxynaphthalene to 2-hydroxychromene-2-carboxylic acid and the formation of 2-hydroxybenzalpyruvate. Biochem Biophys Res Commun, 72, 1116–21.
  • Barnsley EA. (1983). Bacterial oxidation of naphthalene and phenanthrene. J Bacteriol, 153, 1069–71.
  • Batie CJ, Ballou DP, Correll CC. (1992). Phthalate dioxygenase reductase and related flavin-iron-sulfur containing electron transferases. In: Müller F, ed. Chemistry and biochemistry of flavoenzymes. FL Boca Raton: CRC Press, 543–56.
  • Binkova B, Giguere Y, Rossner P, Dostal M, Sram RJ. (2000). The effect of dibenzo[a,l]pyrene and benzo[a]pyrene on human diploid lung fibroblasts: the induction of DNA adducts, expression of P53 and p21WAF1 proteins and cell cycle distribution. Mutat Res, 471, 57–70.
  • Blumer M. (1976). Polycyclic aromatic compounds in nature. Sci Am, 234, 34–45.
  • Boldrin B, Tiehm A, Fritzsche C. (1993). Degradation of phenanthrene, fluorene, fluoranthene, and pyrene by a Mycobacterium sp. Appl Environ Microbiol, 59, 1927–30.
  • Boronin AM, Kochetkov VV, Skryabin GK. (1980). Incompatibility groups of naphthalene degradative plasmids in Pseudomonas. FEMS Microbiol Lett, 7, 249–52.
  • Bosch R, García-Valdés E, Moore ER. (1999). Genetic characterization and evolutionary implications of a chromosomally encoded naphthalene-degradation upper pathway from Pseudomonas stutzeri AN10. Gene, 236, 149–57.
  • Bubinas A, Giedraityte G, Kalediene L, Nivinakiene O, Butkiene R. (2008). Degradation of naphthalene by thermophilic bacteria via a pathway, through protocatechuic acid. Cent Eur J Biol, 3, 61–8.
  • Bucker M, Glatt HR, Platt KL, Avnir D, Ittah Y, Blum J, Oesch F. (1979). Mutagenicity of phenanthrene and phenanthrene K-region derivatives. Mutat Res, 66, 337–48.
  • Bugg TD, Ramaswamy S. (2008). Non-heme iron-dependent dioxygenases: unravelling catalytic mechanisms for complex enzymatic oxidations. Curr Opin Chem Biol, 12, 134–40.
  • Buhler B, Schimid A. (2004). Process implementation aspects for biocatalytic hydrocarbon oxyfunctionalization. J Biotechnol, 113, 183–210.
  • Carmona M, Zamarro MT, Blázquez B, Durante-Rodríguez G, Juárez JF, Valderrama JA, Barragán MJL, García JL, Díaz E. (2009). Anaerobic catabolism of aromatic compounds: a genetic and genomic view. Microbiol Mol Biol Rev, 73, 71–133.
  • Cane PA, Williams PA. (1982). The plasmid-coded metabolism of naphthalene and 2-methylnaphthalene in Pseudomonas strains. Phenotypic changes correlated with structural modification of the plasmid PWW60-1. J Gen Microbiol, 128, 2281–90.
  • Casellas M, Grifoll M, Bayona JM, Solanas AM. (1997). New metabolites in the degradation of fluorene by Arthrobacter sp. strain F101. Appl Environ Microbiol, 63, 816–26.
  • Catterall FA, Murray K, Williams PA. (1971). The configuration of the 1,2-dihydroxy-l,2-dihydronaphthalene formed by the bacterial metabolism of naphthalene. Biochem Biophys Acta, 237, 361–4.
  • Cavalca L, Guerrieri N, Colombo M, Pagani S, Andreoni V. (2007). Enzymatic and genetic profiles in environmental strains grown on polycyclic aromatic hydrocarbons. Antonie Van Leeuwenhoek, 91, 315–25.
  • Cerniglia CE, Sutherland JB, Crow SA. (1992). Fungal metabolism of aromatic hydrocarbons. In: Winkelmann G, ed. Microbial Degradation of Natural Products. Weinheim: VCH Verlagsgesellschaft, 193–217.
  • Cerniglia CE. (1984). Microbial metabolism of polycyclic aromatic hydrocarbons. Adv Appl Microbiol, 30, 31–71.
  • Chadhain SM, Moritz EM, Kim E, Zylstra GJ. (2007). Identification, cloning, and characterization of a multicomponent biphenyl dioxygenase from Sphingobium yanoikuyae B1. J Ind Microbiol Biotechnol, 34, 605–13.
  • Chang BV, Shiung LC, Yuan SY. (2002). Anaerobic biodegradation of polycyclic aromatic hydrocarbon in soil. Chemosphere, 48, 717–24.
  • Chapman PJ. (1979). Degradation mechanisms. In: Bourquin AW, Pritchard PH, eds. Proceedings of the workshop: microbial degradation of pollutants in marine environments. Gulf Breeze: U.S. Environmental Protection Agency, 28–66.
  • Civilini M, de Bertoldi M, Tell G. (1999). Molecular characterization of Pseudomonas aeruginosa 2NR degrading naphthalene. Lett Appl Microbiol, 29, 181–6.
  • Connors MA, Barnsley EA. (1982). Naphthalene plasmids in pseudomonads. J Bacteriol, 149, 1096–101
  • Cui Z, Lai Q, Dong C, Shao Z. (2008). Biodiversity of polycyclic aromatic hydrocarbon-degrading bacteria from deep sea sediments of the Middle Atlantic Ridge. Environ Microbiol, 10, 2138–49.
  • Daane LL, Harjono I, Barns SM, Launen LA, Palleroni NJ, Häggblom MM. (2002). PAH-degradation by Paenibacillus spp. and description of Paenibacillus naphthalenovorans sp. nov., a naphthalene-degrading bacterium from the rhizosphere of salt marsh plants. Int J Syst Evol Microbiol, 52, 131–9.
