305
Views
22
CrossRef citations to date
0
Altmetric
Review Article

Evolution of β-lactams resistance in Gram-negative bacteria in Tunisia

, &
Pages 167-177 | Received 25 May 2010, Accepted 05 Jan 2011, Published online: 26 Mar 2011

References

  • Abbassi MS, Torres C, Achour W, Vinué L, Sáenz Y, Costa D, Bouchami O, Ben Hassen A. (2008). Genetic characterization of CTX-M-15-producing Klebsiella pneumoniae and Escherichia coli strains isolated from stem cell transplant patients in Tunisia. Inter. J. of Antimicrob. Agents, 32, 308–314.
  • Aubert D, Naas T, Héritier C, Poirel L, Nordmann P. (2006). Functional characterization of IS1999, an IS4 family element involved in mobilization and expression of β-lactam resistance genes. J Bacteriol, 188, 6506–6514.
  • Barlow M, Reik RA, Jacobs SD, Medina M, Meyer MP, McGowan JE, Tenover FC. (2008). High Rate of Mobilization for blaCTX-Ms. Emerg Infect Dis, 14, 423–428.
  • Ben Achour N, Mercuri PS, Ben Moussa M, Galleni M, Belhadj O. (2009a). Characterization of a novel extended-spectrum TEM-type beta-lactamase, TEM-164, in a clinical strain of Klebsiella pneumoniae in Tunisia. Microb Drug Resist, 15, 195–199.
  • Ben Achour N, Mercuri PS, Power P, Belhadj C, Ben Moussa M, Galleni M, Belhadj O. (2009b). First detection of CTX-M-28 in a Tunisian hospital from a cefotaxime resistant Klebsiella pneumoniae strain. Path. Biol, 57, 343–348.
  • Ben Hassen A, Meddeb M, Ben Chaabane T, Zribi M, Ben Redjeb S. (1994). Characteristics of the antibiotic resistance plasmid in Salmonella typhi isolated in Tunis in 1990. Ann Biol Clin (Paris), 52, 133–136.
  • Ben Redjeb S, Ben Hassen A, Verdet C, Arlet G, Bouabdallah F, Philippon A. (1999). β-lactamase plasmidique (AmpC) chez un Proteus mirabilis en Tunisie. Med Mal Infect, 29, 415–417.
  • Ben Slama K, Jouini A, Ben Sallem R, Somalo S, Sáenz Y, Estepa V, Boudabous A, Torres C. (2010). Prevalence of broad-spectrum cephalosporin-resistant Escherichia coli isolates in food samples in Tunisia, and characterization of integrons and antimicrobial resistance mechanisms implicated. Inter J Food Microbiol, 137: 281–286
  • Ben-Hamouda T, Foulon T, Ben-Mahrez K. (2004). Involvement of SHV-12 and SHV-2a encoding plasmids in outbreaks of extended-spectrum beta-lactamase-producing Klebsiella pneumoniae in a Tunisian neonatal ward. Microb Drug Resist, 10, 132–138.
  • Bethel CR, Distler AM, Ruszczycky MW, Carey MP, Carey PR, Hujer AM, Taracila M, Helfand MS, Thomson JM, Kalp M, Anderson VE, Leonard DA, Hujer KM, Abe T, Venkatesan AM, Mansour TS, Bonomo RA. (2008). Inhibition of OXA-1 β-lactamase by penems. Antimicrob Agents Chemother, 52, 3135–3143.
  • Bidet P, Burghoffer B, Gautier V, Brahimi N, Mariani-Kurkdjian P, El-Ghoneimi A, Bingen E, Arlet G. (2005). In vivo transfer of plasmid encoded ACC-1 AmpC from Klebsiella pneumoniae to Escherichia coli in an infant and selection of impermeability to imipenem in K. pneumoniae. Antimicrob Agents Chemother, 49, 3562–3565.
  • Bonnet R. (2004). Growing group of extended-spectrum beta-lactamases: the CTX-M enzymes. Antimicrob Agents Chemother, 48, 1–14.
  • Bouallegue OG, Ben Salem Y, Fabre L, Demartin M, Grimont PAD, Mzoughi R, Weill FX. (2005). Nosocomial outbreak caused by Salmonella enterica serotype Livingstone producing CTX-M-27 extended-spectrum β-lactamase in a neonatal unit in Sousse, Tunisia. J Clin Microbiol, 34, 1037–1044.
