780
Views
39
CrossRef citations to date
0
Altmetric
Review Article

Microbial remediation of explosive waste

, &
Pages 152-167 | Received 24 Sep 2011, Accepted 11 Nov 2011, Published online: 12 Apr 2012

References

  • ACGIH. (1984). Picric acid. Documentation of the Threshold Limit Values. Cincinnati, OH: American Conference of Governmental Industrial Hygienists.
  • Adrian NR, Arnett CM. (2004). Anaerobic biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by Acetobacterium malicum strain HAAP-1 isolated from a methanogenic mixed culture. Curr Microbiol, 48, 332–340.
  • Adrian NR, Chow T. (2001). Identification of hydroxylamino-dinitroso-1,3,5-triazine as a transient intermediate formed during the anaerobic biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine. Environ Toxicol Chem, 20, 1874–1877.
  • Alexander M. (1999). Biodegradation and Bioremediation (2nd ed.). Academic Press, San Diego, CA.
  • Bailey A, Murray SG. (2000). Explosives, propellants and pyrotechnics. Redwoods Books, Wiltshire, UK.
  • Bardai G, Sunahara GI, Spear PA, Martel M, Gong P, Hawari J. (2005). Effects of dietary administration of CL-20 on Japanese quail Coturnix coturnix japonica. Arch Environ Contam Toxicol, 49, 215–222.
  • Behrend C, Heesche-Wagner K. (1999). Formation of hydride-Meisenheimer complexes of picric acid (2,4, 6-trinitrophenol) and 2,4-dinitrophenol during mineralization of picric acid by Nocardioides sp. strain CB 22-2. Appl Environ Microbiol, 65, 1372–1377.
  • Beller HR, Tiemeier K. (2002). Use of liquid chromatography/tandem mass spectrometry to detect distinctive indicators of in situ RDX transformation in contaminated groundwater. Environ Sci Technol, 36, 2060–2066.
  • Beller HR. (2002). Anaerobic biotransformation of RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) by aquifer bacteria using hydrogen as the sole electron donor. Water Res, 36, 2533–2540.
  • Bernstein A, Adar E, Ronen Z, Lowag H, Stichler W, Meckenstock RU. (2010). Quantifying RDX biodegradation in groundwater using delta15N isotope analysis. J Contam Hydrol, 111, 25–35.
  • Bernstein A, Adar E, Nejidat A, Ronen Z. (2011). Isolation and characterization of RDX-degrading Rhodococcus species from a contaminated aquifer. Biodegradation, 22, 997–1005.
  • Bernstein A, Ronen Z, Adar E, Nativ R, Lowag H, Stichler W, Meckenstock RU. (2008). Compound-specific isotope analysis of RDX and stable isotope fractionation during aerobic and anaerobic biodegradation. Environ Sci Technol, 42, 7772–7777.
  • Bhatt M, Zhao JS, Monteil-Rivera F, Hawari J. (2005). Biodegradation of cyclic nitramines by tropical marine sediment bacteria. J Ind Microbiol Biotechnol, 32, 261–267.
  • Bhaumik S, Christodoulatos C, Brodman BW, Pal N. (1998). Biodegradation of glycerol trinitrate by activated sludge: Cosubstrate requirements, inhibition, and kinetics. J Environ Sci Health, 33, 547–571.
  • Bhaumik S, Christodoulatos C, Korfiatis GP, Brodman BW. (1997). Aerobic and anaerobic biodegradation of nitroglycerin in batch and packed bed bioreactors. Water Sci Technol, 36, 139–146.
  • Bhushan B, Halasz A, Spain J, Thiboutot S, Ampleman G, Hawari J. (2002). Biotransformation of hexahydro-1,3,5-trinitro-1,3,5-tiazine catalyzed by a NAD(P)H: nitrate oxidoreductase from Aspergillus niger. Environ Sci Technol, 36, 3104–3108.
  • Bhushan B, Paquet L, Spain JC, Hawari J. (2003a). Biotransformation of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) by denitrifying Pseudomonas sp. strain FA1. Appl Environ Microbiol, 69, 5216–5221.
  • Bhushan B, Halasz A, Hawari J. (2004a). Nitroreductase catalyzed biotransformation of CL-20. Biochem Biophys Res Commun, 322, 271–276.
  • Bhushan B, Halasz A, Hawari J. (2005a). Biotransformation of CL-20 by a dehydrogenase enzyme from Clostridium sp. EDB2. Appl Microbiol Biotechnol, 69, 448–455.
  • Bhushan B, Halasz A, Hawari J. (2005b). Stereo-specificity for pro-® hydrogen of NAD(P)H during enzyme-catalyzed hydride transfer to CL-20. Biochem Biophys Res Commun, 337, 1080–1083.
  • Bhushan B, Halasz A, Spain JC, Hawari J. (2004b). Initial reaction(s) in biotransformation of CL-20 is catalyzed by salicylate 1-monooxygenase from Pseudomonas sp. strain ATCC 29352. Appl Environ Microbiol, 70, 4040–4047.
