1,732
Views
79
CrossRef citations to date
0
Altmetric
Review Article

Bacterial resistance to cationic antimicrobial peptides

, &
Pages 180-195 | Received 29 Jan 2012, Accepted 29 May 2012, Published online: 16 Jul 2012

References

  • Abachin E, Poyart C, Pellegrini E, Milohanic E, Fiedler F, Berche P, Trieu-Cuot P. (2002). Formation of D-alanyl-lipoteichoic acid is required for adhesion and virulence of Listeria monocytogenes. Mol Microbiol, 43, 1–14.
  • Albiger B, Johansson L, Jonsson AB. (2003). Lipooligosaccharide-deficient Neisseria meningitidis shows altered pilus-associated characteristics. Infect Immun, 71, 155–162.
  • Andrä J, Goldmann T, Ernst CM, Peschel A, Gutsmann T. (2011). Multiple peptide resistance factor (MprF)-mediated resistance of Staphylococcus aureus against antimicrobial peptides coincides with a modulated peptide interaction with artificial membranes comprising lysyl-phosphatidylglycerol. J Biol Chem, 286, 18692–18700.
  • Antoniadou A, Kontopidou F, Poulakou G, Koratzanis E, Galani I, Papadomichelakis E, Kopterides P, Souli M, Armaganidis A, Giamarellou H. (2007). Colistin-resistant isolates of Klebsiella pneumoniae emerging in intensive care unit patients: first report of a multiclonal cluster. J Antimicrob Chemother, 59, 786–790.
  • Baddiley J. (2000). Teichoic acids in bacterial coaggregation. Microbiology (Reading, Engl), 146 (Pt 6), 1257–1258.
  • Belas R, Manos J, Suvanasuthi R. (2004). Proteus mirabilis ZapA metalloprotease degrades a broad spectrum of substrates, including antimicrobial peptides. Infect Immun, 72, 5159–5167.
  • Bell G, Gouyon PH. (2003). Arming the enemy: the evolution of resistance to self-proteins. Microbiology (Reading, Engl), 149, 1367–1375.
  • Bishop RE, Gibbons HS, Guina T, Trent MS, Miller SI, Raetz CR. (2000). Transfer of palmitate from phospholipids to lipid A in outer membranes of gram-negative bacteria. EMBO J, 19, 5071–5080.
  • Boman HG. (2003). Antibacterial peptides: basic facts and emerging concepts. J Intern Med, 254, 197–215.
  • Cai Y, Chai D, Wang R, Liang B, Bai N. (2012). Colistin resistance of Acinetobacter baumannii: clinical reports, mechanisms and antimicrobial strategies. J Antimicrob Chemother, 67, 1607–1615.
  • Campos MA, Vargas MA, Regueiro V, Llompart CM, Albertí S, Bengoechea JA. (2004). Capsule polysaccharide mediates bacterial resistance to antimicrobial peptides. Infect Immun, 72, 7107–7114.
  • Cheng HY, Chen YF, Peng HL. (2010). Molecular characterization of the PhoPQ-PmrD-PmrAB mediated pathway regulating polymyxin B resistance in Klebsiella pneumoniae CG43. J Biomed Sci, 17, 60.
  • Clements A, Tull D, Jenney AW, Farn JL, Kim SH, Bishop RE, McPhee JB, Hancock RE, Hartland EL, Pearse MJ, Wijburg OL, Jackson DC, McConville MJ, Strugnell RA. (2007). Secondary acylation of Klebsiella pneumoniae lipopolysaccharide contributes to sensitivity to antibacterial peptides. J Biol Chem, 282, 15569–15577.
  • Cullen TW, Trent MS. (2010). A link between the assembly of flagella and lipooligosaccharide of the Gram-negative bacterium Campylobacter jejuni. Proc Natl Acad Sci USA, 107, 5160–5165.
  • Dawson RM, Liu CQ. (2008). Properties and applications of antimicrobial peptides in biodefense against biological warfare threat agents. Crit Rev Microbiol, 34, 89–107.