  • Daane LL, Harjono I, Zylstra GJ, Häggblom MM. (2001). Isolation and characterization of polycyclic aromatic hydrocarbon-degrading bacteria associated with the rhizosphere of salt marsh plants. Appl Environ Microbiol, 67, 2683–91.
  • Dagley S. (1986). Biochemistry of aromatic hydrocarbon degradation in Pseudomonads. In: Sokatch JR, ed. The Bacteria. Vol. 10. London: Academic Press, 527–55.
  • Daly K, Dixon AC, Swannell RPJ, Lepo JE, Head IM. (1997). Diversity among aromatic hydrocarbon-degrading bacteria and their meta-cleavage genes. J Appl Microbiol, 83,421–29.
  • Danz M, Mu¨ller D, Ra¨the H. (1992). Fluorenone and 2-benzoylfluorenone: different short-term effects on drug-metabolizing liver enzymes and on cell proliferation. Exp Toxicol Pathol, 44, 259–61.
  • Davies JI, Evans WC. (1964). Oxidative metabolism of naphthalene by soil pseudomonads. Biochem J, 91, 251–61.
  • Dean-Raymond D, Bartha R. (1975). Biodegradation of some polynuclear aromatic petroleum components by marine bacteria. Dev Ind Microbiol, 16, 97–110.
  • Dean-Ross D, Moody JD, Freeman JP, Doerge DR, Cerniglia CE. (2001). Metabolism of anthracene by a Rhodococcus species. FEMS Microbiol Lett, 204, 205–11.
  • Di Gennaro P, Rescalli E, Galli E, Sello G, Bestetti G. (2001). Characterization of Rhodococcus opacus R7, a strain able to degrade naphthalene and o-xylene isolated from a polycyclic aromatic hydrocarbon–contaminated soil. Res Microbiol, 152, 641–51.
  • Dore SY, Clancy QE, Rylee SM, Kulpa CF Jr. (2003). Naphthalene-utilizing and mercury-resistant bacteria isolated from an acidic environment. Appl Microbiol Biotechnol, 63, 194–9.
  • Dua RD, Meera S. (1981). Purification and characterisation of naphthalene oxygenase from Corynebacterium renale. Eur J Biochem, 120, 461–5.
  • Dunn NW, Gunsalus IC. (1973). Transmissible plasmid coding early enzymes of naphthalene oxidation in Pseudomonas putida. J Bacteriol, 114, 974–9.
  • Dunwell JM, Culham A, Carter CE, Sosa-Aguirre CR, Goodenough PW. (2001). Evolution of functional diversity in the cupin superfamily. Trends Biochem Sci, 26, 740–46.
  • Dyksterhouse SE, Gray JP, Herwig RP, Lara JC, Staley JT. (1995). Cycloclasticus pugetii gen. nov., sp., nov., an aromatic hydrocarbon-degrading bacterium from marine sediment. Int J Syst Bacteriol, 45, 116–23.
  • Eaton RW, Chapman PJ. (1992). Bacterial metabolism of Naphthalene: Construction and use of Recombinant bacteria to study ring cleavage of 1, 2-dihydroxynaphthalene and subsequent reactions. J Bacteriol, 174, 7542–54.
  • Eaton RW, Ribbons DW. (1982). Utilization of phthalate esters by micrococci. Arch Microbiol, 132, 185–8.
  • Eaton RW. (2001). Plasmid–encoded phthalate catabolic pathway in Arthrobacter keyseri 12B. J Bacteriol, 183, 3689–703.
  • Eltis LD, Bolin JT. (1996). Evolutionary relationships among extradiol dioxygenases. J Bacteriol, 178, 5930–37.
  • Engesser KH, Strubel V, Christoglou K, Fischer P, Rast HG. (1989). Dioxygenolytic cleavage of aryl ether bonds: 1,10-dihydro-1,10-dihydroxyfluoren-9-one, a novel arene dihydrodiol as evidence for angular dioxygenation of dibenzofuran. FEMS Microbiol Lett, 65, 205–10.
  • Ensley BD, Gibson DT, LaBorde LA. (1982). Naphthalene dioxygenase: purification and properties of a terminal oxygen component. J Bacteriol, 149, 948–54.
  • Ensley BD, Gibson DT. (1983). Oxidation of naphthalene by a multicomponent enzyme system from Pseudomonas sp. strain NCIB 9816. J Bacteriol, 155, 505–11.
  • Evans WC, Fernley HN, Griffiths E. (1965). Oxidative metabolism of phenanthrene and anthracene by soil Pseudomonas. Biochem J, 95, 819–31.
  • Ferraro DJ, Okerlund AL, Mowers JC, Ramaswamy S. (2006). Structural basis for regioselectivity and seteroselectivity of product formation by naphthalene dioxygenase. J Bacteriol, 188, 6986–94.
  • Foght J. (2008). Anaerobic Biodegradation of Aromatic Hydrocarbons: Pathways and Prospects. J Mol Microbiol Biotechnol, 15, 93–120.
  • Foght JM, Westlake DW. (1996). Transposon and spontaneous deletion mutants of plasmid-borne genes encoding polycyclic aromatic hydrocarbon degradation by a strain of Pseudomonas fluorescens. Biodegradation, 7, 353–66.
  • Fuenmayor SL, Wild M, Boyes AL, Williams PA. (1998). A gene cluster encoding steps in conversion of naphthalene to gentisate in Pseudomonas sp. strain U2. J Bacteriol, 180, 2522–30.
  • Fujikawa K, Fort FL, Samejima K, Sakamoto Y. (1993). Genotoxic potency in Drosophila melanogaster of selected aromatic amines and polycylic aromatic hydrocarbons as assayed in the DNA repair test. Mutat Res, 290, 175–82.