  • Bhushan B, Halasz A, Thiboutot S, Ampleman G, Hawari J. (2004c). Chemotaxis-mediated biodegradation of cyclic nitramine explosives RDX, HMX, and CL-20 by Clostridium sp. EDB2. Biochem Biophys Res Commun, 316, 816–821.
  • Bhushan B, Paquet L, Halasz A, Spain JC, Hawari J. (2003b). Mechanism of xanthine oxidase catalyzed biotransformation of HMX under anaerobic conditions. Biochem Biophys Res Commun, 306, 509–515.
  • Bhushan B, Trott S, Spain JC, Halasz A, Paquet L, Hawari J. (2003c). Biotransformation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by a rabbit liver cytochrome P450: insight into the mechanism of RDX biodegradation by Rhodococcus sp. strain DN22. Appl Environ Microbiol, 69, 1347–1351.
  • Binks PR, French CE, Nicklin S, Bruce NC. (1996). Degradation of pentaerythritol tetranitrate by Enterobacter cloacae PB2. Appl Environ Microbiol, 62, 1214–1219.
  • Binks PR, Nicklin S, Bruce NC. (1995). Degradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by Stenotrophomonas maltophilia PB1. Appl Environ Microbiol, 61, 1318–1322.
  • Bradley P, Dinicola R. (2005). RDX (hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine) biodegradation in aquifer sediments under manganese-reducing conditions. Bioremediation, 9, 1–8.
  • Brannon JM, Price CB, Yost SL, Hayes C, Porter B. (2005). Comparison of environmental fate and transport process descriptors of explosives in saline and freshwater systems. Mar Pollut Bull, 50, 247–251.
  • Burdette LJ, Cook LL, Dyer RS. (1988). Convulsant properties of cyclotrimethylenetrinitramine (RDX): spontaneous audiogenic, and amygdaloid kindled seizure activity. Toxicol Appl Pharmacol, 92, 436–444.
  • Christodoulatos C, Bhaumik S, Brodman BW. (1997). Anaerobic biodegradation of nitroglycerin. Water Res, 31, 1462–1470.
  • Coleman NV, Spain JC, Duxbury T. (2002). Evidence that RDX biodegradation by Rhodococcus strain DN22 is plasmid-borne and involves a cytochrome p-450. J Appl Microbiol, 93, 463–472.
  • Davis JL, Wani AH, O’Neal BR, Hansen LD. (2004). RDX biodegradation column study: comparison of electron donors for biologically induced reductive transformation in groundwater. J Hazard Mater, 112, 45–54.
  • Dodard S, Gong P, Sarrazin M, Hawari J, Kuperman R, Sunahara G. (2003). Toxicity of CL-20 and other explosives to two species of Echytraeid works. In: Proceedings from the SERDP Annual Meeting, Washington, DC.
  • Ducrocq C, Servy C, Lenfant M. (1990). Formation of glyceryl 2-mononitrate by regioselective bioconversion of glyceryl trinitrate: efficiency of the filamentous fungus Phanerochaete chrysosporium. Biotechnol Appl Biochem, 12, 325–330.
  • Ducrocq C, Servy C, Lenfant M. (1989). Bioconversion of glyceryl trinitrate into mononitrates by Geotrichum candidum. FEMS Microbiol Lett, 53, 219–222.
  • Ebert S, Fischer P, Knackmuss HJ. (2001). Converging catabolism of 2,4,6-trinitrophenol (picric acid) and 2,4-dinitrophenol by Nocardioides simplex FJ2-1A. Biodegradation, 12, 367–376.
  • Ebert S, Rieger PG, Knackmuss HJ. (1999). Function of coenzyme F420 in aerobic catabolism of 2,4, 6-trinitrophenol and 2,4-dinitrophenol by Nocardioides simplex FJ2-1A. J Bacteriol, 181, 2669–2674.
  • Eisentraeger A, Reifferscheid G, Dardenne F, Blust R, Schofer A. (2007). Hazard characterization and identification of a former ammunition site using microarrays, bioassays, and chemical analysis. Environ Toxicol Chem, 26, 634–646.
  • Esteve-Núñez A, Caballero A, Ramos JL. (2001). Biological degradation of 2,4,6-trinitrotoluene. Microbiol Mol Biol Rev, 65, 335–52, table of contents.
  • EPA. Pesticide reporting summary data, 2003. Available: http://www.epa.gov
  • Fournier D, Halasz A, Spain J, Fiurasek P, Hawari J. (2002). Determination of key metabolites during biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine with Rhodococcus sp. strain DN22. Appl Environ Microbiol, 68, 166–172.
  • Fournier D, Halasz A, Thiboutot S, Ampleman G, Manno D, Hawari J. (2004). Biodegradation of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) by Phanerochaete chrysosporium: new insight into the degradation pathway. Environ Sci Technol, 38, 4130–4133.
