965
Views
22
CrossRef citations to date
0
Altmetric
Review Article

The contractile vacuole complex of protists – New cues to function and biogenesis

Pages 218-227 | Received 14 May 2013, Accepted 30 Jun 2013, Published online: 06 Aug 2013

References

  • Akhmanova A, Steinmetz MO. (2010). Microtubule +TIPs at a glance. J Cell Sci 123:3415–9
  • Allen RD. (2000). The contractile vacuole and its membrane dynamics. Bioessays 22:1035–42
  • Allen RD, Naitoh Y. (2002). Osmoregulation and contractile vacuoles in protozoa. Int Rev Cytol 215:351–94
  • Allen RD, Ueno MS, Pollard LW, Fok AK. (1990). Monoclonal antibody study of the decorated spongiome of contractile vacuole complexes of Paramecium. J Cell Sci 96:469–75
  • Andersen OS, Koeppe RE. (2007). Bilayer thickness and membrane protein function: an energetic perspective. Annu Rev Biophys Biomol Struct 36:107–30
  • Blumenthal R. (1987). Membrane fusion. Curr Top Membr Transp 29:203–54
  • Bright LJ, Kambesis N, Nelson SB, et al. (2010). Comprehensive analysis reveals dynamic and evolutionary plasticity of Rab GTPases and membrane traffic in Tetrahymena thermophila. PLoS Genet 6:e1001155
  • Chang J, Baloh RH, Milbrandt J. (2009). The NIMA-family kinase Nek3 regulates microtubule acetylation in neurons. J Cell Sci 122:2274–82
  • Coste B, Mathur J, Schmidt M, et al. (2010). Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science 330:55–60
  • Desai A, Mitchison TJ. (1997). Microtubule polymerization dynamics. Annu Rev Cell Dev Biol 13:83–117
  • Dobbelaere J, Josué F, Suijkerbuijk S, et al. (2008). A genome-wide RNAi screen to dissect centriole duplication and centrosome maturation in Drosophila. PloS Biol 6:e224
  • Elde NC, Morgan G, Winey M, et al. (2005). Elucidation of clathrin-mediated endocytosis in Tetrahymena reveals an evolutionarily convergent recruitment of dynamin. PloS Genet 1:e52
  • Essid M, Gopaldass N, Yoshida K, et al. (2012). Rab8a regulates the exocyst-mediated kiss-and-run discharge of the Dictyostelium contractile vacuole. Mol Biol Cell 23:1267–82
  • Fok AK, Clarke M, Ma L, Allen RD. (1993). Vacuolar H+-ATPase of Dictyostelium discoideum. A monoclonal antibody study. J Cell Sci 106:1103–13
  • Fok AK, Aihara MS, Ishida M, Allen RD. (2008). Calmodulin localization and its effects on endocytic and phagocytic membrane trafficking in Paramecium multimicronucleatum. J Eukaryot Microbiol 55:481–91
  • Frankel J. (2000). Cell biology of Tetrahymena thermophila. Meth Cell Biol 62:27–125
  • Fujiu K, Nakayama Y, Iida H, et al. (2011). Mechanoreception in motile flagella of Chlamydomonas. Nature Cell Biol 13:630–3
  • Gaertig J, Cruz MA, Bowen J, et al. (1995). Acetylation of lysine 40 in alpha-tubulin is not essential in Tetrahymena thermophila. J Cell Biol 129:1301–10
  • Gerisch G, Heuser J, Clarke M. (2002). Tubular-vesicular transformation in the contractile vacuole system of Dictyostelium. Cell Biol Int 26:845–52
  • Gogendeau D, Klotz C, Arnaiz O, et al. (2008). Functional diversification of centrins and cell morphological complexity. J Cell Sci 121:65–74
  • Griffiths GM, Tsun A, Stinchcombe JC. (2010). The immunological synapse: a focal point for endocytosis and exocytosis. J Cell Biol 189:399–406
  • Grønlien HK, Stock C, Aihara MS, et al. (2002). Relationship between the membrane potential of the contractile vacuole complex and its osmoregulatory activity in Paramecium multimicronucleatum. J Exp Biol 205:3261–70
  • Harris TJC, Peifer M. (2005). The positioning and segregation of apical cues during epithelial polarity establishment in Drosophila. J Cell Biol 170:813–23
