1,167
Views
75
CrossRef citations to date
0
Altmetric
Review Article

A tolerogenic mucosal immune response leads to persistent Campylobacter jejuni colonization in the chicken gut

, , , , , & show all
Pages 17-29 | Received 24 May 2011, Accepted 15 Aug 2011, Published online: 13 Oct 2011

References

  • Allen KJ, Griffiths MW. (2001). Effect of environmental and chemotactic stimuli on the activity of the Campylobacter jejuni flaA sigma(28) promoter. FEMS Microbiol Lett, 205, 43–48.
  • Abuoun M, Manning G, Cawthraw SA, Ridley A, Ahmed IH, Wassenaar TM, Newell DG. (2005). Cytolethal distending toxin (CDT)-negative Campylobacter jejuni strains and anti-CDT neutralizing antibodies are induced during human infection but not during colonization in chickens. Infect Immun, 73, 3053–3062.
  • Alemka A, Whelan S, Gough R, Clyne M, Gallagher ME, Carrington SD, Bourke B. (2010). Purified chicken intestinal mucin attenuates Campylobacter jejuni pathogenicity in vitro. J Med Microbiol, 59, 898–903.
  • Bar-Shira E, Friedman A. (2006). Development and adaptations of innate immunity in the gastrointestinal tract of the newly hatched chick. Dev Comp Immunol, 30, 930–941.
  • Barton C, Ng LK, Tyler SD, Clark CG. (2007). Temperate bacteriophages affect pulsed-field gel electrophoresis patterns of Campylobacter jejuni. J Clin Microbiol, 45, 386–391.
  • Beery JT, Hugdahl MB, Doyle MP. (1988). Colonization of gastrointestinal tracts of chicks by Campylobacter jejuni. Appl Environ Microbiol, 54, 2365–2370.
  • Biswas D, Fernando U, Reiman C, Willson P, Potter A, Allan B. (2006). Effect of cytolethal distending toxin of Campylobacter jejuni on adhesion and internalization in cultured cells and in colonization of the chicken gut. Avian Dis, 50, 586–593.
  • Biswas D, Fernando UM, Reiman CD, Willson PJ, Townsend HG, Potter AA, Allan BJ. (2007). Correlation between in vitro secretion of virulence-associated proteins of Campylobacter jejuni and colonization of chickens. Curr Microbiol, 54, 207–212.
  • Borrmann E, Berndt A, Hänel I, Köhler H. (2007). Campylobacter-induced interleukin-8 responses in human intestinal epithelial cells and primary intestinal chick cells. Vet Microbiol, 124, 115–124.
  • Boyd Y, Herbert EG, Marston KL, Jones MA, Barrow PA. (2005). Host genes affect intestinal colonisation of newly hatched chickens by Campylobacter jejuni. Immunogenetics, 57, 248–253.
  • Brisbin JT, Gong J, Sharif S. (2008). Interactions between commensal bacteria and the gut-associated immune system of the chicken. Anim Health Res Rev, 9, 101–110.
  • Brownlie R, Zhu J, Allan B, Mutwiri GK, Babiuk LA, Potter A, Griebel P. (2009). Chicken TLR21 acts as a functional homologue to mammalian TLR9 in the recognition of CpG oligodeoxynucleotides. Mol Immunol, 46, 3163–3170.
  • Buckley AM, Wang J, Hudson DL, Grant AJ, Jones MA, Maskell DJ, Stevens MP. (2010). Evaluation of live-attenuated Salmonella vaccines expressing Campylobacter antigens for control of C. jejuni in poultry. Vaccine, 28, 1094–1105.
  • Byrne CM, Clyne M, Bourke B. (2007). Campylobacter jejuni adhere to and invade chicken intestinal epithelial cells in vitro. Microbiology (Reading, Engl), 153, 561–569.
  • Cawthraw S, Ayling R, Nuijten P, Wassenaar T, Newell DG. (1994). Isotype, specificity, and kinetics of systemic and mucosal antibodies to Campylobacter jejuni antigens, including flagellin, during experimental oral infections of chickens. Avian Dis, 38, 341–349.
  • Cawthraw SA, Newell DG. (2010). Investigation of the presence and protective effects of maternal antibodies against Campylobacter jejuni in chickens. Avian Dis, 54, 86–93.
  • Clark CG, Ng LK. (2008). Sequence variability of Campylobacter temperate bacteriophages. BMC Microbiol, 8, 49.
