1,402
Views
84
CrossRef citations to date
0
Altmetric
Review Article

Cell surface engineering of microorganisms towards adsorption of heavy metals

&
Pages 140-149 | Received 18 Feb 2013, Accepted 07 Jun 2013, Published online: 05 Aug 2013

References

  • Ahluwalia SS, Goyal D. (2007). Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresour Technol 98:2243–57
  • Akbal F, Camci S. (2012). Treatment of metal plating wastewater by electrocoagulation. Environ Prog Sustainable Energy 31:340–50
  • Arief VO, Trilestari K, Sunarso J, et al. (2008). Recent progress on biosorption of heavy metals from liquids using low cost biosorbents: characterization, biosorption parameters and mechanism studies. CLEAN 36:937–62
  • Bae W, Chen W, Mulchandani A, Mehra RK. (2000). Enhanced bioaccumulation of heavy metals by bacterial cells displaying synthetic phytochelatins. Biotechnol. Bioeng 70:518–24
  • Bae W, Mulchandani A, Chen W. (2002). Cell surface display of synthetic phytochelatins using ice nucleation protein for enhanced heavy metal bioaccumulation. J Inorg Biochem 88:223–7
  • Bae W, Wu CH, Kostal J, et al. (2003). Enhanced mercury biosorption by bacterial cells with surface-displayed MerR. Appl Environ Microbiol 69:3176–80
  • Barakat MA, Schmidt E. (2010). Polymer-enhanced ultrafiltration process for heavy metals removal from industrial wastewater. Desalination 256:90–3
  • Barsela S, Levy M, Westin JB, et al. (1992). Medical findings in nickel cadmium battery workers. Isr J Med Sci 28:578–83
  • Batayneh AT. (2012). Toxic (aluminum, beryllium, boron, chromium and zinc) in groundwater: health risk assessment. Int J Environ Sci Technol 9:153–62
  • Biondo R, Da Silva FA, Vicente EJ, et al. (2012). Synthetic Phytochelatin Surface Display in Cupriavidus metallidurans CH34 for Enhanced Metals Bioremediation. Environ Sci Technol 46:8325–32
  • Boder ET, Wittrup KD. (1997). Yeast surface display for screening combinatorial polypeptide libraries. Nat Biotechnol 15:553–7
  • Cappellaro C, Baldermann C, Rachel R, Tanner W. (1994). Mating type-specific cell-cell recognition of Saccharomyces cerevisiae: cell wall attachment and active sites of a- and alpha-agglutinin. EMBO J 13:4737–44
  • Charbit A, Boulain JC, Ryter A, Hofnung M. (1986). Probing the topology of a bacterial membrane protein by genetic insertion of a foreign epitope – expression at the cell-surface. EMBO J 5:3029–37
  • Chasapis CT, Loutsidou AC, Spiliopoulou CA, Stefanidou ME. (2012). Zinc and human health: an update. Arch Toxicol 86:521–34
  • Chojnacka K. (2010). Biosorption and bioaccumulation - the prospects for practical applications. Environ Int 36:299–307
  • Cruz N, Le Borgne S, Hernandez-Chavez G, et al. (2000). Engineering the Escherichia coli outer membrane protein OmpC for metal bioadsorption. Biotechnol Lett 22:623–9
  • Dabrowski A, Hubicki Z, Podkoscielny P, Robens E. (2004). Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method. Chemosphere 56:91–106
  • Davis TA, Volesky B, Mucci A. (2003). A review of the biochemistry of heavy metal biosorption by brown algae. Water Res 37:4311–30
  • Dhankhar R, Hooda A. (2011). Fungal biosorption - an alternative to meet the challenges of heavy metal pollution in aqueous solutions. Environ Technol 32:467–91
  • Fischetti VA, Medaglini D, Pozzi G. (1996). Gram-positive commensal bacteria for mucosal vaccine delivery. Curr Opin Biotechnol 7:659–66
  • Francisco JA, Earhart CF, Georgiou G. (1992). Transport and anchoring of beta-lactamase to the external surface of Escherichia coli. Proc Natl Acad Sci USA 89:2713–7
  • Freudl R, Macintyre S, Degen M, Henning U. (1986). Cell-surface explsure of the outer-membrane protein OmpA of Escherichia coli K-12. J Mol Biol 188:491–4