  • Fournier D, Monteil-Rivera F, Halasz A, Bhatt M, Hawari J. (2006). Degradation of CL-20 by white-rot fungi. Chemosphere, 63, 175–181.
  • Freedman DL, Sutherland KW. (1998). Biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) under nitrate-reducing conditions. Water Sci Technol, 38, 33–40.
  • French CE, Nicklin S, Bruce NC. (1996). Sequence and properties of pentaerythritol tetranitrate reductase from Enterobacter cloacae PB2. J Bacteriol, 178, 6623–6627.
  • Fuller ME, Perreault N, Hawari J. (2010). Microaerophilic degradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by three Rhodococcus strains. Lett Appl Microbiol, 51, 313–318.
  • Gemini VL, Gallego A, de Oliveira VM, Gomez CE, Manfio GP, Korol SE. (2005). Biodegradation and detoxification of p-nitrophenol by Rhodococcus wratislaviensis Intern Biodeter Biodegra, 55, 103–108.
  • George I, Eyers L, Stenuit B, Agathos SN. (2008). Effect of 2,4,6-trinitrotoluene on soil bacterial communities. J Ind Microbiol Biotechnol, 35, 225–236.
  • Giles J. (2004). Green explosives: collateral damage. Nature, 427, 580–581.
  • Golab T, Althaus WA, Wooten HL. (1979). Fate of [14C] trifluralin in soil. J Agricul Food Chem, 27, 163–179.
  • Gong P, Hawari J, Thiboutot S, Ampleman G, Sunahara GI. (2002). Toxicity of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) to soil microbes. Bull Environ Contam Toxicol, 69, 97–103.
  • Gong P, Sunahara GI, Rocheleau S, Dodard SG, Robidoux PY, Hawari J. (2004). Preliminary ecotoxicological characterization of a new energetic substance, CL-20. Chemosphere, 56, 653–658.
  • Goodfellow Jr WL, Burton DT, Graves WC, Hall JLW, Cooper KR. (2007). Acute toxicity of picric acid and picramic acid to Rainbow trout, Salmo gairdneri and American oyster, Crassostrea virginica. J American Water Work Associa, 19, 641–648.
  • Grosjean D. (1985). Reaction of o-cresol and nitrocresol with NOx in sunlight and with ozone–nitrogen dioxide mixtures in the dark. Environ Sci Technol, 19, 968–974.
  • Haderlein SB, Hofstetter TB, Schwarzenbach RP. (2000). Subsurface chemistry of nitroaromatic compounds. In: Spain JC, Hughes JB, Knackmuss HJ (eds.), Biodegradation of Nitroaromatic Compounds and Explosives (pp. 311–356). CRC Press LLC, Boca Raton, FL.
  • Halasz A, Spain J, Paquet L, Beaulieu C, Hawari J. (2002). Insights into the formation and degradation mechanisms of methylenedinitramine during the incubation of RDX with anaerobic sludge. Environ Sci Technol, 36, 633–638.
  • Hall DR, Beevor PS, Campion DG, Chamberlain DJ, Cork A, White RD, Almestar A, Henneberry TJ. (1992). Nitrate esters: novel sexpheromone components of the cotton leafperforator, Bucculatrix thurberiella Busck (Lepidoptera: Lyonetiidae). Tetrah Lett, 33, 4811–4814.
  • Hartter DR. (1985). The use and importance of nitroaromatic chemicals in the chemical industry. In: D. E., Rickert (ed.), Toxicity of nitroaromatic compounds (pp. 1–13). Chemical Indus Institute Toxicol, Series Hemisphere Publishing, New York.
  • Hawari J, Halasz A, Beaudet S, Paquet L, Ampleman G, Thiboutot S. (2001). Biotransformation routes of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine by municipal anaerobic sludge. Environ Sci Technol, 35, 70–75.
  • Hawari J, Halasz A, Groom C, Deschamps S, Paquet L, Beaulieu C, Corriveau A. (2002). Photodegradation of RDX in aqueous solution: a mechanistic probe for biodegradation with Rhodococcus sp. Environ Sci Technol, 36, 5117–5123.
  • Hawari J, Halasz A, Sheremata T, Beaudet S, Groom C, Paquet L, Rhofir C, Ampleman G, Thiboutot S. (2000). Characterization of metabolites during biodegradation of hexahydro-1, 3,5-trinitro-1,3,5-triazine (RDX) with municipal anaerobic sludge. Appl Environ Microbiol, 66, 2652–2657.
  • Heiss G, Knackmuss HJ. (2002). Bioelimination of trinitroaromatic compounds: immobilization versus mineralization. Curr Opin Microbiol, 5, 282–287.
  • Heiss G, Hofmann KW, Trachtmann N, Walters DM, Rouvière P, Knackmuss HJ. (2002). npd gene functions of Rhodococcus (opacus) erythropolis HL PM-1 in the initial steps of 2,4,6-trinitrophenol degradation. Microbiology (Reading, Engl), 148, 799–806.