  • Conlan AJ, Line JE, Hiett K, Coward C, Van Diemen PM, Stevens MP, Jones MA, Gog JR, Maskell DJ. (2011). Transmission and dose-response experiments for social animals: A reappraisal of the colonization biology of Campylobacter jejuni in chickens. J R Soc Interface. doi:10.1098/rsif.2011.0125
  • Coward C, van Diemen PM, Conlan AJ, Gog JR, Stevens MP, Jones MA, Maskell DJ. (2008). Competing isogenic Campylobacter strains exhibit variable population structures in vivo. Appl Environ Microbiol, 74, 3857–3867.
  • Cox NA, Hofacre CL, Bailey JS, Buhr RJ, Wilson JL, Hiett KL, Richardson LJ, Musgrove MT, Cosby DE, Tankson JD, Vizzier YL, Cray PF, Vaughn LE, Holt PS, Bourassaa DV. (2005). Presence of Campylobacter jejuni in various organs one hour, one day, and one week following oral or intracloacal inoculations of broiler chicks. Avian Dis, 49, 155–158.
  • Cox NA, Richardson LJ, Buhr RJ, Fedorka-Cray PJ. (2009). Campylobacter species occurrence within internal organs and tissues of commercial caged Leghorn laying hens. Poult Sci, 88, 2449–2456.
  • de Boer P, Wagenaar JA, Achterberg RP, van Putten JP, Schouls LM, Duim B. (2002). Generation of Campylobacter jejuni genetic diversity in vivo. Mol Microbiol, 44, 351–359.
  • de Zoete MR, Keestra AM, Roszczenko P, van Putten JP. (2010). Activation of human and chicken toll-like receptors by Campylobacter spp. Infect Immun, 78, 1229–1238.
  • EFSA. (2010). Panel on Biological Hazards (BIOHAZ). Scientific opinion on quantification of the risk posed by broiler meat to human campylobacteriosis in the EU EFSA J, 8, 1437, doi: 102903/jEFSA20101437.
  • EFSA. (2011). The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2009. EFSA J, 9, 2090.
  • Faragasan S. (2008). Evolution, development, mechanisms and function of IgA in the gut. Curr Opin Immunol, 20, 170–177.
  • Friedman A, Bar-shira E, Sklan D. (2003). Ontogeny of gut associated immune competence in the chick. Worlds Poult Sci J, 59, 209–219.
  • Guerry P. (2007). Campylobacter flagella: Not just for motility. Trends Microbiol, 15, 456–461.
  • Guerry P, Ewing CP, Hickey TE, Prendergast MM, Moran AP. (2000). Sialylation of lipooligosaccharide cores affects immunogenicity and serum resistance of Campylobacter jejuni. Infect Immun, 68, 6656–6662.
  • Habib I, Louwen R, Uyttendaele M, Houf K, Vandenberg O, Nieuwenhuis EE, Miller WG, van Belkum A, De Zutter L. (2009). Correlation between genotypic diversity, lipooligosaccharide gene locus class variation, and caco-2 cell invasion potential of Campylobacter jejuni isolates from chicken meat and humans: Contribution to virulotyping. Appl Environ Microbiol, 75, 4277–4288.
  • Hänel I, Borrmann E, Müller J, Müller W, Pauly B, Liebler-Tenorio EM, Schulze F. (2009). Genomic and phenotypic changes of Campylobacter jejuni strains after passage of the chicken gut. Vet Microbiol, 136, 121–129.
  • Hänninen ML, Hakkinen M, Rautelin H. (1999). Stability of related human and chicken Campylobacter jejuni genotypes after passage through chick intestine studied by pulsed-field gel electrophoresis. Appl Environ Microbiol, 65, 2272–2275.
  • Hartley-Tassell LE, Shewell LK, Day CJ, Wilson JC, Sandhu R, Ketley JM, Korolik V. (2010). Identification and characterization of the aspartate chemosensory receptor of Campylobacter jejuni. Mol Microbiol, 75, 710–730.
  • He H, Genovese KJ, Nisbet DJ, Kogut MH. (2006). Profile of Toll-like receptor expressions and induction of nitric oxide synthesis by Toll-like receptor agonists in chicken monocytes. Mol Immunol, 43, 783–789.
  • Hendrixson DR, DiRita VJ. (2004). Identification of Campylobacter jejuni genes involved in commensal colonization of the chick gastrointestinal tract. Mol Microbiol, 52, 471–484.