  • Furukawa K, Suenaga H, Goto M. (2004). Biphenyl dioxygenases: functional versatilities and directed evolution. J Bacteriol, 186, 5189–96.
  • Fuchs G. (2008). Anaerobic metabolism of aromatic compounds. Ann N Y Acad Sci, 1125, 82–99.
  • Galushko A, Minz D, Schink B, Widdel F. (1999). Anaerobic degradation of naphthalene by a pure culture of a novel type of marine sulphatereducing bacterium. Environ Microbiol, 1, 415–20.
  • Gan S, Lau EV, Ng HK. (2009). Remediation of soils contaminated with polycyclic aromatic hydrocarbons (PAHs). J Hazard Mater, 172, 532–49.
  • Garcia–Valdes E, Cozar E, Rotger R, Lalucat J, Ursing J. (1988). New naphthalene-degrading marine Pseudomonas strains. Appl Environ Microbiol, 54, 2478–85.
  • Geiselbrecht AD, Hedlund BP, Tichi MA, Staley JT. (1998). Isolation of marine polycyclic aromatic hydrocarbon (PAH)-degrading Cycloclasticus strains from the Gulf of Mexico and comparison of their PAH degradation ability with that of Puget Sound Cycloclasticus strains. Appl Environ Microbiol, 64, 4703–10.
  • Ghosh DK, Mishra AK. (1983). Oxidation of phenanthrene by a strain of Micrococcus: Evidence of protocatechuate pathway. Curr Microbiol, 9, 219–24.
  • Gibson J, Harwood CS. (2002). Metabolic diversity in aromatic compound utilization by anaerobic microbes. Ann Rev Microbiol, 56, 345–69.
  • Gibson DT, Resnick SM, Lee K, Brand JM, Torok DS, Wackett LP, Schocken MJ, Haigler BE. (1995). Desaturation, dioxygenation, and monooxygenation reactions catalyzed by naphthalene dioxygenase from Pseudomonas sp. strain 9816-4. J Bacteriol, 177, 2615–21.
  • Gibson DT, Subramanian V. (1984). Microbial degradation of aromatic hydrocarbons. In: Gibson DT, ed. Microbial degradation of organic compounds. New York: Dekker, Inc., 181–252.
  • Gibson DT. (1999). Beijerinckia sp. strain B1: a strain by any other name. J Ind Microbiol Biotechnol, 23, 284–93.
  • Goyal AK, Zylstra GJ. (1996). Molecular cloning of novel genes for polycyclic aromatic hydrocarbon degradation from Comamonas testosteroni GZ39. Appl Environ Microbiol, 62, 230–6.
  • Grifoll M, Casellas M, Bayona JM, Solanas AM. (1992). Isolation and characterization of a fluorene–degrading bacterium: identification of ring oxidation and ring fission products. Appl Environ Microbiol, 58, 2910–7.
  • Grifoll M, Selifonov SA, Chapman PJ. (1994). Evidence for a novel pathway in the degradation of fluorene by Pseudomonas sp. strain F274. Appl Environ Microbiol, 60, 2438–49.
  • Grifoll M, Selifonov SA, Gatlin CV, Chapman PJ. (1995). Actions of a versatile fluorene-degrading bacterial isolate on polycyclic aromatic compounds. Appl Environ Microbiol, 61, 3711–23.
  • Grund E, Denecke B, Eichenlaub R. (1992). Naphthalene degradation via salicylate and gentisate by Rhodococcus sp. strain B4. Appl Environ Microbiol, 58, 1874–7.
  • Guengerich FP. (2002). Cytochrome P450 enzymes in the generation of commercial products. Nat Rev Drug Discov, 1, 359–66.
  • Guerin WF, Jones GE. (1988). Mineralization of phenanthrene by a Mycobacterium sp. Appl Environ Microbiol, 54, 937–44.
  • Gunsalus IC, Pederson TC, Sligar SG. (1975). Oxygenase-catalyzed biological hydroxylation. Annu Rev Biochem, 44, 377–407.
  • Habe H, Chung JS, Kato H, Ayabe Y, Kasuga K, Yoshida T, Nojiri H, Yarnane H, Omori T. (2004). Characterization of the upper pathway genes for fluorene metabolism in Terrabacter sp. strain DBF63. J Bacteriol, 186, 5938–44.
  • Habe H, Omori T. (2003). Genetics of polycyclic aromatic hydrocarbon metabolism in diverse aerobic bacteria. Biosci Biotechnol Biochem, 67, 225–43.
  • Harayama S, Kok M, Neidle EL. (1992). Functional and evolutionary relationships among diverse oxygenases. Annu Rev Microbiol, 46, 565–601.
  • Haritash AK, Kaushik CP. (2009). Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. J Hazard Mater, 169, 1–15.
  • Harpel MR, Lipscomb JD. (1990). Gentisate 1,2-dioxygenase from Pseudomonas. Purification, characterization, and comparison of the enzymes from Pseudomonas testosteroni and Pseudomonas acidovorans. J Biol Chem, 265, 6301–11.
  • Hedlund BP, Geiselbrecht AD, Bair TJ, Staley JT. (1999). Polycyclic aromatic hydrocarbon degradation by a new marine bacterium, Neptunomonas naphthovorans gen. nov., sp. nov. Appl Environ Microbiol, 65, 251–9.
  • Hedlund BP, Geiselbrecht AD, Staley JT. (2001). Marinobacter strain NCE312 has a Pseudomonas–like naphthalene dioxygenase. FEMS Microbiol Lett, 201, 47–51.
  • Hedlund BP, Staley JT. (2001). Vibrio cyclotrophicus sp. nov., a polycyclic aromatic hydrocarbon (PAH)–degrading marine bacterium. Int J Syst Evol Microbiol, 51, 61–6.
  • Hedlund BP, Staley JT. (2006). Isolation and characterization of Pseudoalteromonas strains with divergent polycyclic aromatic hydrocarbon catabolic properties. Environ Microbiol, 8, 178–82.