  • Gai SA, Wittrup KD. (2007). Yeast surface display for protein engineering and characterization. Curr Opin Struct Biol 17:467–73
  • Hakkila KM, Nikander PA, Junttila SM, et al. (2011). Cd-specific mutants of mercury-sensing regulatory protein MerR, generated by directed evolution. Appl Environ Microbiol 77:6215–24
  • Hammaini A, Ballester A, Blazquez ML, et al. (2002). Effect of the presence of lead on the biosorption of copper, cadmium and zinc by activated sludge. Hydrometallurgy 67:109–16
  • Hobman JL. (2007). MerR family transcription activators: similar designs, different specificities. Mol Microbiol 63:1275–8
  • Kao W-C, Chiu Y-P, Chang C-C, Chang J-S. (2006). Localization effect on the metal biosorption capability of recombinant mammalian and fish metallothioneins in Escherichia coli. Biotechnol Prog 22:1256–64
  • Kikuchi T, Tanaka S. (2012). Biological Removal and Recovery of Toxic Heavy Metals in Water Environment. Crit Rev Environ Sci Technol 42:1007–57
  • Kjaergaard K, Schembri MA, Klemm P. (2001). Novel Zn2+-chelating peptides selected from a fimbria-displayed random peptide library. Appl Environ Microbiol 67:5467–73
  • Klemm P, Schembri MA. (2000). Fimbriae-assisted bacterial surface display of heterologous peptides. Int J Med Microbiol 290:215–21
  • Kondo A, Ueda M. (2004). Yeast cell-surface display - applications of molecular display. Appl Microbiol Biotechnol 64:28–40
  • Kotrba P, Doleckova L, De Lorenzo V, Ruml T. (1999a). Enhanced bioaccumulation of heavy metal ions by bacterial cells due to surface display of short metal binding peptides. Appl Environ Microbiol 65:1092–8
  • Kotrba P, Pospisil P, De Lorenzo V, Ruml T. (1999b). Enhanced metallosorption of Escherichia coli cells due to surface display of beta- and alpha-domains of mammalian metallothionein as a fusion to lamb protein. J Recept Signal Transduct Res 19:703–15
  • Kotrba P, Ruml T. (2010). Surface display of metal fixation motifs of bacterial P1-type ATPases specifically promotes biosorption of Pb2+ by Saccharomyces cerevisiae. Appl Environ Microbiol 76:2615–22
  • Kuroda K, Nishitani T, Ueda M. (2012). Specific adsorption of tungstate by cell surface display of the newly designed ModE mutant. Appl Microbiol Biotechnol 96:153–9
  • Kuroda K, Shibasaki S, Ueda M, Tanaka A. (2001). Cell surface-engineered yeast displaying a histidine oligopeptide (hexa-His) has enhanced adsorption of and tolerance to heavy metal ions. Appl Microbiol Biotechnol 57:697–701
  • Kuroda K, Ueda M. (2003). Bioadsorption of cadmium ion by cell surface-engineered yeasts displaying metallothionein and hexa-His. Appl Microbiol Biotechnol 63:182–6
  • Kuroda K, Ueda M. (2006). Effective display of metallothionein tandem repeats on the bioadsorption of cadmium ion. Appl Microbiol Biotechnol 70:458–63
  • Kuroda K, Ueda M. (2010). Engineering of microorganisms towards recovery of rare metal ions. Appl Microbiol Biotechnol 87:53–60
  • Kuroda K, Ueda M. (2011a). Cell surface engineering of yeast for applications in white biotechnology. Biotechnol Lett 33:1–9
  • Kuroda K, Ueda M. (2011b). Yeast biosorption and recycling of metal ions by cell surface engineering by Cell Surface Engineering. In: Kotrba P, Mackova M, Macek T, eds. Microbial biosorption of metals. 1st edn. New York: Springer, 237–8
  • Kuroda K, Ueda M, Shibasaki S, Tanaka A. (2002). Cell surface-engineered yeast with ability to bind, and self-aggregate in response to, copper ion. Appl Microbiol Biotechnol 59:259–64
  • Lee SY, Choi JH, Xu ZH. (2003). Microbial cell-surface display. Trends Biotechnol 21:45–52
  • Lin KH, Chien MF, Hsieh JL, Huang CC. (2010). Mercury resistance and accumulation in Escherichia coli with cell surface expression of fish metallothionein. Appl Microbiol Biotechnol 87:561–9