  • Higson FK. (1992). Microbial degradation of nitroaromatic compounds. Adv Appl Microbiol, 37, 1–19.
  • Hodgson JR, Lee CC. (1975). Trinitroglycerol metabolism: denitration and glucuronide formation in the rat. Toxicol Appl Pharmacol, 34, 449–455.
  • Hofmann KW, Knackmuss HJ, Heiss G. (2004). Nitrite elimination and hydrolytic ring cleavage in 2,4,6-trinitrophenol (picric acid) degradation. Appl Environ Microbiol, 70, 2854–2860.
  • Huang S, Lindahl PA, Wang C, Bennett GN, Rudolph FB, Hughes JB. (2000). 2,4,6-trinitrotoluene reduction by carbon monoxide dehydrogenase from Clostridium thermoaceticum. Appl Environ Microbiol, 66, 1474–1478.
  • Indest KJ, Jung CM, Chen HP, Hancock D, Florizone C, Eltis LD, Crocker FH. (2010). Functional characterization of pGKT2, a 182-kilobase plasmid containing the xplAB genes, which are involved in the degradation of hexahydro-1,3,5-trinitro-1,3,5-triazine by Gordonia sp. strain KTR9. Appl Environ Microbiol, 76, 6329–6337.
  • Indest KJ, Crocker FH, Athow R. (2007). A TaqMan polymerase chain reaction method for monitoring RDX-degrading bacteria based on the xplA functional gene. J Microbiol Methods, 68, 267–274.
  • Jackson RG, Rylott EL, Fournier D, Hawari J, Bruce NC. (2007). Exploring the biochemical properties and remediation applications of the unusual explosive-degrading P450 system XplA/B. Proc Natl Acad Sci USA, 104, 16822–16827.
  • Jung CM, Crocker FH, Eberly JO, Indest KJ. (2011). Horizontal gene transfer (HGT) as a mechanism of disseminating RDX-degrading activity among Actinomycete bacteria. J Appl Microbiol, 110, 1449–1459.
  • Karakaya P, Christodoulatos C, Koutsospyros A, Balas W, Nicolich S, Sidhoum M. (2009). Biodegradation of the high explosive hexanitrohexaazaiso-wurtzitane (CL-20). Int J Environ Res Public Health, 6, 1371–1392.
  • Keith LH, Telliard WA. (1976). Priority pollutants. I. A prospective view. Environ Sci Technol, 13, 416–423.
  • Kinouchi T, Ohnishi Y. (1983). Purification and characterization of 1-nitropyrene nitroreductases from Bacteriodes fragilis. Appl Environ Microbiol, 45, 1234–1241.
  • Kitts CL, Cunningham DP, Unkefer PJ. (1994). Isolation of three hexahydro-1,3,5-trinitro-1,3,5-triazine-degrading species of the family Enterobacteriaceae from nitramine explosive-contaminated soil. Appl Environ Microbiol, 60, 4608–4611.
  • Kitts CL, Green CE, Otley RA, Alvarez MA, Unkefer PJ. (2000). Type I nitroreductases in soil enterobacteria reduce TNT (2,4,6,-trinitrotoluene) and RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine). Can J Microbiol, 46, 278–282.
  • Kulkarni M, Chaudhari A. (2006). Biodegradation of p-nitrophenol by P. putida. Bioresour Technol, 97, 982–988.
  • Kulkarni M, Chaudhari A. (2007). Microbial remediation of nitro-aromatic compounds: an overview. J Environ Manage, 85, 496–512.
  • Kuperman RG, Checkai RT, Simini M, Phillips CT, Anthony JS, Kolakowski JE, Davis EA. (2006). Toxicity of emerging energetic soil contaminant CL-20 to potworm Enchytraeus crypticus in freshly amended or weathered and aged treatments. Chemosphere, 62, 1282–1293.
  • Lachance B, Renoux AY, Sarrazin M, Hawari J, Sunahara GI. (2004). Toxicity and bioaccumulation of reduced TNT metabolites in the earthworm Eisenia andrei exposed to amended forest soil. Chemosphere, 55, 1339–1348.
  • Lenke H, Achtnich C, Knackmuss HJ. (2000). Perspectives of bioelimination of polynitroaromatic compounds. In Spain JC, Hughes JB, Knackmuss HJ (eds.), Biodegradation of Nitroaromatic Compounds and Explosives (pp. 91–126). CRC Press LLC, Boca Raton, FL.
  • Lenke H, Knackmuss H. (1996). Initial hydrogenation and extensive reduction of substituted 2,4-dinitrophenols. Appl Environ Microbiol, 62, 784–790.
  • Lenke H, Knackmuss HJ. (1992). Initial hydrogenation during catabolism of picric acid by Rhodococcus erythropolis HL 24-2. Appl Environ Microbiol, 58, 2933–2937.
  • Lewis TA, Newcombe DA, Crawford RL. (2004). Bioremediation of soils contaminated with explosives. J Environ Manage, 70, 291–307.