  • Hilyard EJ, Jones-Meehan JM, Spargo BJ, Hill RT. (2008). Enrichment, isolation, and phylogenetic identification of polycyclic aromatic hydrocarbon-degrading bacteria from Elizabeth river sediments. Appl Environ Microbiol, 74, 1176–82.
  • Hinter J-P Lechner, C, Riegert U, Kuhm AE, Storm T, Reemtsma T, Stolz A. (2001). Direct ring fission of salicylate by salicylate 1,2-dioxygenase activity from Pseudaminobacter salicylatoxidans. J Bacteriol, 183, 6936–42.
  • Hinter J-P Reemtsma, T, Stolz A. (2004). Biochemical and molecular characterization of a ring fission dioxygenase with the ability to oxidize (substituted) salicylate(s) from Pseudaminobacter salicylatoxidans. J Biol Chem, 279, 37250–60.
  • Hirano S, Morikawa M, Takano K, Imanaka T, Kanaya S. (2007). Gentisate 1,2-dioxygenase from Xanthobacter polyaromaticivorans 127W. Biosci Biotechnol Biochem, 71, 192–9.
  • Houghton JE, Shanley MS. (1994). Catabolic potential of pseudomonads: a regulatory perspective. Chaudhry RG, ed. In: Biological Degradation and Bioremediation of Toxic Chemicals. London: Chapman & Hall, 11–32.
  • Husain S. (2008). Literature overview: Microbial metabolism of high molecular weight polycyclic aromatic hydrocarbons. Rem J, 18, 131–61.
  • Hwang H–M, Hu X, Zhao X. (2007). Enhanced bioremediation of polycyclic aromatic hydrocarbons by environmentally friendly techniques. J Environ Sci Health, Part C, 25, 313–52.
  • IARC (International Agency for Research on Cancer). (1983). IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. In: Polynuclear Aromatic Compounds. Part 1. Chemical, Environmental and Experimental Data. Vol. 32. Lyon, France: World Health Organization, 419–30.
  • IARC (International Agency for Research on Cancer). (1986). PAH as occupational carcinogens. In: Bjørseth A, Becker G, Eds. PAH Work Atmosphere Occurrence and Determination. Boca Raton, FL: CRC Press, 1–13.
  • Ingram AJ, Phillips JC, Davies S. (2000). DNA adducts produced by oils, oil fractions and polycyclic aromatic hydrocarbons in relation to repair processes and skin carcinogenesis. J Appl Toxicol, 20, 165–74.
  • Iwabuchi T, Harayama S. (1997). Biochemical and genetic characterization of 2-carboxybenzaldehyde dehydrogenase, an enzyme involved in phenanthrene degradation by Nocardioides sp. strain KP7. J Bacteriol, 179, 6488–94.
  • Iwabuchi T, Harayama S. (1998). Biochemical and genetic characterization of trans-2'-carboxybenzalpyruvate hydratase-aldolase from a phenanthrene-degrading Nocardioides strain. J Bacteriol, 180, 945–9.
  • Jeffrey AM, Yeh HJC, Jerina DM, Patel RT, Davey JF, Gibson DT. (1975). Initial reaction in the oxidation of naphthalene by Pseudomonas putida. Biochemistry, 14, 575–84.
  • Jeon CO, Park M, Ro HS, Park W, Madsen EL. (2006). The naphthalene catabolic (nag) genes of Polaromonas naphthalenivorans CJ2: evolutionary implications for two gene clusters and novel regulatory control. Appl Environ Microbiol, 72, 1086–95.
  • Jerina DM, Selander H, Yagi H, Wells MC, Davey JF, Mahadevan V, Gibson DT. (1976). Dihydrodiols from anthracene and phenanthrene. J Am Chem Soc, 98, 5988–96.
  • Johnsen AR, Karlson U. (2007). Diffuse PAH contamination of surface soils: environmental occurrence, bioavailablity, and microbial biodegradation. Appl Microbiol Biotechnol, 76, 533–43.
  • Jørgensen KS. (2007). In situ bioremediation. Adv Appl Microbiol, 61, 285–305.
  • Juhasz A, Naidu R. (2000). Bioremediation of high molecular weight polycyclic aromatic hydrocarbons: a review of the microbial degradation of benzo[a]pyrene. Int Biodet Biodeg, 45, 57–88.
  • Kasai Y, Shindo K, Harayama S, Misawa N. (2003). Molecular characterization and substrate preference of a polycyclic aromatic hydrocarbon dioxygenase from Cycloclasticus sp. strain A5. Appl Environ Microbiol, 69, 6688–97.
  • Kelley I, Freeman JP, Cerniglia CE. (1990). Identification of metabolites from degradation of naphthalene by a Mycobacterium sp. Biodegradation, 1, 283–90.
  • Keum YS, Seo JS, Hu Y, Li QX. (2006). Degradation pathways of phenanthrene by Sinorhizobium sp. C4. Appl Microbiol Biotechnol, 71, 935–41.
  • Kim SJ, Kweon O, Jones RC, Freeman JP, Edmondson RD, Cerniglia CE. (2007). Complete and integrated pyrene degradation pathway in Mycobacterium vanbaalenii PYR-1 based on systems biology. J Bacteriol, 189, 464–72.
  • Kim YH, Freeman JP, Moody JD, Engesser K, Cerniglia CE. (2005). Effects of pH on the degradation of phenanthrene and pyrene by Mycobacterium vanbaalenii PYR-1. Appl Microbiol Biotechnol, 67, 275–85.
  • Kiyohara H, Nagao K, Kouno K, Yano K. (1982). Phenanthrene-degrading phenotype of Alcaligenes faecalis AFK2. Appl Environ Microbiol, 43, 458–61.
  • Kiyohara H, Nagao K, Nomi R. (1976). Degradation of phenanthrene through o-phthalate by an Aeromonas sp. Agric Biol Chem, 40, 1075–82.