  • Delves-Broughton J.. (2005). Nisin as a food preservative. Food Aust, 57, 525–527.
  • Ernst CM, Staubitz P, Mishra NN, Yang SJ, Hornig G, Kalbacher H, Bayer AS, Kraus D, Peschel A. (2009). The bacterial defensin resistance protein MprF consists of separable domains for lipid lysinylation and antimicrobial peptide repulsion. PLoS Pathog, 5, e1000660.
  • Fabretti F, Theilacker C, Baldassarri L, Kaczynski Z, Kropec A, Holst O, Huebner J. (2006). Alanine esters of enterococcal lipoteichoic acid play a role in biofilm formation and resistance to antimicrobial peptides. Infect Immun, 74, 4164–4171.
  • Falagas ME, Kasiakou SK. (2005). Colistin: the revival of polymyxins for the management of multidrug-resistant gram-negative bacterial infections. Clin Infect Dis, 40, 1333–1341.
  • Field D, Quigley L, O’Connor PM, Rea MC, Daly K, Cotter PD, Hill C, Ross RP. (2010). Studies with bioengineered Nisin peptides highlight the broad-spectrum potency of Nisin V. Microb Biotechnol, 3, 473–486.
  • Frick IM, Akesson P, Rasmussen M, Schmidtchen A, Björck L. (2003). SIC, a secreted protein of Streptococcus pyogenes that inactivates antibacterial peptides. J Biol Chem, 278, 16561–16566.
  • Ge Y, MacDonald D, Hait H, Lipsky B, Zasloff M, Holroyd K. (2002). Microbiological profile of infected diabetic foot ulcers. Diabet Med, 19, 1032–1034.
  • Ge Y, MacDonald DL, Holroyd KJ, Thornsberry C, Wexler H, Zasloff M. (1999). In vitro antibacterial properties of pexiganan, an analog of magainin. Antimicrob Agents Chemother, 43, 782–788.
  • Grangette C, Nutten S, Palumbo E, Morath S, Hermann C, Dewulf J, Pot B, Hartung T, Hols P, Mercenier A. (2005). Enhanced antiinflammatory capacity of a Lactobacillus plantarum mutant synthesizing modified teichoic acids. Proc Natl Acad Sci USA, 102, 10321–10326.
  • Gravesen A, Jydegaard Axelsen AM, Mendes da Silva J, Hansen TB, Knøchel S. (2002a). Frequency of bacteriocin resistance development and associated fitness costs in Listeria monocytogenes. Appl Environ Microbiol, 68, 756–764.
  • Gravesen A, Ramnath M, Rechinger KB, Andersen N, Jänsch L, Héchard Y, Hastings JW, Knøchel S. (2002b). High-level resistance to class IIa bacteriocins is associated with one general mechanism in Listeria monocytogenes. Microbiology (Reading, Engl), 148, 2361–2369.
  • Guina T, Yi EC, Wang H, Hackett M, Miller SI. (2000). A PhoP-regulated outer membrane protease of Salmonella enterica serovar typhimurium promotes resistance to alpha-helical antimicrobial peptides. J Bacteriol, 182, 4077–4086.
  • Gunn JS, Ryan SS, Van Velkinburgh JC, Ernst RK, Miller SI. (2000). Genetic and functional analysis of a PmrA-PmrB-regulated locus necessary for lipopolysaccharide modification, antimicrobial peptide resistance, and oral virulence of Salmonella enterica serovar typhimurium. Infect Immun, 68, 6139–6146.
  • Guo L, Lim KB, Poduje CM, Daniel M, Gunn JS, Hackett M, Miller SI. (1998). Lipid A acylation and bacterial resistance against vertebrate antimicrobial peptides. Cell, 95, 189–198.
  • Habets MG, Brockhurst MA. (2012). Therapeutic antimicrobial peptides may compromise natural immunity. Biol Lett, 8, 416–418.
  • Hancock RE, Chapple DS. (1999). Peptide antibiotics. Antimicrob Agents Chemother, 43, 1317–1323.