  • Hermans D, Van Deun K, Messens W, Martel A, Van Immerseel F, Haesebrouck F, Rasschaert G, Heyndrickx M, Pasmans F. (2011a). Campylobacter control in poultry by current intervention measures ineffective: Urgent need for intensified fundamental research. Vet Microbiol, 152, 219–228.
  • Hermans D, Van Deun K, Martel A, Van Immerseel F, Messens W, Heyndrickx M, Haesebrouck F, Pasmans F. (2011b). Colonization factors of Campylobacter jejuni in the chicken gut. Vet Res, 42, 82. doi:10.1186/1297–9716–42–82.
  • Ivanov II, Littman DR. (2011). Modulation of immune homeostasis by commensal bacteria. Curr Opin Microbiol, 14, 106–114.
  • Jacobs-Reitsma WF, van de Giessen AW, Bolder NM, Mulder RW. (1995). Epidemiology of Campylobacter spp. at two Dutch broiler farms. Epidemiol Infect, 114, 413–421.
  • Jennings JL, Sait LC, Perrett CA, Foster C, Williams LK, Humphrey TJ, Cogan TA. (2011). Campylobacter jejuni is associated with, but not sufficient to cause vibrionic hepatitis in chickens. Vet Microbiol, 149, 193–199.
  • Jeurissen SH, Janse EM, van Rooijen N, Claassen E. (1998). Inadequate anti-polysaccharide antibody responses in the chicken. Immunobiology, 198, 385–395.
  • Kaiser P, Hughes S, Bumstead N. (1999). The chicken 9E3/CEF4 CXC chemokine is the avian orthologue of IL8 and maps to chicken chromosome 4 syntenic with genes flanking the mammalian chemokine cluster. Immunogenetics, 49, 673–684.
  • Kanungpean D, Kakuda T, Takai S. (2011). Participation of CheR and CheB in the chemosensory response of Campylobacter jejuni. Microbiology (Reading, Engl), 157, 1279–1289.
  • Karlyshev AV, Everest P, Linton D, Cawthraw S, Newell DG, Wren BW. (2004). The Campylobacter jejuni general glycosylation system is important for attachment to human epithelial cells and in the colonization of chicks. Microbiology (Reading, Engl), 150, 1957–1964.
  • Keeney KM, Finlay BB. (2011). Enteric pathogen exploitation of the microbiota-generated nutrient environment of the gut. Curr Opin Microbiol, 14, 92–98.
  • Keestra AM, van Putten JP. (2008). Unique properties of the chicken TLR4/MD-2 complex: Selective lipopolysaccharide activation of the MyD88-dependent pathway. J Immunol, 181, 4354–4362.
  • Keestra AM, de Zoete MR, Bouwman LI, van Putten JP. (2010). Chicken TLR21 is an innate CpG DNA receptor distinct from mammalian TLR9. J Immunol, 185, 460–467.
  • Khoury CA, Meinersmann RJ. (1995). A genetic hybrid of the Campylobacter jejuni flaA gene with LT-B of Escherichia coli and assessment of the efficacy of the hybrid protein as an oral chicken vaccine. Avian Dis, 39, 812–820.
  • Konkel ME, Christensen JE, Dhillon AS, Lane AB, Hare-Sanford R, Schaberg DM, Larson CL. (2007). Campylobacter jejuni strains compete for colonization in broiler chicks. Appl Environ Microbiol, 73, 2297–2305.
  • Konkel ME, Klena JD, Rivera-Amill V, Monteville MR, Biswas D, Raphael B, Mickelson J. (2004). Secretion of virulence proteins from Campylobacter jejuni is dependent on a functional flagellar export apparatus. J Bacteriol, 186, 3296–3303.
  • Lam KM, DaMassa AJ, Morishita TY, Shivaprasad HL, Bickford AA. (1992). Pathogenicity of Campylobacter jejuni for turkeys and chickens. Avian Dis, 36, 359–363.
  • Lamb-Rosteski JM, Kalischuk LD, Inglis GD, Buret AG. (2008). Epidermal growth factor inhibits Campylobacter jejuni-induced claudin-4 disruption, loss of epithelial barrier function, and Escherichia coli translocation. Infect Immun, 76, 3390–3398.
  • Larson CL, Shah DH, Dhillon AS, Call DR, Ahn S, Haldorson GJ, Davitt C, Konkel ME. (2008). Campylobacter jejuni invade chicken LMH cells inefficiently and stimulate differential expression of the chicken CXCLi1 and CXCLi2 cytokines. Microbiology (Reading, Engl), 154, 3835–3847.