  • Bourouis A, Dubois V, Coulange L, André C, Bejhadj C, Ben Moussa M, Quentin C, Belhadj O.(2009). First report of CTX-M-9 in a clinical isolate of Enterobacter cloacae in a Tunisian hospital. Path Biol, doi:10.1016/j.patbio.2009.03.008.
  • Boyd DA, Tyler S, Christianson S, McGeer A, Muller MP, Willey BM, Bryce E, Gardam M, Nordmann P, Mulvey MR. (2004). Complete nucleotide sequence of a 92-kilobase plasmid harboring the CTX-M-15 extendedspectrum β-lactamase involved in an outbreak in long-term-care facilities in Toronto, Canada. Antimicrob. Agents Chemother 48, 3758–3764.
  • Bradford PA, Cherubin CE, Idemyor V, Rasmussen BA, Bush K. (1994). Multiply resistant Klebsiella pneumoniae strains from two Chicago hospitals: identification of the extended-spectrum TEM-12 and TEM-10 ceftazidime-hydrolyzing beta-lactamases in a single isolate. Antimicrob. Agents Chemother, 38, 761–766.
  • Bush K, Jacoby GA, Medeiros AA. (1995). A functional classification scheme for beta-lactamases and its correlation with molecular structure. Antimicrob Agents Chemother, 39, 1211–1233.
  • Bush K, Macalintal C, Rasmussen BA, Lee VJ, Yang Y. (1993). Kinetic interactions of tazobactam with β-lactamases from all major structural classes. Antimicrob Agents Chemother, 37, 851–858.
  • Carrër A, Poirel L, Eraksoy H, Cagatay AA, Badur S, Nordmann P. (2008). Spread of OXA-48-positive carbapenem-resistant Klebsiella pneumoniae isolates in Istanbul, Turkey. Antimicrob Agents Chemother, 52, 2950–2954.
  • Castanheira M, Mendes RE, Rhomberg PR, Jones RN. (2008). Rapid emergence of blaCTX-M among Enterobacteriaceae in U.S. medical centers: molecular evaluation from the MYSTIC Program (2007). Microb Drug Resist, 14, 211–216.
  • Chouchani C, Ben Achour N, M’Charek A, Belhadj O. (2007). Cloning and sequencing of the class A β-lactamase gene (blaTEM-15) Located on a chromosomal Tn801 transposon. Diag Microbiol Infect Dis, 58, 459–463.
  • Chouchani C, Berlemont R, Masmoudi A, Galleni M, Frere J-M, Belhadj O, Ben-Mahrez K. (2006). A Novel extended-spectrum TEM-type β-lactamase (TEM-138) From Salmonella enterica serovar Infantis. Antimicrob Agents Chemother, 50, 3183–3185.
  • Corvec S, Poirel L, Naas T, Drugeon H, Nordmann P. (2007). Genetics and expression of the carbapenem-hydrolyzing oxacillinase gene blaOXA-23 in Acinetobacter baumannii. Antimicrob Agents Chemother, 51, 1530–1533.
  • Cuzon G, Naas T, Lesenne A, Benhammou M, Nordmann P. (2010). Plasmid-mediated carbapenem-hydrolysing OXA-48 β-lactamase in Klebsiella pneumoniae from Tunisia. Int J Antimicrob Agents, 36, 91–93.
  • Dahmen S, Bettaieb D, Mansour W, Boujaafar N, Bouallègue O, Arlet G. (2010). Characterization and molecular epidemiology of extended-spectrum β-lactamases in clinical isolates of Enterobacteriaceae in a Tunisian University Hospital. Microb Drug Resist, 16, 163–70.
  • Dahmen S, Poirel L, Mansour W, Bouallègue O, Nordmann P. (2009). Prevalence of plasmid-mediated quinolone resistance determinants in Enterobacteriaceae from Tunisia. Clin Microbiol Infect, 16, 1019–1023
  • Datta N, Kontomichalou P. (1965). Penicillinase synthesis controlled by infectious R factors in Enterobacteriaceae. Nature, 208, 239–241.
  • Doloy A, Verdet C, Gautier V, Decre D, Ronco E, Hammami A, Philippon A, Arlet G. (2006). Genetic environment of acquired blaACC-1 β-Lactamase gene in Enterobacteriaceae isolates. Antimicrob Agents Chemother, 50, 4177–4181.
  • Drawz SM, Bonomo RA. (2010). Three Decades of β-Lactamase inhibitors. Clin Microbiol Rev, 23,160–201.
  • Easton CJ, Knowles JR. (1982). Inhibition of the RTEM β-lactamase from Escherichia coli. Interaction of the enzyme with derivatives of olivanic acid. Biochem, 21, 2857–2862.