  • Heilmann C, Schweitzer O, Gerke C, Vanittanakom N, Mack D, Götz F. (1996). Molecular basis of intercellular adhesion in the biofilm-forming Staphylococcus epidermidis. Mol Microbiol, 20, 1083–1091.
  • Heuer OE, Hammerum AM, Collignon P, Wegener HC. (2006). Human health hazard from antimicrobial-resistant enterococci in animals and food. Clin Infect Dis, 43, 911–916.
  • Hilpert K, Volkmer-Engert R, Walter T, Hancock RE. (2005). High-throughput generation of small antibacterial peptides with improved activity. Nat Biotechnol, 23, 1008–1012.
  • Hui CY, Guo Y, He QS, Peng L, Wu SC, Cao H, Huang SH. (2010). Escherichia coli outer membrane protease OmpT confers resistance to urinary cationic peptides. Microbiol Immunol, 54, 452–459.
  • Hwang PM, Choy WY, Lo EI, Chen L, Forman-Kay JD, Raetz CR, Privé GG, Bishop RE, Kay LE. (2002). Solution structure and dynamics of the outer membrane enzyme PagP by NMR. Proc Natl Acad Sci USA, 99, 13560–13565.
  • Jenssen H, Hamill P, Hancock RE. (2006). Peptide antimicrobial agents. Clin Microbiol Rev, 19, 491–511.
  • Jin T, Bokarewa M, Foster T, Mitchell J, Higgins J, Tarkowski A. (2004). Staphylococcus aureus resists human defensins by production of staphylokinase, a novel bacterial evasion mechanism. J Immunol, 172, 1169–1176.
  • Johansson L, Thulin P, Sendi P, Hertzén E, Linder A, Akesson P, Low DE, Agerberth B, Norrby-Teglund A. (2008). Cathelicidin LL-37 in severe Streptococcus pyogenes soft tissue infections in humans. Infect Immun, 76, 3399–3404.
  • Jones A, Geörg M, Maudsdotter L, Jonsson AB. (2009). Endotoxin, capsule, and bacterial attachment contribute to Neisseria meningitidis resistance to the human antimicrobial peptide LL-37. J Bacteriol, 191, 3861–3868.
  • Jung D, Rozek A, Okon M, Hancock RE. (2004). Structural transitions as determinants of the action of the calcium-dependent antibiotic daptomycin. Chem Biol, 11, 949–957.
  • Keo T, Collins J, Kunwar P, Blaser MJ, Iovine NM. (2011). Campylobacter capsule and lipooligosaccharide confer resistance to serum and cationic antimicrobials. Virulence, 2, 30–40.
  • Klein S, Lorenzo C, Hoffmann S, Walther JM, Storbeck S, Piekarski T, Tindall BJ, Wray V, Nimtz M, Moser J. (2009). Adaptation of Pseudomonas aeruginosa to various conditions includes tRNA-dependent formation of alanyl-phosphatidylglycerol. Mol Microbiol, 71, 551–565.
  • Kocianova S, Vuong C, Yao Y, Voyich JM, Fischer ER, DeLeo FR, Otto M. (2005). Key role of poly-gamma-DL-glutamic acid in immune evasion and virulence of Staphylococcus epidermidis. J Clin Invest, 115, 688–694.
  • Koprivnjak T, Peschel A. (2011). Bacterial resistance mechanisms against host defense peptides. Cell Mol Life Sci, 68, 2243–2254.
  • Kovács M, Halfmann A, Fedtke I, Heintz M, Peschel A, Vollmer W, Hakenbeck R, Brückner R. (2006). A functional dlt operon, encoding proteins required for incorporation of d-alanine in teichoic acids in gram-positive bacteria, confers resistance to cationic antimicrobial peptides in Streptococcus pneumoniae. J Bacteriol, 188, 5797–5805.