  • Hauser K, Pavlovic N, Klauke N, et al. (2000). Green fluorescent protein-tagged sarco(endo)plasmic reticulum Ca2+-ATPase overexpression in Paramecium cells: isoforms, subcellular localization, biogenesis of cortical calcium stores and functional aspects. Mol Microbiol 37:773–87
  • Heath RJ, Insall RH. (2008). Dictyostelium MEGAPs: F-BAR domain proteins that regulate motility and membrane tubulation in contractile vacuoles. J Cell Sci 121:1054–64
  • Heider MR, Munson M. (2012). Exorcising the exocyst complex. Traffic 13:898–907
  • Henrique D, Schweisguth F. (2003). Cell polarity: the ups and downs of the Par6/aPKC complex. Curr Op Genet Dev 13:341–50
  • Heuser J. (2006). Evidence for recycling of contractile vacuole membrane during osmoregulation in Dictyostelium amoebae – a tribute to Günther Gerisch. Eur J Cell Biol 85:859–71
  • Heuser J, Zhu Q, Clarke M. (1993). Proton pumps populate the contractile vacuoles of Dictyostelium amoebae. J Cell Biol 121:1311–27
  • Hodges ME, Scheumann N, Wickstead B, et al. (2010). Reconstructing the evolutionary history of the centriole from protein components. J Cell Sci 123:1407–13
  • Huang M, Gu G, Ferguson EL, Chalfie M. (1995). A stomatin-like protein necessary for mechanosensation in C. elegans. Nature 378:292–5
  • Iftode F, Cohen J, Ruiz F, et al. (1989). Development of surface pattern during division in Paramecium. I. Mapping of duplication and reorganization of cortical cytoskeletal structures in the wild type. Development 105:191–211
  • Ingham PW, Nakano Y, Seger C. (2011). Mechanisms and functions of Hedgehog signalling across the metazoa. Nature Rev Genet 12:393–406
  • Jahn R, Scheller RH. (2006). SNAREs – engines for membrane fusion. Nat Rev Mol Cell Biol 7:631–43
  • Jerka-Dziadosz M, Jenkins LM, Nelsen EM, et al. (1995). Cellular polarity in ciliates: persistence of global polarity in a disorganized mutant of Tetrahymena thermophila that disrupts cytoskeletal organization. Dev Biol 169:644–61
  • Joberty G, Petersen C, Gao L, Macara IG. (2000). The cell-polarity protein Par6 links Par3 and atypical protein kinase C to Cdc42. Nat Cell Biol 2:531–9
  • Jung G, Titus MA, Hammer JA. (2009). The Dictyostelium type V myosin MyoJ is responsible for the cortical association and motility of contractile vacuole membranes. J Cell Biol 186:555–70
  • Kalebic N, Martinez C, Perla, E, et al. (2013). Tubulin acetyltransferse αTAT1 destabilizes microtubules independently of its acetylation activity. Mol Cell Biol 33:1114–23
  • Kissmehl R, Froissard M, Plattner H, et al. (2002). NSF regulates membrane traffic along multiple pathways in Paramecium. J Cell Sci 115:3935–46
  • Kissmehl R, Schilde C, Wassmer T, et al. (2007). Molecular identification of 26 syntaxin genes and their assignment to the different trafficking pathways in Paramecium. Traffic 8:523–42
  • Klotz C, Ruiz F, Garreau de Loubresse N, et al. (2003). Gamma-tubulin and MTOCs in Paramecium. Protist 154:193–209
  • Komsic-Buchmann K, Stephan LM, Becker B. (2012). The SEC6 protein is required for contractile vacuole function in Chlamydomonas reinhardtii. J Cell Sci 125:2885–95
  • Kung C, Martinac B, Sukharev S. (2010). Mechanosensitive channels in microbes. Annu Rev Microbiol 64:313–29
  • Ladenburger EM, Plattner H. (2011). Calcium-release channels in Paramecium. Genomic expansion, differential positioning and partial transcriptional elimination. PLoS One 6:e27111
  • Ladenburger EM, Korn I, Kasielke N, et al. (2006). An Ins(1,4,5)P3 receptor in Paramecium is associated with the osmoregulatory system. J Cell Sci 119:3705–17
  • Lapatsina L, Brand J, Poole K, et al. (2012). Stomatin-domain proteins. Eur J Cell Biol 91:240–5
  • Marchesini N, Ruiz FA, Vieira M, Docampo R. (2002). Acidocalcisomes are functionally linked to the contractile vacuole of Dictyostelium discoidium. J Biol Chem 277:8146–53