  • Linder MC, Hazegh-Azam M. (1996). Copper biochemistry and molecular biology. Am J Clin Nutr 63:S797–811
  • Malik A. (2004). Metal bioremediation through growing cells. Environ Int 30:261–78
  • Marinho RS, Afonso JC, Silva Dias Da Cunha JW. (2010). Recovery of platinum from spent catalysts by liquid-liquid extraction in chloride medium. J Hazard Mater 179:488–94
  • Mauro JM, Pazirandeh M. (2000). Construction and expression of functional multi-domain polypeptides in Escherichia coli: expression of the Neurospora crassa metallothionein gene. Lett Appl Microbiol 30:161–6
  • Mehta SK, Gaur JP. (2005). Use of algae for removing heavy metal ions from wastewater: Progress and prospects. Crit Rev Biotechnol 25:113–52
  • Mejare M, Ljung S, Bulow L. (1998). Selection of cadmium specific hexapeptides and their expression as OmpA fusion proteins in Escherichia coli. Protein Eng 11:489–94
  • Murai T, Ueda M, Atomi H, et al. (1997). Genetic immobilization of cellulase on the cell surface of Saccharomyces cerevisiae. Appl Microbiol Biotechnol 48:499–503
  • Nishitani T, Shimada M, Kuroda K, Ueda M. (2010). Molecular design of yeast cell surface for adsorption and recovery of molybdenum, one of rare metals. Appl Microbiol Biotechnol 86:641–8
  • Ozaki H, Sharma K, Saktaywin W. (2002). Performance of an ultra-low-pressure reverse osmosis membrane (ULPROM) for separating heavy metal: effects of interference parameters. Desalination 144:287–94
  • Park D, Yun Y-S, Park JM. (2010). The past, present, and future trends of biosorption. Biotechnol. Bioprocess Eng 15:86–102
  • Patel J, Wilson G, Mckay RM, et al. (2010a). Self-immobilization of recombinant Caulobacter crescentus and its application in removal of cadmium from water. Appl Biochem Biotechnol 162:1160–73
  • Patel J, Zhang Q, Mckay RM, et al. (2010b). Genetic engineering of Caulobacter crescentus for removal of cadmium from water. Appl Biochem Biotechnol 160:232–43
  • Pazirandeh M, Wells BM, Ryan RL. (1998). Development of bacterium-based heavy metal biosorbents: enhanced uptake of cadmium and mercury by Escherichia coli expressing a metal binding motif. Appl Environ Microbiol 64:4068–72
  • Potts CL. (1965). Cadmium proteinuria–the health of battery workers exposed to cadmium oxide dust. Ann Occup Hyg 8:55–61
  • Qin J, Song LY, Brim H, et al. (2006). Hg(II) sequestration and protection by the MerR metal-binding domain (MBD). Microbiol 152:709–19
  • Ravikumar S, Yoo IK, Lee SY, Hong SH. (2011a). Construction of copper removing bacteria through the integration of two-component system and cell surface display. Appl Biochem Biotechnol 165:1674–81
  • Ravikumar S, Yoo IK, Lee SY, Hong SH. (2011b). A study on the dynamics of the zraP gene expression profile and its application to the construction of zinc adsorption bacteria. Bioprocess Biosyst Eng 34:1119–26
  • Saffar B, Yakhchali B, Arbabi M. (2007). Development of a bacterial surface display of hexahistidine peptide using CS3 pili for bioaccumulation of heavy metals. Curr Microbiol 55:273–7
  • Samuelson P, Gunneriusson E, Nygren PA, Stahl S. (2002). Display of proteins on bacteria. J Biotechnol 96:129–54
  • Samuelson P, Wernerus H, Svedberg M, Stahl S. (2000). Staphylococcal surface display of metal-binding polyhistidyl peptides. Appl Environ Microbiol 66:1243–8
  • Schembri MA, Kjaergaard K, Klemm P. (1999). Bioaccumulation of heavy metals by fimbrial designer adhesins. FEMS Microbiol Lett 170:363–71
  • Schneewind O, Fowler A, Faull KF. (1995). Structure of the cell wall anchor of surface proteins in Staphylococcus aureus. Science 268:103–6
  • Sousa C, Cebolla A, De Lorenzo V. (1996). Enhanced metalloadsorption of bacterial cells displaying poly-His peptides. Nat Biotechnol 14:1017–20