  • Kristian SA, Datta V, Weidenmaier C, Kansal R, Fedtke I, Peschel A, Gallo RL, Nizet V. (2005). D-alanylation of teichoic acids promotes group a streptococcus antimicrobial peptide resistance, neutrophil survival, and epithelial cell invasion. J Bacteriol, 187, 6719–6725.
  • Kristian SA, Dürr M, Van Strijp JA, Neumeister B, Peschel A. (2003). MprF-mediated lysinylation of phospholipids in Staphylococcus aureus leads to protection against oxygen-independent neutrophil killing. Infect Immun, 71, 546–549.
  • Lauth X, von Köckritz-Blickwede M, McNamara CW, Myskowski S, Zinkernagel AS, Beall B, Ghosh P, Gallo RL, Nizet V. (2009). M1 protein allows Group A streptococcal survival in phagocyte extracellular traps through cathelicidin inhibition. J Innate Immun, 1, 202–214.
  • Lee H, Hsu FF, Turk J, Groisman EA. (2004). The PmrA-regulated pmrC gene mediates phosphoethanolamine modification of lipid A and polymyxin resistance in Salmonella enterica. J Bacteriol, 186, 4124–4133.
  • Levy SB. (2002). Active efflux, a common mechanism for biocide and antibiotic resistance. Symp Ser Soc Appl Microbiol, 92, 65S–71S.
  • Lewis LA, Choudhury B, Balthazar JT, Martin LE, Ram S, Rice PA, Stephens DS, Carlson R, Shafer WM. (2009). Phosphoethanolamine substitution of lipid A and resistance of Neisseria gonorrhoeae to cationic antimicrobial peptides and complement-mediated killing by normal human serum. Infect Immun, 77, 1112–1120.
  • Li J, Nation RL, Milne RW, Turnidge JD, Coulthard K. (2005). Evaluation of colistin as an agent against multi-resistant Gram-negative bacteria. Int J Antimicrob Agents, 25, 11–25.
  • Li J, Nation RL, Turnidge JD, Milne RW, Coulthard K, Rayner CR, Paterson DL. (2006). Colistin: the re-emerging antibiotic for multidrug-resistant Gram-negative bacterial infections. Lancet Infect Dis, 6, 589–601.
  • López-Meza JE, Ochoa-Zarzosa A, Aguilar JA, Loeza-Lara PD. (2011). Antimicrobial peptides: diversity and perspectives for their biomedical application, biomedical engineering, trends, research and technologies. In: Komorowska MA, Olsztynska-Janus S, (eds). Biomedical Engineering, Trends, Research and Technologies. Rijeka, Croatia: Intech, 275–304.
  • Lysenko ES, Gould J, Bals R, Wilson JM, Weiser JN. (2000). Bacterial phosphorylcholine decreases susceptibility to the antimicrobial peptide LL-37/hCAP18 expressed in the upper respiratory tract. Infect Immun, 68, 1664–1671.
  • Maloney E, Stankowska D, Zhang J, Fol M, Cheng QJ, Lun S, Bishai WR, Rajagopalan M, Chatterjee D, Madiraju MV. (2009). The two-domain LysX protein of Mycobacterium tuberculosis is required for production of lysinylated phosphatidylglycerol and resistance to cationic antimicrobial peptides. PLoS Pathog, 5, e1000534.
  • Mantovani HC, Russell JB. (2001). Nisin resistance of Streptococcus bovis. Appl Environ Microbiol, 67, 808–813.
  • Matson JS, Yoo HJ, Hakansson K, Dirita VJ. (2010). Polymyxin B resistance in El Tor Vibrio cholerae requires lipid acylation catalyzed by MsbB. J Bacteriol, 192, 2044–2052.
  • McCoy AJ, Liu H, Falla TJ, Gunn JS. (2001). Identification of Proteus mirabilis mutants with increased sensitivity to antimicrobial peptides. Antimicrob Agents Chemother, 45, 2030–2037.
  • Mehla J, Sood SK. (2011). Substantiation in Enterococcus faecalis of dose-dependent resistance and cross-resistance to pore-forming antimicrobial peptides by use of a polydiacetylene-based colorimetric assay. Appl Environ Microbiol, 77, 786–793.