  • Mayr MI, Hummer S, Bormann J, et al. (2007). The human kinesin Kif18A is a motile microtubule depolymerase essential for chromosome congression. Curr Biol 17:488–98
  • Mim C, Unger VM. (2012). Membrane curvature and its generation by BAR proteins. Trends Biochem Sci 37:526–33
  • Mimori-Kiyosue Y, Tsukita S. (2003). “Search-and-capture” of microtubules through plus-end-binding proteins (+TIPs). J Biochem 134:321–6
  • Momayezi M, Kersken H, Gras U, et al. (1986). Calmodulin in Paramecium tetraurelia: localization from the in vivo to the ultrastructural level. J Histochem Cytochem 34:1621–38
  • Montalvetti A, Rohloff P, Docampo R. (2004). A functional aquaporin co-localizes with the vacuolar proton pyrophosphatase to acidocalcisomes and the contractile vacuole complex of Trypanosoma cruzi. J Biol Chem 279:38673–82
  • Nanney DL. (1966). Cortical integration in Tetrahymena: an exercise in cytogeometry. J Exp Zool 161:307–17
  • Nishihara E, Yokota E, Tazaki A, et al. (2008). Presence of aquaporin and V-ATPase on the contractile vacuole of Amoeba proteus. Biol Cell 100:179–88
  • Niwa S, Nakajima K, Miki H, et al. (2012). KIF19A is a microtubule-depolymerizing kinesin for ciliary length control. Dev Cell 23:1167–75
  • Nolta KV, Padh H, Steck TL. (1993). An immunocytochemical analysis of the vacuolar proton pump in Dictyostelium discoideum. J Cell Sci 105:849–59
  • Numata O, Gonda K. (2001). Determination of division plane and organization of contractile ring in Tetrahymena. Cell Struct Funct 26:593–601
  • Ohki S. (1988). Surface tension, hydration energy and membrane fusion. In: Ohki S, Doyle D, Flanagan TD, et al., eds. Molecular mechanisms of fusion. New York: Plenum Press, 123–38
  • Palmer KJ, Watson P, Stephens DJ. (2005). The role of microtubules in transport between the endoplasmic reticulum and Golgi apparatus in mammalian cells. Biochem Soc Symp 72:1–13
  • Pang ZP, Südhof TC. (2010). Cell biology of Ca2+-triggered exocytosis. Curr Opin Cell Biol 22:496–505
  • Plattner H. (2010). Membrane trafficking in protozoa: SNARE proteins, H+-ATPase, actin, and other key players in ciliates. Int Rev Cell Mol Biol 280:79–184
  • Plattner H, Westphal C, Tiggemann R. (1982). Cytoskeleton-secretory vesicle interactions during the docking of secretory vesicles at the cell membrane in Paramecium tetraurelia cells. J Cell Biol 92:368–77
  • Plattner H, Sehring IM, Mohamed IK, et al. (2012). Calcium signaling in closely related protozoan groups (Alveolata): non-parasitic ciliates (Paramecium. Tetrahymena) vs. parasitic Apicomplexa (Plasmodium. Toxoplasma). Cell Calcium 51:351–82
  • Ren G, Vajjhala P, Lee JS, et al. (2006). The BAR domain proteins: molding membranes in fission, fusion, and phagy. Microbiol Mol Biol Rev 70:37–120
  • Reuter AT, Stuermer CAO, Plattner H. (2013). Identification, localization, and functional implications of the microdomain-forming stomatin family in the ciliated protozoan Paramecium. Eukaryot Cell 12:529–44
  • Schilde C, Wassmer T, Mansfeld J, et al. (2006). A multigene family encoding R-SNAREs in the ciliate Paramecium tetraurelia. Traffic 7:440–55
  • Schilde C, Lutter K, Kissmehl R, Plattner H. (2008). Molecular identification of a SNAP-25-like SNARE protein in Paramecium. Eukaryot Cell 7:1387–402
  • Schilde C, Schönemann B, Sehring IM, Plattner H. (2010). Distinct subcellular localization of a group of synaptobrevin-like SNAREs in Paramecium tetraurelia and effects of silencing of the SNARE-specific chaperone NSF. Eukaryot Cell 9:288–305
  • Schönemann B, Bledowski A, Sehring IM, Plattner H. (2013). A set of SNARE proteins in the contractile vacuole complex of Paramecium regulates cellular calcium tolerance and also contributes to organelle biogenesis. Cell Calcium 53:204–16