  • Li X, Swaggerty CL, Kogut MH, Chiang H, Wang Y, Genovese KJ, He H, Stern NJ, Pevzner IY, Zhou H. (2008b). The paternal effect of Campylobacter jejuni colonization in ceca in broilers. Poult Sci, 87, 1742–1747.
  • Li X, Swaggerty CL, Kogut MH, Chiang HI, Wang Y, Genovese KJ, He H, Zhou H. (2010). Gene expression profiling of the local cecal response of genetic chicken lines that differ in their susceptibility to Campylobacter jejuni colonization. PLoS ONE, 5, e11827.
  • Li X, Swaggerty CL, Kogut MH, Chiang HI, Wang Y, Genovese KJ, He H, McCarthy FM, Burgess SC, Pevzner IY, Zhou H. (2011). Systemic response to Campylobacter jejuni infection by profiling gene transcription in the spleens of two genetic lines of chickens. Immunogenetics. DOI:10.1007/s00251–011–0557–1
  • Li YP, Ingmer H, Madsen M, Bang DD. (2008a). Cytokine responses in primary chicken embryo intestinal cells infected with Campylobacter jejuni strains of human and chicken origin and the expression of bacterial virulence-associated genes. BMC Microbiol, 8, 107.
  • Lindblom GB, Sjörgren E, Kaijser B. (1986). Natural Campylobacter colonization in chickens raised under different environmental conditions. J Hyg (Lond), 96, 385–391.
  • Linde A, Ross CR, Davis EG, Dib L, Blecha F, Melgarejo T. (2008). Innate immunity and host defense peptides in veterinary medicine. J Vet Intern Med, 22, 247–265.
  • Louwen R, Heikema A, van Belkum A, Ott A, Gilbert M, Ang W, Endtz HP, Bergman MP, Nieuwenhuis EE. (2008). The sialylated lipooligosaccharide outer core in Campylobacter jejuni is an important determinant for epithelial cell invasion. Infect Immun, 76, 4431–4438.
  • Macpherson AJ, Uhr T. (2004). Induction of protective IgA by intestinal dendritic cells carrying commensal bacteria. Science, 303, 1662–1665.
  • Manning G, Duim B, Wassenaar T, Wagenaar JA, Ridley A, Newell DG. (2001). Evidence for a genetically stable strain of Campylobacter jejuni. Appl Environ Microbiol, 67, 1185–1189.
  • Martins-Green M. (2001). The chicken Chemotactic and Angiogenic Factor (cCAF), a CXC chemokine. Int J Biochem Cell Biol, 33, 427–432.
  • Meade KG, Higgs R, Lloyd AT, Giles S, O’Farrelly C. (2009a). Differential antimicrobial peptide gene expression patterns during early chicken embryological development. Dev Comp Immunol, 33, 516–524.
  • Meade KG, Narciandi F, Cahalane S, Reiman C, Allan B, O’Farrelly C. (2009b). Comparative in vivo infection models yield insights on early host immune response to Campylobacter in chickens. Immunogenetics, 61, 101–110.
  • Murphy C, Carroll C, Jordan KN. (2006). Environmental survival mechanisms of the foodborne pathogen Campylobacter jejuni. J Appl Microbiol, 100, 623–632.
  • Myszewski MA, Stern NJ. (1991). Phagocytosis and intracellular killing of Campylobacter jejuni by elicited chicken peritoneal macrophages. Avian Dis, 35, 750–755.
  • Newell DG. (2002). The ecology of Campylobacter jejuni in avian and human hosts and in the environment. Int J Infect Dis, 6, 3S16–3S21.
  • Nielsen EM, Engberg J, Fussing V. (2001). Genotypic and serotypic stability of Campylobacter jejuni strains during in vitro and in vivo passage. Int J Med Microbiol, 291, 379–385.
  • Oakland M, Jeon B, Sahin O, Shen Z, Zhang Q. (2011). Functional characterization of a lipoprotein-encoding operon in Campylobacter jejuni. PLoS ONE, 6, e20084.
  • Oza AN, Thwaites RT, Wareing DR, Bolton FJ, Frost JA. (2002). Detection of heat-stable antigens of Campylobacter jejuni and C. coli by direct agglutination and passive hemagglutination. J Clin Microbiol, 40, 996–1000.
  • Pédron T, Sansonetti P. (2008). Commensals, bacterial pathogens and intestinal inflammation: An intriguing ménage à trois. Cell Host Microbe, 3, 344–347.
  • Peterson DA, McNulty NP, Guruge JL, Gordon JI. (2007). IgA response to symbiotic bacteria as a mediator of gut homeostasis. Cell Host Microbe, 2, 328–339.