  • Kiyohara H, Nagao K. (1978). The catabolism of phenanthrene and naphthalene by bacteria. J Gen Microbiol, 105, 69–75.
  • Kiyohara H, Torigoe S, Kaida N, Asaki T, Iida T, Hayashi H, Takizawa N. (1994). Cloning and characterization of a chromosomal gene cluster, pah, that encodes the upper pathway for phenanthrene and naphthalene utilization by Pseudomonas putida OUS82. J Bacteriol, 176, 2439–43.
  • Kolomytseva MP, Randazzo D, Baskunov BP, Scozzafava A, Briganti F, Golovleva LA. (2009). Role of surfactants in optimizing fluorene assimilation and intermediate formation by Rhodococcus rhodochrous VKM B–2469. Bioresour Technol, 100, 839–44.
  • Komatsu T, Omori T, Kodama T. (1993). Microbial degradation of polycyclic aromatic hydrocarbons acenaphthene and acenaphthylene by a pure bacterial culture. Biosci Biotech Biochem, 57, 864–5.
  • Kweon O, Kim S-J Baek, S, Chae J-C Adjei, MD, Baek D-H Kim, Y-C, Cerniglia CE. (2008). A new classification system for bacterial Rieske non-heme iron aromatic ring-hydroxylating oxygenases. BMC Biochemistry, 9, 11 (doi: 10.1186/1471–2091–9–11).
  • Lal B, Khanna S. (1996). Degradation of crude oil by Acinetobacter calcoaceticus and Alcaligenes odorans. J Appl Bacteriol, 81, 355–62.
  • Laurie AD, Lloyd-Jones G. (1999a). The phn genes of Burkholderia sp. strain RP007 constitute a divergent gene cluster for polycyclic aromatic hydrocarbon catabolism. J Bacteriol, 181, 531–40.
  • Laurie AD, Lloyd–Jones G. (1999b). Conserved and hybrid meta-cleavage operons from PAH-degrading Burkholderia RP007. Biochem Biophys Res Commun, 262, 308–14.
  • Li W, Shi J, Wang X, Han Y, Tong W, Ma L, Liu B, Cai B. (2004). Complete nucleotide sequence and organization of the naphthalene catabolic plasmid pND6-1 from Pseudomonas sp. strain ND6. Gene, 336, 231–40.
  • Lipscomb JD. (2008). Mechanism of extradiol aromatic ring-cleavage dioxygenases. Curr Opin Str Biol, 18, 644–9.
  • Liu Y, Zhang J, Zhang Z. (2004). Isolation and characterization of polycyclic aromatic hydrocarbons-degrading Sphingomonas sp. strain ZL5. Biodegradation, 15, 205–12.
  • Lovley DR. (2001). Bioremediation. Anaerobes to the rescue. Science, 293, 1444–6.
  • Mallick S, Chatterjee S, Dutta TK. (2007). A novel degradation pathway in the assimilation of phenanthrene by Staphylococcus sp. strain PN/Y via meta-cleavage of 2-hydroxy-1-naphthoic acid: formation of trans-2,3-dioxo-5-(2'-hydroxyphenyl)-pent-4-enoic acid. Microbiology, 153, 2104–15.
  • Marston CP, Pereira ZC, Ferguson J, Fischer L, Hedstrom O, Dashwood WM, Baird WM. (2001). Effect of a complex environmental mixture from coal tar containing polycyclic aromatic hydrocarbons (PAH) on tumor initiation, PAH-DNA binding and metabolic activation of carcinogenic PAH in mouse epidermis. Carcinogenesis, 22, 1077–86.
  • Mason JR, Cammack R. (1992). The electron-transport proteins of hydroxylating bacterial dioxygenases. Annu Rev Microbiol, 46, 277–305.
  • Means JC, Ward SG, Hassett JJ, Banwart WL. (1980). Sorption of polynuclear aromatic hydrocarbons by sediment and soil. Environ Sci Technol, 14, 1524–8.
  • Meckenstock RU, Safinowski M, Griebler C. (2004). Anaerobic degradation of polycyclic aromatic hydrocarbons. FEMS Microbiol Ecol, 49, 27–36.
  • Menn FM, Applegate BM, Sayler GS. (1993). NAH plasmid-mediated catabolism of anthracene and phenanthrene to naphthoic acids. Appl Environ Microbiol, 59, 1938–42.
  • Mihelcic JR, Luthy RG. (1988). Microbial degradation of acenaphthene and naphthalene under denitrification conditions in soil-water systems. Appl Environ Microbiol, 54, 1188–98.
  • Monna L, Omori T, Kodama T. (1993). Microbial degradation of dibenzofuran, fluorene, and dibenzo-p-dioxin by Staphylococcus auriculans DBF63. Appl Environ Microbiol, 59, 285–9.
  • Moody JD, Freeman JP, Doerge DR, Cerniglia CE. (2001). Degradation of phenanthrene and anthracene by cell suspension of Mycobacterium sp. strain PYR-1. Appl Environ Microbiol, 67, 1476–83.
  • Morehead NR, Eadie BJ, Lake B, Landrum PD, Berner D. (1986). The sorption of PAH onto dissolved organic matter in Lake Michigan waters. Chemosphere, 15, 403–12.
  • Mrozik A, Piotrowska-Seget Z, Labuzek S. (2003). Bacterial degradation and bioremediation of polycyclic aromatic hydrocarbons. Pol J Environ Stud, 12, 15–25.
  • Mueller JG, Cerniglia CE, Pritchard PH. (1996). Bioremediation of environments contaminated by polycyclic aromatic hydrocarbons. In: Crawford RL, Crawford LD, eds. Bioremediation: principles and applications. Cambridge University Press, 125–94.
  • Mueller JG, Devereux R, Santavy DL, Lantz SE, Willis SG, Pritchard PH. (1997). Phylogenetic and physiological comparisons of PAH-degrading bacteria from geographically diverse soils. Antonie van Leeuwenhoek, 71, 329–43.