  • Sousa C, Kotrba P, Ruml T, et al. (1998). Metalloadsorption by Escherichia coli cells displaying yeast and mammalian metallothioneins anchored to the outer membrane protein LamB. J Bacteriol 180:2280–4
  • Tabak HH, Lens P, Van Hullebusch ED, Dejonghe W. (2005). Developments in bioremediation of soils and sediments polluted with metals and radionuclides - 1. Microbial processes and mechanisms affecting bioremediation of metal contamination and influencing metal toxicity and transport. Rev Environ Sci Biotechnol 4:115–56
  • Tafakori V, Ahmadian G, Amoozegar MA. (2012). Surface display of bacterial metallothioneins and a chitin binding domain on Escherichia coli increase cadmium adsorption and cell immobilization. Appl Biochem Biotechnol 167:462–73
  • Takayama K, Suye SI, Kuroda K, et al. (2006). Surface display of organophosphorus hydrolase on Saccharomyces cerevisiae. Biotechnol Prog 22:939-43
  • Tao HC, Peng ZW, Li PS, et al. (2013). Optimizing cadmium and mercury specificity of CadR-based E. coli biosensors by redesign of CadR. Biotechnol Lett 35:1253--8
  • Tzanetakis N, Taama WM, Scott K, et al. (2003). Comparative performance of ion exchange membranes for electrodialysis of nickel and cobalt. Sep Purif Technol 30:113–27
  • Uauy R, Olivares M, Gonzalez M. (1998). Essentiality of copper in humans. Am J Clin Nutr 67:952S–959S
  • Ueda M. (2004). Future direction of molecular display by yeast-cell surface engineering. J Mol Catal B-Enzym 28:139–43
  • Ueki T, Sakamoto Y, Yamaguchi N, Michibata H. (2003). Bioaccumulation of copper ions by Escherichia coli expressing vanabin genes from the vanadium-rich ascidian Ascidia sydneiensis samea. Appl Environ Microbiol 69:6442–6
  • Valls M, Atrian S, De Lorenzo V, Fernandez LA. (2000a). Engineering a mouse metallothionein on the cell surface of Ralstonia eutropha CH34 for immobilization of heavy metals in soil. Nat Biotechnol 18:661–5
  • Valls M, De Lorenzo V, Gonzalez-Duarte R, Atrian S. (2000b). Engineering outer-membrane proteins in Pseudomonas putida for enhanced heavy-metal bioadsorption. J Inorg Biochem 79:219–23
  • Veglio F, Beolchini F. (1997). Removal of metals by biosorption: A review. Hydrometallurgy 44:301–16
  • Vijayaraghavan K, Jegan J, Palanivelu K, Velan M. (2004). Removal of nickel(II) ions from aqueous solution using crab shell particles in a packed bed up-flow column. J Hazard Mater 113:223–30
  • Vinopal S, Ruml T, Kotrba P. (2007). Biosorption of Cd2+ and Zn2+ by cell surface-engineered Saccharomyces cerevisiae. Int Biodeterior Biodegrad 60:96–102
  • Volesky B, Weber J, Park JM. (2003). Continuous-flow metal biosorption in a regenerable Sargassum column. Water Res 37:297–306
  • Wang J, Chen C. (2006). Biosorption of heavy metals by Saccharomyces cerevisiae: a review. Biotechnol Adv 24:427–51
  • Wen F, Sun J, Zhao H. (2010). Yeast surface display of trifunctional minicellulosomes for simultaneous saccharification and fermentation of cellulose to ethanol. Appl Environ Microbiol 76:1251–60
  • Wernerus H, Lehtio J, Teeri T, et al. (2001). Generation of metal-binding staphylococci through surface display of combinatorially engineered cellulose-binding domains. Appl Environ Microbiol 67:4678–84
  • Wu TJ, Sempos CT, Freudenheim JL, et al. (2004). Serum iron, copper and zinc concentrations and risk of cancer mortality in US adults. Ann Epidemiol 14:195–201
  • Yang T, Zhang XX, Chen ML, Wang JH. (2012). Highly selective preconcentration of ultra-trace cadmium by yeast surface engineering. Analyst 137:4193–9
  • Zwick MB, Bonnycastle LLC, Noren KA, et al. (1998). The maltose-binding protein as a scaffold for monovalent display of peptides derived from phage libraries. Anal Biochem 264:87–97

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.