  • Litchfield MH. (1971). Aspects of nitrate ester metabolism. J Pharm Sci, 60, 1599–1607.
  • Marshall SJ, White GF. (2001). Complete denitration of nitroglycerin by bacteria isolated from a washwater soakaway. Appl Environ Microbiol, 67, 2622–2626.
  • Martínková L, Uhnáková B, Pátek M, Nesvera J, Kren V. (2009). Biodegradation potential of the genus Rhodococcus. Environ Int, 35, 162–177.
  • Marvin-Sikkema FD, de Bont JA. (1994). Degradation of nitroaromatic compounds by microorganisms. Appl Microbiol Biotechnol, 42, 499–507.
  • McCormick NG, Cornell JH, Kaplan AM. (1981). Biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine. Appl Environ Microbiol, 42, 817–823.
  • McFarland CA, Quinn MJ Jr, Bazar MA, Talent LG, Johnson MS. (2009). Toxic effects of oral hexahydro-1,3,5-trinitro-1,3,5-triazine in the western fence lizard (Sceloporus occidentalis). Environ Toxicol Chem, 28, 1043–1050.
  • McLellan WL, Hartley WR, Brower ME. (1992b). Hexahydro-1,3,5-Trinitro-1,3,5-Triazine (RDX). Drinking Water Health Advisory: Munitions. In: Roberts WC, Hartley WR (Eds.), (pp. 133–180). CRC Press, Boca Raton, FL.
  • Meah Y, Brown BJ, Chakraborty S, Massey V. (2001). Old yellow enzyme: reduction of nitrate esters, glycerin trinitrate, and propylene 1,2-dinitrate. Proc Natl Acad Sci USA, 98, 8560–8565.
  • Meng M, Sun WQ, Geelhaar LA, Kumar G, Patel AR, Payne GF, Speedie MK, Stacy JR. (1995). Denitration of glycerol trinitrate by resting cells and cell extracts of Bacillus thuringiensis/cereus and Enterobacter agglomerans. Appl Environ Microbiol, 61, 2548–2553.
  • Naja G, Halasz A, Thiboutot S, Ampleman G, Hawari J. (2008). Degradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) using zerovalent iron nanoparticles. Environ Sci Technol, 42, 4364–4370.
  • Needleman P, Harkey AB. (1971). Role of endogenous glutathione in the metabolism of glyceryl trinitrate by isolated perfused rat liver. Biochem Pharmacol, 20, 1867–1876.
  • Needleman P, Blehm DJ, Harkey AB, Johnson EM Jr, Lang S. (1971). The metabolic pathway in the degradation of glyceryl trinitrate. J Pharmacol Exp Ther, 179, 347–353.
  • Nejidat A, Kafka L, Tekoah Y, Ronen Z. (2008). Effect of organic and inorganic nitrogenous compounds on RDX degradation and cytochrome P-450 expression in Rhodococcus strain YH1. Biodegradation, 19, 313–320.
  • Nga DP, Altenbuchner J, Heiss GS. (2004). NpdR, a repressor involved in 2,4,6-trinitrophenol degradation in Rhodococcus opacus HL PM-1. J Bacteriol, 186, 98–103.
  • Nielsen AT, Chafin AP, Christian SL, Moore DW, Nadler MP, Nissan RA, Vanderah DJ. (1998). Synthesis of polyazapolycyclic caged polynitramines. Tetrahedron, 54, 11793–11812.
  • Pak JW, Knoke KL, Noguera DR, Fox BG, Chambliss GH. (2000). Transformation of 2,4,6-trinitrotoluene by purified xenobiotic reductase B from Pseudomonas fluorescens I-C. Appl Environ Microbiol, 66, 4742–4750.
  • Panikov NS, Sizova MV, Ros D, Christodoulatos C, Balas W, Nicolich S. (2007). Biodegradation kinetics of the nitramine explosive CL-20 in soil and microbial cultures. Biodegradation, 18, 317–332.
  • Panikov NS, Christodoulatos C, Nicolich S. (2003). Low toxicity of CL-20 (Hexanitrohexaazaisowurtzitane) to plants and soil microorganisms. In: SETAC 24th Annual Meeting in North America. Science without Borders: Developing Solutions for Global Environmental Challenges, Austin, TX.
  • Pasti-Grigsby MB, Lewis TA, Crawford DL, Crawford RL. (1996). Transformation of 2,4,6-trinitrotoluene (TNT) by actinomycetes isolated from TNT-contaminated and uncontaminated environments. Appl Environ Microbiol, 62, 1120–1123.
  • Pennington JC. (1999). Explosives. In: Anderson WC, Loehr RC, Smith BT (eds.), Environmental Availability in Soil, Chlorinated Organics, Explosives, Metals (pp. 85–109). American Academy of Environmental Engineering, New York.