  • Nam JW, Nojiri H, Yoshida T, Habe H, Yamane H, Omori T. (2001). New classification system for oxygenase components involved in ring-hydroxylating oxygenations. Biosci Biotechnol Biochem, 65, 254–63.
  • Narro ML, Cerniglia CE, Baalen CV, Gibson DT. (1992). Metabolism of Phenanthrene by the Marine Cyanobacterium Agmenellum quadruplicatum PR–6. Appl Environ Microbiol, 58, 1351–9.
  • Nayak AS, Veeranagouda Y, Lee K, Karegoudar TB. (2009). Metabolism of acenaphthylene via 1,2-dihydroxynaphthalene and catechol by Stenotrophomonas sp. RMSK. Biodegradation, 20, 837–43.
  • Nebert DW, Gonzalez FJ. (1987). P450 genes: structure, evolution, and regulation. Annu Rev Biochem, 56, 945–93.
  • Norris RD, Hinchee RE, Brown R, McCarty PL, Semprini L, Wilson JT, Kampbell DH, Reinhard M, Bouwer EJ, Borden PC, Vogel TM, Thomas JM, Ward CH, (1993). Handbook of bioremediation. Boca Raton, FL, USA: Lewis Publishers.
  • Nylund L, Heikkila P, Hameila M, Pyy L, Linnainmaa K, Sorsa M. (1992). Genotoxic effects and chemical composition of four creosotes. Mutat Res, 265, 223–36.
  • Oostingh GJ, Schmittner M, Ehart AK, Tischler U, Duschl A. (2008). A high-throughput screening method based on stably transformed human cells was used to determine the immunotoxic effects of fluoranthene and other PAHs. Toxicol In Vitro, 22, 1301–10.
  • Pannu JK, Singh A, Ward OP. (2003). Influence of peanut oil in microbial degradation of polycyclic aromatic hydrocarbons. Can J Microbiol, 49, 508–513.
  • Park M, Jeon Y, Jang HH, Ro HS, Park W, Madsen EL, Jeon CO. (2007). Molecular and biochemical characterization of 3-hydroxybenzoate 6-hydroxylase from Polaromonas naphthalenivorans CJ2. Appl Environ Microbiol, 73, 5146–52.
  • Patel TR, Barnsley EA. (1980). Naphthalene metabolism by pseudomonads: purification and properties of 1,2-dihydroxynaphthalene oxygenase. J Bacteriol, 143, 668–73.
  • Patel TR, Gibson DT. (1974). Purification and properties of (1)-cisnaphthalene dihydrodiol dehydrogenase of Pseudomonas putida. J Bacteriol, 119, 879–88.
  • Pelkonen O, Nebert DW. (1982). Metabolism of polycyclic hydrocarbons: etiologic role in carcenogenesis. Pharmacol Rev, 34, 189–222.
  • Peng R-H Xiong, A-S, Xue Y, Fu X-Y Gao, F, Zhao W, Tian Y-S Yao, Q-H. (2008). Microbial biodegradation of polyaromatic hydrocarbons. FEMS Microbiol Rev, 32, 927–55.
  • Pinyakong O, Habe H, Kouzuma A, Nojiri H, Yamane H, Omori T. (2004). Isolation and characterization of genes encoding polycyclic aromatic hydrocarbon dioxygenase from acenaphthene and acenaphthylene degrading Sphingomonas sp. strain A4. FEMS Microbiol Lett, 238, 297–305.
  • Pinyakong O, Habe H, Supaka N, Pinpanichkarn P, Juntongjin K, Yoshida T, Furihata K, Nojiri H, Yamane H, Omori T. (2000). Identification of novel metabolites in the degradation of phenanthrene by Sphingomonas sp. strain P2. FEMS Microbiol Lett, 191, 115–21.
  • Poonthrigpun S, Pattaragulwanit K, Paengthai S, Kriangkripipat T, Juntongjin K, Thaniyavarn S, Petsom A, Pinphanichakarn P. (2006). Novel Intermediates of Acenaphthylene Degradation by Rhizobium sp. Strain CU-A1: Evidence for Naphthalene-1,8-Dicarboxylic Acid Metabolism. Appl Environ Microbiol, 72, 6034–9.
  • Prabhu Y, Phale PS. (2003). Biodegradation of phenanthrene by Pseudomonas sp. strain PP2: novel metabolic pathway, role of biosurfactant and cell surface hydrophobicity in hydrocarbon assimilation. Appl Microbiol Biotechnol, 61, 342–51.
  • Rockne KJ, Strand SE. (2001). Anaerobic biodegradation of naphthalene, phenanthrene, and biphenyl by a denitrifying enrichment culture. Water Res, 35, 291–9.
  • Rogoff MH, Wender I. (1957). The microbiology of coal. I. Bacterial oxidation of phenanthrene. J Bacteriol, 73, 264–8.
  • Ryu BH, Oh YK, Bin JH. (1989). Biodegradation of naphthalene by Acinetobacter calcoaceticus R-88. J Kor Agric Chem Soc, 32, 315–20.
  • Samanta SK, Chakraborti AK, Jain RK. (1999). Degradation of phenanthrene by different bacteria: evidence for novel transformation sequences involving the formation of 1–naphthol. Appl Microbiol Biotechnol, 53, 98–107.
  • Samanta SK, Singh OV, Jain RK. (2002). Polycyclic aromatic hydrocarbons: environmental pollution and bioremediation. Trends Biotechnol, 20, 243–8.
  • Sanseverino J, Applegate BM, King JM, Sayler GS. (1993). Plasmid–mediated mineralization of naphthalene, phenanthrene, and anthracene. Appl Environ Microbiol, 59, 1931–7.
  • Schell MA. (1983). Cloning and expression in Escherichia coil of the naphthalene degradative genes from plasmid NAH7. J Bacteriol, 153, 822–9.