  • Menuet M, Bittar F, Stremler N, Dubus JC, Sarles J, Raoult D, Rolain JM. (2008). First isolation of two colistin-resistant emerging pathogens, Brevundimonas diminuta and Ochrobactrum anthropi, in a woman with cystic fibrosis: a case report. J Med Case Rep, 2, 373.
  • Mishra NN, McKinnell J, Yeaman MR, Rubio A, Nast CC, Chen L, Kreiswirth BN, Bayer AS. (2011). In vitro cross-resistance to daptomycin and host defense cationic antimicrobial peptides in clinical methicillin-resistant Staphylococcus aureus isolates. Antimicrob Agents Chemother, 55, 4012–4018.
  • Moffatt JH, Harper M, Harrison P, Hale JD, Vinogradov E, Seemann T, Henry R, Crane B, St Michael F, Cox AD, Adler B, Nation RL, Li J, Boyce JD. (2010). Colistin resistance in Acinetobacter baumannii is mediated by complete loss of lipopolysaccharide production. Antimicrob Agents Chemother, 54, 4971–4977.
  • Morath S, Geyer A, Hartung T. (2001). Structure-function relationship of cytokine induction by lipoteichoic acid from Staphylococcus aureus. J Exp Med, 193, 393–397.
  • Moskowitz SM, Ernst RK, Miller SI. (2004). PmrAB, a two-component regulatory system of Pseudomonas aeruginosa that modulates resistance to cationic antimicrobial peptides and addition of aminoarabinose to lipid A. J Bacteriol, 186, 575–579.
  • Naito M, Frirdich E, Fields JA, Pryjma M, Li J, Cameron A, Gilbert M, Thompson SA, Gaynor EC. (2010). Effects of sequential Campylobacter jejuni 81–176 lipooligosaccharide core truncations on biofilm formation, stress survival, and pathogenesis. J Bacteriol, 192, 2182–2192.
  • Neuhaus FC, Baddiley J. (2003). A continuum of anionic charge: structures and functions of D-alanyl-teichoic acids in gram-positive bacteria. Microbiol Mol Biol Rev, 67, 686–723.
  • Nishi H, Komatsuzawa H, Fujiwara T, McCallum N, Sugai M. (2004). Reduced content of lysyl-phosphatidylglycerol in the cytoplasmic membrane affects susceptibility to moenomycin, as well as vancomycin, gentamicin, and antimicrobial peptides, in Staphylococcus aureus. Antimicrob Agents Chemother, 48, 4800–4807.
  • Nizet V. (2006). Antimicrobial peptide resistance mechanisms of human bacterial pathogens. Curr Issues Mol Biol, 8, 11–26.
  • Oppermann-Sanio FB, Steinbüchel A. (2002). Occurrence, functions and biosynthesis of polyamides in microorganisms and biotechnological production. Naturwissenschaften, 89, 11–22.
  • Park PW, Pier GB, Hinkes MT, Bernfield M. (2001). Exploitation of syndecan-1 shedding by Pseudomonas aeruginosa enhances virulence. Nature, 411, 98–102.
  • Park PW, Pier GB, Preston MJ, Goldberger O, Fitzgerald ML, Bernfield M. (2000). Syndecan-1 shedding is enhanced by LasA, a secreted virulence factor of Pseudomonas aeruginosa. J Biol Chem, 275, 3057–3064.
  • Pence MA, Rooijakkers SH, Cogen AL, Cole JN, Hollands A, Gallo RL, Nizet V. (2010). Streptococcal inhibitor of complement promotes innate immune resistance phenotypes of invasive M1T1 group A Streptococcus. J Innate Immun, 2, 587–595.
  • Pérez-Gutiérrez C, Llobet E, Llompart CM, Reinés M, Bengoechea JA. (2010). Role of lipid A acylation in Yersinia enterocolitica virulence. Infect Immun, 78, 2768–2781.