  • Phalipon A, Cardona A, Kraehenbuhl JP, Edelman L, Sansonetti PJ, Corthésy B. (2002). Secretory component: A new role in secretory IgA-mediated immune exclusion in vivo. Immunity, 17, 107–115.
  • Ridley AM, Toszeghy MJ, Cawthraw SA, Wassenaar TM, Newell DG. (2008). Genetic instability is associated with changes in the colonization potential of Campylobacter jejuni in the avian intestine. J Appl Microbiol, 105, 95–104.
  • Ringoir DD, Korolik V. (2003). Colonisation phenotype and colonisation potential differences in Campylobacter jejuni strains in chickens before and after passage in vivo. Vet Microbiol, 92, 225–235.
  • Rosenquist H, Sommer HM, Nielsen NL, Christensen BB. (2006). The effect of slaughter operations on the contamination of chicken carcasses with thermotolerant Campylobacter. Int J Food Microbiol, 108, 226–232.
  • Ruiz-Palacios GM, Escamilla E, Torres N. (1981). Experimental Campylobacter diarrhea in chickens. Infect Immun, 34, 250–255.
  • Sahin O, Zhang Q, Meitzler JC, Harr BS, Morishita TY, Mohan R. (2001). Prevalence, antigenic specificity, and bactericidal activity of poultry anti-Campylobacter maternal antibodies. Appl Environ Microbiol, 67, 3951–3957.
  • Sahin O, Luo N, Huang S, Zhang Q. (2003). Effect of Campylobacter-specific maternal antibodies on Campylobacter jejuni colonization in young chickens. Appl Environ Microbiol, 69, 5372–5379.
  • Sang FC, Shane SM, Yogasundram K, Hagstad HV, Kearney MT. (1989). Enhancement of Campylobacter jejuni virulence by serial passage in chicks. Avian Dis, 33, 425–430.
  • Sanyal SC, Islam KM, Neogy PK, Islam M, Speelman P, Huq MI. (1984). Campylobacter jejuni diarrhea model in infant chickens. Infect Immun, 43, 931–936.
  • Scott AE, Timms AR, Connerton PL, El-Shibiny A, Connerton IF. (2007a). Bacteriophage influence Campylobacter jejuni types populating broiler chickens. Environ Microbiol, 9, 2341–2353.
  • Scott AE, Timms AR, Connerton PL, Loc Carrillo C, Adzfa Radzum K, Connerton IF. (2007b). Genome dynamics of Campylobacter jejuni in response to bacteriophage predation. PLoS Pathog, 3, e119.
  • Scupham AJ. (2009). Campylobacter colonization of the Turkey intestine in the context of microbial community development. Appl Environ Microbiol, 75, 3564–3571.
  • Scupham AJ, Jones JA, Rettedal EA, Weber TE. (2010). Antibiotic manipulation of intestinal microbiota to identify microbes associated with Campylobacter jejuni exclusion in poultry. Appl Environ Microbiol, 76, 8026–8032.
  • Shaughnessy RG, Meade KG, Cahalane S, Allan B, Reiman C, Callanan JJ, O’Farrelly C. (2009). Innate immune gene expression differentiates the early avian intestinal response between Salmonella and Campylobacter. Vet Immunol Immunopathol, 132, 191–198.
  • Shaughnessy RG, Meade KG, McGivney BA, Allan B, O’Farrelly C. (2011). Global gene expression analysis of chicken caecal response to Campylobacter jejuni. Vet Immunol Immunopathol, 142, 64–71.
  • Shoaf-Sweeney KD, Larson CL, Tang X, Konkel ME. (2008). Identification of Campylobacter jejuni proteins recognized by maternal antibodies of chickens. Appl Environ Microbiol, 74, 6867–6875.
  • Skånseng B, Trosvik P, Zimonja M, Johnsen G, Bjerrum L, Pedersen K, Wallin N, Rudi K. (2007). Co-infection dynamics of a major food-borne zoonotic pathogen in chicken. PLoS Pathog, 3, e175.
  • Smith CK, Kaiser P, Rothwell L, Humphrey T, Barrow PA, Jones MA. (2005). Campylobacter jejuni-induced cytokine responses in avian cells. Infect Immun, 73, 2094–2100.
  • Smith CK, Abuoun M, Cawthraw SA, Humphrey TJ, Rothwell L, Kaiser P, Barrow PA, Jones MA. (2008). Campylobacter colonization of the chicken induces a proinflammatory response in mucosal tissues. FEMS Immunol Med Microbiol, 54, 114–121.