  • Elhani D, Bakir L, Aouni M, Passet V, Arlet G, Brisse S, Weill F-X. (2010). Molecular epidemiology of extended-spectrum β-lactamase-producing Klebsiella pneumonia strains in a university hospital in Tunis, Tunisia, 1999–2005. Clin Microbiol Infect, 16, 157–164.
  • Fisher J, Belasco JG, Charnas RL, Khosla S, Knowles JR. (1980). β-Lactamase inactivation by mechanism-based reagents. Philos Trans R Soc Lond B Biol Sci, 289, 309–319.
  • Galleni M, Amicosante G, Frere JM. (1988). A survey of the kinetic parameters of class C β-lactamases. Cephalosporins and other β-lactam compounds. Biochem J, 255, 123–129.
  • Gavin PJ, Suseno MT, Thomson RB, Gaydos JM, Pierson CL, Halstead DC, Aslanzadeh J, Brecher S, Rotstein C, Brossette SE, Peterson LR. (2006). Clinical correlation of the CLSI susceptibility breakpoint for piperacillin-tazobactam against extended-spectrum-beta-lactamase- producing Escherichia coli and Klebsiella species. Antimicrob Agents Chemother, 50, 2244–2247.
  • Girlich D, Naas T, Nordmann P. (2004). Biochemical characterization of the naturally occurring oxacillinase OXA-50 of Pseudomonas aeruginosa. Antimicrob Agents Chemother, 48, 2043–2048.
  • Govinden U, Mocktar C, Moodley P, Sturm AW, Essack SY. (2007). Geographical evolution of the CTX-M β-lactamase− an update. Afr J Biotechnol, 6, 831–839.
  • Hammami A, Arlet G, Ben Redjeb S, Grimont F, Ben Hassen A, Rekik A, Philippon A. (1991). Nosocomial outbreak of acute gastroenteritis in a neonatal intensive care unit in Tunisia caused by multiply drug resistant Salmonella wien producing SHV-2 beta-lactamase. Eur J Clin Microbiol Infect Dis, 10, 641–646.
  • Hammami S, Gautier V, Ghozzi1 R, Da Costa A, Ben-Redjeb S, Arlet G. (2010). Diversity in VIM-2-encoding class 1 integrons and occasional blaSHV2a carriage in isolates of a persistent, multidrugresistant Pseudomonas aeruginosa clone from Tunis. Clin Microbiol Infect, 16, 189–193.
  • Helfand MS, Bethel CR, Hujer AM, Hujer KM, Anderson VE, Bonomo RA. (2003). Understanding resistance to β-lactams and β-lactamase inhibitors in the SHV β-lactamase: lessons from the mutagenesis of SER-130. J Biol Chem, 278, 52724–52729.
  • Jacobs C, Frere JM, Normark S. (1997). Cytosolic intermediates for cell wall biosynthesis and degradation control inducible β-lactam resistance in gram-negative bacteria. Cell, 88, 823–832.
  • Juan C, Gutierrez O, Oliver A, Ayestaran JI, Borrell N, Perez JL. (2005). Contribution of clonal dissemination and selection of mutants during therapy to Pseudomonas aeruginosa antimicrobial resistance in an intensive care unit setting. Clin Microbiol Infect, 11, 887–892.
  • Kalai Blagui S, Achour W, Abdeladhim A, Ben Hassen A. (2009). Identification of SHV-type extended spectrum β-lactamase genes in Pseudomonas aeruginosa by PCR-restriction fragment length polymorphism and insertion site restriction-PCR. Path Biol, 57, 420–424.
  • Kalai-Blagui S, Achour W, Abbassi MS, Bejaoui M, Abdeladhim A, Ben Hassen A. (2007). Nosocomial outbreak of OXA-18-producing Pseudomonas aeruginosa in Tunisia. Clin Microbiol Infect, 13, 794–800.
  • Ktari S, Arlet A, Verdet C, Jaoua S, Kachrid A, Ben Redjeb S, Mahjoubi-Rhimi F, Hammami A. (2009). Molecular epidemiology and genetic environment of acquired blaACC-1 in Salmonella enteric serotype Livingstone causing a large nosocomial outbreak in Tunisia. Mirob Drug Resist, 15, 279–286.
  • Ktari S, Arlet G, Mnif B, Gautier V, Mahjoubi F, Ben Jmeaa M, Bouaziz M, Hammami A. (2006). Emergence of multidrug-resistant Klebsiella pneumoniae isolates producing VIM-4 metallo-β-lactamase, CTX-M-15 extended-spectrum β-lactamase, and CMY-4 AmpC β-lactamase in a Tunisian University Hospital. Antimicrob Agents Chemother, 50, 4198–4201.