  • Perron GG, Zasloff M, Bell G. (2006). Experimental evolution of resistance to an antimicrobial peptide. Proc Biol Sci, 273, 251–256.
  • Peschel A, Jack RW, Otto M, Collins LV, Staubitz P, Nicholson G, Kalbacher H, Nieuwenhuizen WF, Jung G, Tarkowski A, van Kessel KP, van Strijp JA. (2001). Staphylococcus aureus resistance to human defensins and evasion of neutrophil killing via the novel virulence factor MprF is based on modification of membrane lipids with l-lysine. J Exp Med, 193, 1067–1076.
  • Peschel A, Otto M, Jack RW, Kalbacher H, Jung G, Götz F. (1999). Inactivation of the dlt operon in Staphylococcus aureus confers sensitivity to defensins, protegrins, and other antimicrobial peptides. J Biol Chem, 274, 8405–8410.
  • Peschel A, Sahl HG. (2006). The co-evolution of host cationic antimicrobial peptides and microbial resistance. Nat Rev Microbiol, 4, 529–536.
  • Poyart C, Pellegrini E, Marceau M, Baptista M, Jaubert F, Lamy MC, Trieu-Cuot P. (2003). Attenuated virulence of Streptococcus agalactiae deficient in D-alanyl-lipoteichoic acid is due to an increased susceptibility to defensins and phagocytic cells. Mol Microbiol, 49, 1615–1625.
  • Pränting M, Negrea A, Rhen M, Andersson DI. (2008). Mechanism and fitness costs of PR-39 resistance in Salmonella enterica serovar Typhimurium LT2. Antimicrob Agents Chemother, 52, 2734–2741.
  • Preston A, Mandrell RE, Gibson BW, Apicella MA. (1996). The lipooligosaccharides of pathogenic gram-negative bacteria. Crit Rev Microbiol, 22, 139–180.
  • Raetz CR, Reynolds CM, Trent MS, Bishop RE. (2007). Lipid A modification systems in gram-negative bacteria. Annu Rev Biochem, 76, 295–329.
  • Rieg S, Huth A, Kalbacher H, Kern WV. (2009). Resistance against antimicrobial peptides is independent of Escherichia coli AcrAB, Pseudomonas aeruginosa MexAB and Staphylococcus aureus NorA efflux pumps. Int J Antimicrob Agents, 33, 174–176.
  • Rietschel ET, Kirikae T, Schade FU, Mamat U, Schmidt G, Loppnow H, Ulmer AJ, Zähringer U, Seydel U, Di Padova F. (1994). Bacterial endotoxin: molecular relationships of structure to activity and function. FASEB J, 8, 217–225.
  • Robey M, O’Connell W, Cianciotto NP. (2001). Identification of Legionella pneumophila rcp, a pagP-like gene that confers resistance to cationic antimicrobial peptides and promotes intracellular infection. Infect Immun, 69, 4276–4286.
  • Roy H, Ibba M. (2008). RNA-dependent lipid remodeling by bacterial multiple peptide resistance factors. Proc Natl Acad Sci USA, 105, 4667–4672.
  • Roy H. (2009). Tuning the properties of the bacterial membrane with aminoacylated phosphatidylglycerol. IUBMB Life, 61, 940–953.
  • Samant S, Hsu FF, Neyfakh AA, Lee H. (2009). The Bacillus anthracis protein MprF is required for synthesis of lysylphosphatidylglycerols and for resistance to cationic antimicrobial peptides. J Bacteriol, 191, 1311–1319.
  • Schmidtchen A, Frick IM, Andersson E, Tapper H, Björck L. (2002). Proteinases of common pathogenic bacteria degrade and inactivate the antibacterial peptide LL-37. Mol Microbiol, 46, 157–168.
  • Schmidtchen A, Frick IM, Björck L. (2001). Dermatan sulphate is released by proteinases of common pathogenic bacteria and inactivates antibacterial alpha-defensin. Mol Microbiol, 39, 708–713.