  • Perchet G, Sangley M, Goni M, Merlina G, Revel JC, Pinelli E. (2008). Microbial population changes during bioremediation of nitroaromatic- and nitramine-contaminated lagoon. Inter Biodeter Biodegrad, 61, 304–312.
  • Pesari H, Grasso D. (1993). Biodegradation of an inhibitory nongrowth substrate (nitroglycerin) in batch reactors. Biotechnol Bioeng, 41, 79–87.
  • Pitts JN Jr, Van Cauwenberghe KA, Grosjean D, Schmid JP, Fitz DR, Belser WL, Knudson GP, Hynds PM. (1978). Atmospheric reactions of polycyclic aromatic hydrocarbons: facile formation of mutagenic nitro derivatives. Science, 202, 515–519.
  • Pudge IB, Daugulis AJ, Dubois C. (2003). The use of Enterobacter cloacae ATCC 43560 in the development of a two-phase partitioning bioreactor for the destruction of hexahydro-1,3,5-trinitro-1,3,5-s-triazine (RDX). J Biotechnol, 100, 65–75.
  • Qiu X, Zhong Q, Li M, Bai W, Li B. (2007). Biodegradation of p-nitrophenol by methyl parathion-degrading Ochrobactrum sp. B2 Inter Biodeter Biodegrad, 59, 297–301.
  • Rajan J, Valli K, Perkins RE, Sariaslani FS, Barns SM, Reysenbach AL, Rehm S, Ehringer M, Pace NR. (1996). Mineralization of 2,4,6-trinitrophenol (picric acid): characterization and phylogenetic identification of microbial strains. J Ind Microbiol, 16, 319–324.
  • Regan KM, Crawford RL. (1994). Characterization of Clostridium bifermentans and its biotransformation of 2,4,6-trinitrotoluene (TNT) and 1,3,5-triaza-1,3,5-trinitrocyclohexane (RDX). Biotechnol Lett, 16, 1081–1086.
  • Rieger PG, Knackmuss HJ. (1995). Basic knowledge and perspectives on biodegradation of 2,4,6-trinitrotoluene and related nitroaromatic compounds in contaminated soil. In: J. C., Spain (ed.), Biodegradation of nitroaromatic compounds (pp. 1–18). Plenum Press, New York.
  • Rieger PG, Sinnwell V, Preuss A, Francke W, Knackmuss HJ. (1999). Hydride-Meisenheimer complex formation and protonation as key reactions of 2,4,6-trinitrophenol biodegradation by Rhodococcus erythropolis. J Bacteriol, 181, 1189–1195.
  • Roberts JM. (1990). The atmospheric chemistry of organic nitrates. Atm Environ, 24, 243–287.
  • Robidoux PY, Sunahara GI, Savard K, Berthelot Y, Dodard S, Martel M, Gong P, Hawari J. (2004). Acute and chronic toxicity of the new explosive CL-20 to the earthworm (Eisenia andrei) exposed to amended natural soils. Environ Toxicol Chem, 23, 1026–1034.
  • Robidoux PY, Hawari J, Thiboutot S, Ampleman G, Sunahara GI. (2001). Chronic toxicity of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) in soil determined using the earthworm (Eisenia andrei) reproduction test. Environ Pollut, 111, 283–292.
  • Roh H, Yu CP, Fuller ME, Chu KH. (2009). Identification of hexahydro-1,3,5-trinitro-1,3,5-triazine-degrading microorganisms via 15N-stable isotope probing. Environ Sci Technol, 43, 2505–2511.
  • Ronen Z, Yanovich Y, Goldin R, Adar E. (2008). Metabolism of the explosive hexahydro-1,3,5-trinitro-1,3,5-triazine Rhodococcus sp. NJUST16 in batch reactors. J Hazard Mat, 167, 193–198.
  • Russ R, Walters DM, Knackmuss HJ, Rouviere PE. (2000). Identification of genes involved in picric acid and 2,4-dinitrophenol degradation by mRNA differential display. In: Spain JC, Hughes JB, Knackmuss HJ (eds.), Biodegradation of nitroaromatic compounds and explosives (pp. 127–143). Lewis Publishers, Boca Raton, FL.
  • Rylott EL, Jackson RG, Sabbadin F, Seth-Smith HM, Edwards J, Chong CS, Strand SE, Grogan G, Bruce NC. (2011). The explosive-degrading cytochrome P450 XplA: biochemistry, structural features and prospects for bioremediation. Biochim Biophys Acta, 1814, 230–236.
  • Servent D, Ducrocq C, Henry Y, Guissani A, Lenfant M. (1991). Nitroglycerin metabolism by Phanerochaete chrysosporium: evidence for nitric oxide and nitrite formation. Biochim Biophys Acta, 1074, 320–325.
  • Servent D, Ducrocq C, Henry Y, Servy C, Lenfant M. (1992). Multiple enzymatic pathways involved in the metabolism of glyceryl trinitrate in Phanerochaete chrysosporium. Biotechnol Appl Biochem, 15, 257–266.