  • Stahl M, Friis LM, Nothaft H, Liu X, Li J, Szymanski CM, Stintzi A. (2011). L-fucose utilization provides Campylobacter jejuni with a competitive advantage. Proc Natl Acad Sci USA, 108, 7194–7199.
  • Stern NJ, Meinersmann RJ, Cox NA, Bailey JS, Blankenship LC. (1990). Influence of host lineage on cecal colonization by Campylobacter jejuni in chickens. Avian Dis, 34, 602–606.
  • Stern NJ, Cox NA, Musgrove MT, Park CM. (2001). Incidence and levels of Campylobacter in broilers after exposure to an inoculated seeder bird. J Appl Poult Res, 10, 315–318.
  • Stern NJ. (2008). Salmonella species and Campylobacter jejuni cecal colonization model in broilers. Poult Sci, 87, 2399–2403.
  • Tu QV, McGuckin MA, Mendz GL. (2008). Campylobacter jejuni response to human mucin MUC2: Modulation of colonization and pathogenicity determinants. J Med Microbiol, 57, 795–802.
  • van de Giessen A, Mazurier SI, Jacobs-Reitsma W, Jansen W, Berkers P, Ritmeester W, Wernars K. (1992). Study on the epidemiology and control of Campylobacter jejuni in poultry broiler flocks. Appl Environ Microbiol, 58, 1913–1917.
  • Van Deun K, Haesebrouck F, Heyndrickx M, Favoreel H, Dewulf J, Ceelen L, Dumez L, Messens W, Leleu S, Van Immerseel F, Ducatelle R, Pasmans F. (2007). Virulence properties of Campylobacter jejuni isolates of poultry and human origin. J Med Microbiol, 56, 1284–1289.
  • Van Deun K, Pasmans F, Ducatelle R, Flahou B, Vissenberg K, Martel A, Van den Broeck W, Van Immerseel F, Haesebrouck F. (2008). Colonization strategy of Campylobacter jejuni results in persistent infection of the chicken gut. Vet Microbiol, 130, 285–297.
  • van Dijk A, Veldhuizen EJ, Kalkhove SI, Tjeerdsma-van Bokhoven JL, Romijn RA, Haagsman HP. (2007). The beta-defensin gallinacin-6 is expressed in the chicken digestive tract and has antimicrobial activity against food-borne pathogens. Antimicrob Agents Chemother, 51, 912–922.
  • van Gerwe T, Miflin JK, Templeton JM, Bouma A, Wagenaar JA, Jacobs-Reitsma WF, Stegeman A, Klinkenberg D. (2009). Quantifying transmission of Campylobacter jejuni in commercial broiler flocks. Appl Environ Microbiol, 75, 625–628.
  • Vegge CS, Brøndsted L, Li YP, Bang DD, Ingmer H. (2009). Energy taxis drives Campylobacter jejuni toward the most favorable conditions for growth. Appl Environ Microbiol, 75, 5308–5314.
  • Widders PR, Thomas LM, Long KA, Tokhi MA, Panaccio M, Apos E. (1998). The specificity of antibody in chickens immunised to reduce intestinal colonisation with Campylobacter jejuni. Vet Microbiol, 64, 39–50.
  • Yamamoto M, Sato S, Hemmi H, Uematsu S, Hoshino K, Kaisho T, Takeuchi O, Takeda K, Akira S. (2003). TRAM is specifically involved in the Toll-like receptor 4-mediated MyD88-independent signaling pathway. Nat Immunol, 4, 1144–1150.
  • Young KT, Davis LM, DiRita VJ. (2007). Campylobacter jejuni: molecular biology and pathogenesis. Nat Rev Microbiol, 5, 665–679.
  • Zeng X, Xu F, Lin J. (2009). Molecular, antigenic, and functional characteristics of ferric enterobactin receptor CfrA in Campylobacter jejuni. Infect Immun, 77, 5437–5448.
  • Zhu J, Meinersmann RJ, Hiett KL, Evans DL. (1999). Apoptotic effect of outer-membrane proteins from Campylobacter jejuni on chicken lymphocytes. Curr Microbiol, 38, 244–249.
  • Ziprin RL, Young CR, Byrd JA, Stanker LH, Hume ME, Gray SA, Kim BJ, Konkel ME. (2001). Role of Campylobacter jejuni potential virulence genes in cecal colonization. Avian Dis, 45, 549–557.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.