  • Labia R., Analysis of the blatoho gene coding for Toho-2-beta-lactamase. (1999). Antimicrob Agents Chemother, 43, 2576–2577.
  • Laraki N, Franceschini N, Rossolini GM, Santucci P, Meunier C, De Pauw E, Amicosante G, Frere JM, Galleni M. (1999). Biochemical characterization of the Pseudomonas aeruginosa 101/1477 metallo-β-lactamase IMP-1 produced by Escherichia coli. Antimicrob Agents Chemother, 43, 902–906.
  • Lartigue MF, Fortineau N, Nordmann P. (2005). Spread of novel expanded-spectrum β-lactamases in Enterobacteriaceae in a university hospital in the Paris area, France. Clin Microbiol Infect, 11, 588–91.
  • Lauretti L, Riccio ML, Mazzariol A, Cornaglia G, Amicosante G, Fontana R, Rossolini GM.. (1999). Cloning and characterization of blaVIM, a new integron-borne metallo-β-lactamase gene from a Pseudomonas aeruginosa clinical isolate. Antimicrob Agents Chemother, 43, 1584–1590.
  • Lavollay M, Mamlouk K, Frank T, Akpabie A, Burghoffer B, Ben Redjeb S, Bercion R, Gautier V, Arlet G. (2006). Clonal dissemination of a CTX-M-15 β-lactamase-producing Escherichia coli strain in the Paris area, Tunis, and Bangui. Antimicrob Agents Chemother, 50, 2433–2438.
  • Lodise TP, Lomaestro JB, Rodvold KA, Danziger LH, Drusano GL. (2004). Pharmacodynamic profiling of piperacillin in the presence of tazobactam in patients through the use of population pharmacokinetic models and Monte Carlo simulation. Antimicrob Agents Chemother, 48, 4718–4724.
  • Makanera A, Arlet G, Gautier V, Manai M. (2003). Molecular epidemiology and characterization of plasmid-encoded β-lactamases produced by Tunisian clinical isolates of Salmonella enterica serotype Mbandaka resistant to broad-spectrum cephalosporins. J Clin Microbiol, 41, 2940–2945.
  • Mamlouk K, Boutiba-Ben Boubaker I, Gautier V, Vimont S, Picard B, Ben Redjeb S, Arlet G. (2006). Emergence and outbreaks of CTX-M β-lactamase-producing Escherichia coli and Klebsiella pneumoniae strains in a Tunisian Hospital. J Clin Microbiol, 44, 4049–4056.
  • Mansour W, Bouallegue O, Dahmen S, Boujaafar N. (2008a). Characterization of the resistance mechanism to β-lactams in Acinetobacter baumannii strains isolated in the university hospital Sahloul in Tunisia (2005). Path Biol, 56, 116–120
  • Mansour W, Dahmen S, Poirel L, Charfi K, Bettaieb D, Boujaafar N, Bouallegue O. (2009a). Emergence of SHV-2a Extended-Spectrum β-Lactamases in Clinical Isolates of Pseudomonas aeruginosa in a University Hospital in Tunisia. Microb Drug Resist, 15, 295–301.
  • Mansour W, Poirel L, Bettaieb D, Bouallegue O, Boujaafar N, Nordmanna P. (2009b). Metallo-β-lactamase–producing Pseudomonas aeruginosa isolates in Tunisia. Diagn Microbiol Infect Dis, 64, 458–461.
  • Mansour W, Poirel L, Bettaieb D, Bouallegue O, Boujaafar N., Nordmann P. (2008b). issemination of OXA-23-producing and carbapenem-resistant Acinetobacter baumannii in a University Hospital in Tunisia. Microb Drug Resist, 14, 289–292.
  • Massova I, Mobashery S. (1998). Kinship and diversification of bacterial penicillin-binding proteins and β-lactamases. Antimicrob Agents Chemother, 42, 1–17.
  • Muang YT, Chang SC, Lauderdale TL, Yang AY, Wang JT. (2007). Molecular epidemiology of carbapenem resistant Pseudomonas aeruginosa carrying metallo-β-lactamase genes in Taiwan. Diagn Microbiol Infect Dis, 59, 211–216.