  • Schnitz AR, Squibb KS, O’Connor JM. (1993). Time-varying conjugation of 7,12-dimethylbenz[a]anthracene metabolites in rainbow trout (Oncorhynchus mykiss). Toxicol Appl Pharm, 121, 58–70.
  • Schocken MJ, Gibson DT. (1984). Bacterial oxidation of polycyclic aromatic hydrocarbons acenaphthene and acenaphthylene. Appl Environ Microbiol, 48, 10–16.
  • Selifonov SA, Grifoll M, Eaton RW, Chapman PJ. (1996). Oxidation of naphthenoaromatic and methyl-substituted aromatic compounds naphthalene 1,2–dioxygenase. Appl Environ Microbiol, 62, 507–14.
  • Selifonov SA, Grifoll M, Gurst JE, Chapman PJ. (1993). Isolation and characterization of (1)–1,1a-dihydroxy-1-hydrofluoren-9-one formed by angular dioxygenation in the bacterial catabolism of fluorene. Biochem Biophys Res Commun, 193, 67–76.
  • Seo J, Keum Y, Hu Y, Lee S, Li QX. (2007). Degradation of phenanthrene by Burkholderia sp. C3: initial 1,2- and 3,4-dioxygenation and meta- and ortho-cleavage of naphthalene-1,2-diol. Biodegradation, 18: 123–31.
  • Seo JS, Keum YS, Hu Y, Lee SE, Li QX. (2006). Phenanthrene degradation in Arthrobacter sp. P1-1: initial 1,2-, 3,4- and 9,10-dioxygenation, and meta- and ortho-cleavages of naphthalene-1,2-diol after its formation from naphthalene-1,2-dicarboxylic acid and hydroxyl naphthoic acids. Chemosphere, 65, 2388–94.
  • Seo JS, Keum YS, Li QX. (2009). Bacterial degradation of aromatic compounds. Int J Environ Res Public Health, 6: 278–309.
  • Shaw GR, Connell DW. (1994). Prediction and monitoring of the carcinogenicity of polycyclic aromatic compounds (PACs). Rev Environ Contam Toxicol, 135, 1–62.
  • Shi T, Fredrickson JK, Balkwill DL. (2001). Biodegradation of polycyclic aromatic hydrocarbons by Sphingomonas strains isolated from the terrestrial subsurface. J Ind Microbiol Biotechnol, 26, 283–9.
  • Shimada T. (2006). Xenobiotic-metabolizing enzymes involved in activation and detoxification of carcinogenic polycyclic aromatic hydrocarbons. Drug Metab Pharmacokinet, 21, 257–76.
  • Shuttleworth KL, Cerniglia CE. (1995). Environmental aspects of PAH biodegradation. Appl Biochem Biotechnol, 54, 291–302.
  • Singh S, Kang SH, Mulchandani A, Chen W. (2008). Bioremediation: environmental clean–up through pathway engineering. Curr Opin Biotechnol, 19, 437–44.
  • Sipilä TP, Riisiö H, Yrjälä K. (2006). Novel upper meta-pathway extradiol dioxygenase gene diversity in polluted soil. FEMS Microbiol Ecol, 58, 134–44.
  • Sutherland JB, Freeman JP, Selby AL, Miller DW, Cerniglia CE. (1990). Stereoselective formation of a K-region dihydrodiol from phenanthrene by Streptomyces flavovirens. Arch Microbiol, 154, 260–6.
  • Sutherland JB, Rafii F, Khan AA, Cerniglia CE. (1995). Mechanisms of polycyclic aromatic hydrocarbon degradation. In: Young LY, Cerniglia CE, eds. Microbial transformation and degradation of toxic organic chemicals. New York: Wiley-Liss, 269–306.
  • Suzuki S, Hiraishi A. (2007). Sphingobium naphthalenivorans sp. nov., a naphthalene-degrading bacterium isolated from polychlorinated-dioxin-contaminated environments. J Gen Appl Microbiol, 53, 221–8.
  • Tagger S, Truaut N, Le Petit J. (1990). Preliminary study on the relationships among strains forming a bacterial community selected on naphthalene from marine sediment. Can J Microbiol, 36, 676–81.
  • Takeuchi M, Hamana K, Hiraishi A. (2001). Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol, 51, 1405–17.
  • Takizawa N, Iida T, Sawada T, Yamauchi K, Wang YW, Fukuda M, Kiyohara H. (1999). Nucleotide sequences and characterization of genes encoding naphthalene upper pathway of Pseudomonas aeruginosa PaK1 and Pseudomonas putida OUS82. J Biosci Bioeng, 87, 721–31.
  • Tang YJ, Carpenter S, Deming J, Krieger-Brockett B. (2005). Controlled release of nitrate and sulfate to enhance anaerobic bioremediation of phenanthrene in marine sediments. Environ Sci Technol, 39, 3368–73.
  • Tao XQ, Lu GN, Dang Z, Yi XY, Yang C. (2007). Isolation of phenanthrene-degrading bacteria and characterization of phenanthrene metabolites. World J Microbiol Biotechnol, 23, 647–54.
  • Tian L, Ma P, Zhong J. (2003). Impact of the presence of salicylate or glucose on enzyme activity and phenanthrene degradation by Pseudomonas mendocina. Proc Biochem, 38, 1125–32.
  • Toledo FL, Calvo C, Rodelas B, González-López J. (2006). Selection and identification of bacteria isolated from waste crude oil with polycyclic aromatic hydrocarbons removal capacities. Syst Appl Microbiol, 29, 244–52.
  • Tongpim S, Pickard MA. (1999). Cometabolic oxidation of phenanthrene to phenanthrene trans-9,10-dihydrodiol by Mycobacterium strain S1 growing on anthracene in the presence of phenanthrene. Can J Microbiol, 45, 369–76.