  • Sieprawska-Lupa M, Mydel P, Krawczyk K, Wójcik K, Puklo M, Lupa B, Suder P, Silberring J, Reed M, Pohl J, Shafer W, McAleese F, Foster T, Travis J, Potempa J. (2004). Degradation of human antimicrobial peptide LL-37 by Staphylococcus aureus-derived proteinases. Antimicrob Agents Chemother, 48, 4673–4679.
  • Spinosa MR, Progida C, Talà A, Cogli L, Alifano P, Bucci C. (2007). The Neisseria meningitidis capsule is important for intracellular survival in human cells. Infect Immun, 75, 3594–3603.
  • Starner TD, Swords WE, Apicella MA, McCray PB Jr. (2002). Susceptibility of nontypeable Haemophilus influenzae to human beta-defensins is influenced by lipooligosaccharide acylation. Infect Immun, 70, 5287–5289.
  • Staubitz P, Neumann H, Schneider T, Wiedemann I, Peschel A. (2004). MprF-mediated biosynthesis of lysylphosphatidylglycerol, an important determinant in staphylococcal defensin resistance. FEMS Microbiol Lett, 231, 67–71.
  • Tamayo R, Choudhury B, Septer A, Merighi M, Carlson R, Gunn JS. (2005). Identification of cptA, a PmrA-regulated locus required for phosphoethanolamine modification of the Salmonella enterica serovar typhimurium lipopolysaccharide core. J Bacteriol, 187, 3391–3399.
  • Thedieck K, Hain T, Mohamed W, Tindall BJ, Nimtz M, Chakraborty T, Wehland J, Jänsch L. (2006). The MprF protein is required for lysinylation of phospholipids in listerial membranes and confers resistance to cationic antimicrobial peptides (CAMPs) on Listeria monocytogenes. Mol Microbiol, 62, 1325–1339.
  • Tran AX, Whittimore JD, Wyrick PB, McGrath SC, Cotter RJ, Trent MS. (2006). The lipid A 1-phosphatase of Helicobacter pylori is required for resistance to the antimicrobial peptide polymyxin. J Bacteriol, 188, 4531–4541.
  • Tzeng YL, Ambrose KD, Zughaier S, Zhou X, Miller YK, Shafer WM, Stephens DS. (2005). Cationic antimicrobial peptide resistance in Neisseria meningitidis. J Bacteriol, 187, 5387–5396.
  • Ulvatne H, Haukland HH, Samuelsen Ø, Krämer M, Vorland LH. (2002). Proteases in Escherichia coli and Staphylococcus aureus confer reduced susceptibility to lactoferricin B. J Antimicrob Chemother, 50, 461–467.
  • Vaara M, Fox J, Loidl G, Siikanen O, Apajalahti J, Hansen F, Frimodt-Møller N, Nagai J, Takano M, Vaara T. (2008). Novel polymyxin derivatives carrying only three positive charges are effective antibacterial agents. Antimicrob Agents Chemother, 52, 3229–3236.
  • Vaara M. (1992). Agents that increase the permeability of the outer membrane. Microbiol Rev, 56, 395–411.
  • Vuong C, Kocianova S, Voyich JM, Yao Y, Fischer ER, DeLeo FR, Otto M. (2004a). A crucial role for exopolysaccharide modification in bacterial biofilm formation, immune evasion, and virulence. J Biol Chem, 279, 54881–54886.
  • Vuong C, Voyich JM, Fischer ER, Braughton KR, Whitney AR, DeLeo FR, Otto M. (2004b). Polysaccharide intercellular adhesin (PIA) protects Staphylococcus epidermidis against major components of the human innate immune system. Cell Microbiol, 6, 269–275.
  • Yeaman MR, Yount NY. (2003). Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev, 55, 27–55.
  • Zasloff M. (2002). Antimicrobial peptides of multicellular organisms. Nature, 415, 389–395.
  • Zechini B, Versace I. (2009). Inhibitors of multidrug resistant efflux systems in bacteria. Recent Pat Antiinfect Drug Discov, 4, 37–50.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.