  • Mulvey MR, Boyd DA, Baker L, Mykytczuk O, Reis EM, Asensi MD, Rodrigues DP, Ng LK. (2004). Characterization of a Salmonella enterica serovar Agona strain harbouring a class 1 integron containing novel OXA-type β-lactamase (blaOXA-53) and 6′-N-aminoglycoside acetyltransferase genes [aac(6′)-I30]. J Antimicrob Chemother, 54, 354–359.
  • Papp-Wallace KM, Bethel CR, Distler A, Kasuboski C, Taracila M, Bonomo RA. (2010). Inhibitor resistance in the KPC-2 β-lactamase: a pre-eminent property of this class A β-lactamase. Antimicrob Agents Chemother, 54, 890–897.
  • Philippon A, G Arlet Jacoby, GA. (2002). Plasmid-determined AmpC-type beta-lactamases. Antimicrob Agents Chemother, 46, 1–11.
  • Pitout JD, Chow BL, Gregson DB, Laupland KB, Elsayed S, Church DL. (2007). Molecular epidemiology of metallo-beta-lactamase-producing Pseudomonas aeruginosa in the Calgary Health Region: emergence of VIM-2-producing isolates. J Clin Microbiol, 45, 294–298.
  • Pitout JD, Revathi G, Chow BL et al. (2008). Metallo-beta-lactamase-producing Pseudomonas aeruginosa isolated from a large tertiary centre in Kenya. Clin Microbiol Infect, 14, 755–759.
  • Poirel L, Mansour W, Bouallegue O., Nordmann P. (2008). Carbapenem-resistant Acinetobacter baumannii isolates from Tunisia producing the OXA-58-like carbapenem-hydrolyzing oxacillinase OXA-97. Antimicrob Agents Chemother, 52, 1613–1617
  • Poirel L, Nordmann P. (2006). Carbapenem resistance in Acinetobacter baumannii: mechanisms and epidemiology. Clin Microbiol Infect, 12, 826–836.
  • Rhimi-Mahjoubi F, Bernier M, Arlet G, Ben Jemaa Z, Jouve P, Hammami A, Philippon A. (2002). Mise en évidence de la céphalosporinase plasmidique ACC-1 dans différentes entérobactéries (Klebsiella pneumoniae, Proteus mirabilis, Salmonella) isolées dans un hôpital Tunisien (Sfax 1997–2000). Pathol Biol, 50, 7–11.
  • Segal H, Garny S, Elisha BG. (2005) Is ISAba1 customized for Acinetobacter? FEMS Microbiol Lett, 243, 425–429.
  • Sturenburg E, Kuhn A, Mack D, Laufs R. (2004). A novel extended-spectrum β-lactamase CTX-M-23 with a P167T substitution in the active-site omega loop associated with ceftazidime resistance. J Antimicrob Chemother, 54, 406–409.
  • Tenover FC, Mohammed MJ, Gorton TS, Dembek ZF. (1999). Detection and reporting of organisms producing extended-spectrum β-lactamases: survey of laboratories in Connecticut. J Clin Microbiol, 37, 4065–4070.
  • Verdet C, Arlet G, Ben Redjeb S, Ben Hassen A, Lagrange PH, Philippon A. (1998). Characterisation of CMY-4, an AmpC-type plasmid-mediated beta-lactamase in a Tunisian clinical isolate of Proteus mirabilis. FEMS Microbiol Lett, 169, 235–40.
  • Verdet C, Benzerara Y, Gautier V, Adam O, Ould-Hocine Z, Arlet G. (2006). Emergence of DHA-1-producing Klebsiella spp. in the Parisian region: genetic organization of the ampC and ampR genes originating from Morganella morganii. Antimicrob Agents Chemother, 50, 607–617.
  • Walsh TR, Toleman MA, Poirel L, Nordmann P. (2005). Metallo-β-lactamases: the quiet before the storm? Clin Microbiol Rev, 18, 306–325.
  • Walter MW, Felici A, Galleni M, Soto RP, Adlington RM, Baldwin JE, Frere JM, Gololobox M, Schofield CJ. (1996). Trifluoromethyl alcohol and ketone inhibitors of metallo-β-lactamases. Bioorg Med Chem Lett, 6, 2455–2458.
  • Walther-Rasmussen J, Hoiby N. (2006). OXA-type carbapenemases. J Antimicrob Chemother, 57, 373–383.
  • Winokur PL, Vonstein DL, Hoffman LJ, Uhlenhopp EK, Doern GV. (2001). Evidence for transfer of CMY-2 AmpC β-lactamase plasmids between Escherichia coli and Salmonella isolates from food animals and humans. Antimicrob Agents Chemother, 45, 2716–2722.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.