  • Trably E, Patureau D, Delgenes JP. (2003). Enhancement of polycyclic aromatic hydrocarbons removal during anaerobic treatment of urban sludge. Water Sci Technol, 48, 53–60.
  • Trenz SP, Engesser KH, Fischer P, Knackmuss H-J. (1994). Degradation of fluorene by Brevibacterium sp. strain DPO 1361: a novel C-C bond cleavage mechanism via 1,10-dihydro-1,10-dihydroxyfluoren-9-one. J Bacteriol, 176, 789–95.
  • Utkin IB, Yakimov MM, Matveeva LN, Kozlyak El Rogozhin, IS, Solomon ZG, Bezborodov AM. (1990). Catabolism of naphthalene and salicylate by Pseudomonas fluorescens. Folia Microbiol, 35, 557–60.
  • Vaillancourt FH, Bolin JT, Eltis LD. (2006). The ins and outs of ring-cleaving dioxygenases, Crit Rev Biochem Mol Biol, 41, 241–67.
  • van Beilen JB, Duetz WA, Schimid A, Witholt B. (2003). Practical issues in the application of oxygenases. Trends Biotechnol 21: 170–177.
  • van Herwijnen R, Springael D, Slot P, Govers HAJ, Parsons JR. (2003a). Degradation of anthracene by Mycobacterium sp. Strain LB501T proceeds via a novel pathway, through o–phthalic acid. Appl Environ Microbiol, 69, 186–90.
  • van Herwijnen R, Wattiau P, Bastiaens L, Daal L, Jonker L, Springael D, Govers HA, Parsons JR. (2003b). Elucidation of the metabolic pathway of fluorene and cometabolic pathways of phenanthrene, fluoranthene, anthracene and dibenzothiophene by Sphingomonas sp. LB126. Res Microbiol, 154, 199–206.
  • Veraldi A, Costantini AS, Bolejack V, Miligi L, Vineis P, van Loveren H. (2006). Immunotoxic effects of chemicals: A matrix for occupational and environmental epidemiological studies. Am J Ind Med, 49, 1046–55.
  • Vidali M. (2001). Bioremediation. An overview. Pure Appl Chem, 73, 1163–72.
  • Wattiau P, Bastiaens L, van Herwijnen R, Daal L, Parsons JR, Renard ME, Springael D, Cornelis GR. (2001). Fluorene degradation by Sphingomonas sp. LB126 proceeds through protocatechuic acid: a genetic analysis. Res Microbiol, 152, 861–72.
  • Werlen C, Kohler HP, van der Meer JR. (1996). The broad substrate chlorobenzene dioxygenase and cis-chlorobenzene dihydrodiol dehydrogenase of Pseudomonas sp. strain P51 are linked evolutionarily to the enzymes for benzene and toluene degradation. J Biol Chem, 271, 4009–16.
  • Werwath J, Arfmann HA, Pieper DH, Timmis KN, Wittich RM. (1998). Biochemical and genetic characterization of a gentisate 1, 2-dioxygenase from Sphingomonas sp. strain RW5. J Bacteriol, 180, 4171–6.
  • White RE, Coon MJ. (1980). Oxygen activation by cytochrome P-450. Annu Rev Biochem, 49, 315–56.
  • Widada J, Nojiri H, Kasuga K, Yoshida T, Habe H, Omori T. (2002). Molecular detection and diversity of polycyclic aromatic hydrocarbon-degrading bacteria isolated from geographically diverse sites. Appl Microbiol Biotechnol, 58, 202–09.
  • Widdel F, Rabus R. (2001). Anaerobic biodegradation od saturated and aromatic hydrocarbons. Curr Opun Biotechnol, 12, 259–76.
  • World Health Organization. (1983). Evaluation of the carcinogenic risk of chemicals to humans. - polycyclic aromatic compounds. In: Polynuclear Aromatic Compounds. Part 1. Chemical, Environmental and Experimental Data. Vol. 32. Lyons, France: International Agency for Research on Cancer.
  • Xue W, Warshawsky D. (2005). Metabolic activation of polycyclic and heterocyclic aromatic hydrocarbons and DNA damage: a review. Toxicol Appl Pharmacol, 206, 73–93.
  • Yang Y, Chen RF, Shiaris MP. (1994). Metabolism of naphthalene, fluorene, and phenanthrene: preliminary characterization of a cloned gene cluster from Pseudomonas putida NCIB 9816. J Bacteriol, 176, 2158–64.
  • Yen KM, Serder CM. (1988). Genetics of naphthalene catabolism in Pseudomonas. Crit Rev Microbiol, 15, 247–67.
  • Yuan SY, Chang BV. (2007). Anaerobic degradation of five polycyclic aromatic hydrocarbons from river sediment in Taiwan. J Environ Sci Health B, 42, 63–9.
  • Zeinali M, Vossoughi M, Ardestani SK. (2008a). Naphthalene metabolism in Nocardia otitidiscaviarum strain TSH1, a moderately thermophilic microorganism. Chemosphere, 72, 905–09.
  • Zeinali M, Vossoughi M, Ardestani SK. (2008b). Degradation of phenanthrene and anthracene by Nocardia otitidiscaviarum strain TSH1, a moderately thermophilic bacterium. J Appl Microbiol, 105, 398–406.
  • Zhang H, Kallimanis A, Koukkou AI, Drainas C. (2004). Isolation and characterization of novel bacteria degrading polycyclic aromatic hydrocarbons from polluted Greek soils. Appl Microbiol Biotechnol, 65, 124–31.
  • Zhang X, Young LY. (1997). Carboxylation as an initial reaction in the anaerobic metabolism of naphthalene and phenanthrene by sulfidogenic consortia. Appl Environ Microbiol, 63, 4759–64.
  • Zhou NY, Fuenmayor SL, Williams PA. (2001). nag genes of Ralstonia (formerly Pseudomonas) sp. strain U2 encoding enzymes for gentisate catabolism. J Bacteriol, 183, 700–08.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.