  • Seth-Smith HM, Edwards J, Rosser SJ, Rathbone DA, Bruce NC. (2008). The explosive-degrading cytochrome P450 system is highly conserved among strains of Rhodococcus spp. Appl Environ Microbiol, 74, 4550–4552.
  • Seth-Smith HM, Rosser SJ, Basran A, Travis ER, Dabbs ER, Nicklin S, Bruce NC. (2002). Cloning, sequencing, and characterization of the hexahydro-1,3,5-Trinitro-1,3,5-triazine degradation gene cluster from Rhodococcus rhodochrous. Appl Environ Microbiol, 68, 4764–4771.
  • Shen J, Rui H, HongXia Y, LianJun W, Zhang J, XiuYun S, JianSheng L, Weiquing H, Lu X. (2009b). Biodegradation of 2,4,6-trinitrophenol (picric acid) in a biological aerated filter (BAF). Biores Technol, 100(6), 1922–1930.
  • Shen J, Zhang J, Zuo Y, Wang L, Sun X, Li J, Han W, He R. (2009a). Biodegradation of 2,4,6-trinitrophenol by Rhodococcus sp. isolated from a picric acid-contaminated soil. J Hazard Mater, 163, 1199–1206.
  • Sherburne LA, Shrout JD, Alvarez PJ. (2005). Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) degradation by Acetobacterium paludosum. Biodegradation, 16, 539–547.
  • Short RD, Dacre JC, Lee CC. (1977). A species and developmental comparison of trinitroglycerin metabolism in vitro. Biochem Pharmacol, 26, 162–163.
  • Singh B, Kaur J, Singh K. (2011). 2,4,6-Trinitrophenol degradation by Bacillus cereus isolated from a firing range. Biotech Lett, DOI: 10.1007/s10529-011-0726-1.
  • Soli G. (1973). Microbial degradation of cyclonite (RDX). Report NWC-TP-5525/AD-762-751. U.S. National Technical Information Service (Naval Weapons Center China Lake Calif), Washington, DC.
  • Spain JC, Hughes JB, Knackmuss HJ. (2000). Biodegradation of nitroaromatic compounds and explosives. Lewis Publishers, Boca Raton, FL.
  • Spain J. (1995). Bacterial degradation of nitroaromatic compounds under aerobic conditions. In: J. Spain (ed.), Biodegradation of nitroaromatic compounds (pp. 19–35). Plenum Press, New York.
  • Spiker JK, Crawford DL, Crawford RL. (1992). Influence of 2,4,6-trinitrotoluene (TNT) concentration on the degradation of TNT in explosive-contaminated soils by the white rot fungus Phanerochaete chrysosporium. Appl Environ Microbiol, 58, 3199–3202.
  • Stenuit B, Eyers L, Fantroussi S, Agathos SN. (2005). Promising strategies for mineralization of 2,4,6-trinitrotoluene. Rev Environ Sci Biotechnol, 4, 39–60.
  • Stenuit B, Eyers L, Rozenberg R, Habib-Jiwan JL, Agathos SN. (2006). Aerobic growth of Escherichia coli with 2,4,6-trinitrotoluene (TNT) as the sole nitrogen source and evidence of TNT denitration by whole cells and cell-free extracts. Appl Environ Microbiol, 72, 7945–7948.
  • Stokinger HE. (1982). Aliphatic nitro compounds, nitrates and nitrites, pp. 4141–4208. In: Clayton GD, Clayton FE (ed.), Patty’s industrial hygiene and toxicology, Vol. 2C. John Wiley and Sons, New York.
  • Sunderman FW, Weidman FD, Batson OV. (1945). Studies of the effects of ammonium picrate on man and certain experimental animals. J Ind Hyg Toxicol, 27, 241–248.
  • Swartz L. (1944). Dermatitis from explosives. J American Med Associa, 125, 186–190.
  • Sylvestre M, Massé R, Messier F, Fauteux J, Bisaillon JG, Beaudet R. (1982). Bacterial nitration of 4-chlorobiphenyl. Appl Environ Microbiol, 44, 871–877.
  • Symons ZC, Bruce NC. (2006). Bacterial pathways for degradation of nitroaromatics. Nat Prod Rep, 23, 845–850.
  • Takahashi M, Ogata H, Izumi H, Yamashita K, Takechi M, Hirata-Koizumi M, Kamata E, Hasegawa R, Ema M. (2004). Comparative toxicity study of 2,4,6-trinitrophenol (picric acid) in newborn and young rats. Congenital Anomalies (Kyoto) 44, 204–214.
  • Tekoah Y, Abeliovich A, Nejidat A. (1999). Participation of cytochrome P450 in the biodegradation of RDX by a Rhodococcus strain, p. 7. In: 2nd International symposium on Biodegradation of Nitroaromatic Compounds and Explosives, Leesburg, VA.