  • Sehring IM, Mansfeld J, Reiner C, et al. (2007). The actin multigene family of Paramecium tetraurelia. BMC Genomics 8:82
  • Shang Y, Li B, Gorovsky MA. (2002). Tetrahymena thermophila contains a conventional γ-tubulin that is differentially required for the maintenance of different microtubule-organizing centers. J Cell Biol 158:1195–206
  • Shen H, Pirruccello M, De Camilli P. (2012). SnapShot: membrane curvature sensors and generators. Cell 150:1300.e1–2
  • Shilagardi K, Li S, Luo F, et al. (2013). Actin-propelled invasive membrane protrusions promote fusogenic protein engagement during cell-cell fusion. Science 340:359--63
  • Sperling L, Keryer G, Ruiz F, Beisson J. (1991). Cortical morphogenesis in Paramecium: a transcellular wave of protein phosphorylation involved in ciliary rootlet disassembly. Dev Biol 148:205–18
  • Sriskanthadevan S, Lee T, Lin Z, et al. (2009). Cell adhesion molecule DdCAD-1 is imported into contractile vacuoles by membrane invagination in a Ca2+- and conformation-dependent manner. J Biol Chem 284:36377--86
  • Stelly N, Mauger JP, Claret M, Adoutte A. (1991). Cortical alveoli of Paramecium: a vast submembranous calcium storage compartment. J Cell Biol 113:103–12
  • Stemm-Wolf AJ, Morgan G, Giddings TH, et al. (2005). Basal body duplication and maintenance require one member of the Tetrahymena thermophila centrin gene family. Mol Biol Cell 16:3606–19
  • Stenmark H. (2009). Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol 10:513–25
  • Stock C, Grønlien HK, Allen RD. (2002). The ionic composition of the contractile vacuole fluid of Paramecium mirrors ion transport across the plasma membrane. Eur J Cell Biol 81:505–15
  • Sugino K, Tominaga T, Allen RD, Naitoh Y. (2005). Electrical properties and fusion dynamics of in vitro membrane vesicles derived from separate parts of the contractile vacuole complex of Paramecium multimicronucleatum. J Exp Biol 208:3957–69
  • Tani T, Allen RD, Naitoh Y. (2001). Cellular membranes that undergo cyclic changes in tension: direct measurement of force generation by an in vitro contractile vacuole of Paramecium multimicronucleatum. J Cell Sci 114:785–95
  • Tominaga T, Allen R, Naitoh Y. (1998a). Electrophysiology of the in situ contractile vacuole complex of Paramecium reveals its membrane dynamics and electrogenic site during osmoregulatory activity. J Exp Biol 201:451–60
  • Tominaga T, Allen R, Naitoh Y. (1998b). Cyclic changes in the tension of the contractile vacuole complex membrane control its exocytotic cycle. J Exp Biol 201:2647–58
  • Wassmer T, Froissard M, Plattner H, et al. (2005). The vacuolar proton-ATPase plays a major role in several membrane-bounded organelles in Paramecium. J Cell Sci 118:2813–25
  • Wassmer T, Kissmehl R, Cohen J, Plattner H. (2006). Seventeen a-subunit isoforms of Paramecium V-ATPase provide high specialization in localization and function. Mol Biol Cell 17:917–30
  • Wassmer T, Sehring IM, Kissmehl R, Plattner H. (2009). The V-ATPase in Paramecium: functional specialization by multiple gene isoforms. Eur J Physiol 457:599–607
  • Wloga D, Camba A, Rogowski K, et al. (2006). Members of the NIMA-related kinase family promote disassembly of cilia by multiple mechanisms. Mol Biol Cell 17:2799–810
  • Yano J, Rajendran A, Valentine MS, et al. (2013). Proteomic analysis of the cilia membrane of Paramecium tetraurelia. J Proteom 78:113–22
  • Yoon Y, Pitts KR, Dahan S, McNiven MA. (1998). A novel dynamin-like protein associates with cytoplasmic vesicles and tubules of the endoplasmic reticulum in mammalian cells. J Cell Biol 140:779–93

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.