  • Thompson KT, Crocker FH, Fredrickson HL. (2005). Mineralization of the cyclic nitramine explosive hexahydro-1,3,5-trinitro-1,3,5-triazine by Gordonia and Williamsia spp. Appl Environ Microbiol, 71, 8265–8272.
  • Trott S, Nishino SF, Hawari J, Spain JC. (2003). Biodegradation of the nitramine explosive CL-20. Appl Environ Microbiol, 69, 1871–1874.
  • Urbanski T. (1965). Chemistry and technology of explosives, vol. II. Pergamon Press, New York.
  • Van Aken B, Yoon JM, Schnoor JL. (2004). Biodegradation of nitro-substituted explosives 2,4,6-trinitrotoluene, hexahydro-1,3,5-trinitro-1,3,5-triazine, and octahydro-1,3,5,7-tetranitro-1,3,5-tetrazocine by a phytosymbiotic Methylobacterium sp. associated with poplar tissues (Populus deltoides x nigra DN34). Appl Environ Microbiol, 70, 508–517.
  • Vorbeck C, Lenke H, Fischer P, Knackmuss HJ. (1994). Identification of a hydride-Meisenheimer complex as a metabolite of 2,4,6-trinitrotoluene by a Mycobacterium strain. J Bacteriol, 176, 932–934.
  • Vorbeck C, Lenke H, Fischer P, Spain JC, Knackmuss HJ. (1998). Initial reductive reactions in aerobic microbial metabolism of 2,4,6-trinitrotoluene. Appl Environ Microbiol, 64, 246–252.
  • Wan NS, Gu JD, Yan Y. (2007). Degradation of p-nitrophenol by Achromobacter xylosoxidans Ns isolated from wetland sediment. Inter Biodeter Biodegrad, 59, 90–96.
  • Watrous MM, Clark S, Kutty R, Huang S, Rudolph FB, Hughes JB, Bennett GN. (2003). 2,4,6-trinitrotoluene reduction by an Fe-only hydrogenase in Clostridium acetobutylicum. Appl Environ Microbiol, 69, 1542–1547.
  • Wendt TM, Cornell JH, Kaplan AM. (1978). Microbial degradation of glycerol nitrates. Appl Environ Microbiol, 36, 693–699.
  • White GF, Snape JR, Nicklin S. (1996). Biodegradation of Glycerol Trinitrate and Pentaerythritol Tetranitrate by Agrobacterium radiobacter. Appl Environ Microbiol, 62, 637–642.
  • Wyman JF, Serve MP, Hobson DW, Lee LH, Uddin DE. (1992). Acute toxicity, distribution, and metabolism of 2,4,6-trinitrophenol (picric acid) in Fischer 344 rats. J Toxicol Environ Health, 37, 313–327.
  • Yang Y, Wang X, Yin P, Li W, Zhou P. (1983) Studies on three strains of Corynebacterium degrading cyclotrimethylene-trinitroamine (RDX). Acta Microbiological Sinica, 23, 251–256.
  • Young DM, Unkefer PJ, Ogden KL. (1997). Biotransformation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by a prospective consortium and its most effective isolate Serratia marcescens. Biotechnol Bioeng, 53, 515–522.
  • Zhang YZ, Sundaram ST, Sharma A, Brodman BW. (1997). Biodegradation of glyceryl trinitrate by Penicillium corylophilum Dierckx. Appl Environ Microbiol, 63, 1712–1714.
  • Zhao JS, Halasz A, Paquet L, Beaulieu C, Hawari J. (2002). Biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine and its mononitroso derivative hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine by Klebsiella pneumoniae strain SCZ-1 isolated from an anaerobic sludge. Appl Environ Microbiol, 68, 5336–5341.
  • Zhao JS, Paquet L, Halasz A, Hawari J. (2003a). Metabolism of hexahydro-1,3,5-trinitro-1,3,5-triazine through initial reduction to hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine followed by denitration in Clostridium bifermentans HAW-1. Appl Microbiol Biotechnol, 63, 187–193.
  • Zhao JS, Paquet L, Halasz A, Manno D, Hawari J. (2004a). Metabolism of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine by Clostridium bifermentans strain HAW-1 and several other H2-producing fermentative anaerobic bacteria. FEMS Microbiol Lett, 237, 65–72.
  • Zhao JS, Spain J, Thiboutot S, Ampleman G, Greer C, Hawari J. (2004b). Phylogeny of cyclic nitramine-degrading psychrophilic bacteria in marine sediment and their potential role in the natural attenuation of explosives. FEMS Microbiol Ecol, 49, 349–357.
  • Zhao JS, Spain J, Hawari J. (2003b). Phylogenetic and metabolic diversity of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX)-transforming bacteria in strictly anaerobic mixed cultures enriched on RDX as nitrogen source. FEMS Microbiol Ecol, 46, 189–196.
  • Zoeteman BCJ, Harmen K, Linders JBHJ, Morra CFH, Slooff W. (1980). Persistent organic pollutants in river water of the Netherlands. Chemosphere, 9, 231–249.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.