648
Views
3
CrossRef citations to date
0
Altmetric
Review Article

Integrated plant nutrient system – with special emphasis on mineral nutriton and biofertilizers for Black pepper and cardamom – A review

&
Pages 439-453 | Received 29 Dec 2012, Accepted 22 Aug 2014, Published online: 02 Apr 2015

References

  • Abd-Alla MH. (1994). Use of organic phosphorus by Rhizobium leguminosarum biovar viceae phosphatases. Biol Fert Soil 18:216–18
  • Al-Nahidh S, Gomah AHM. (1991). Response of wheat to dual inoculation with VA-mycorrhiza and Azospirillum fertilized with NPK and irrigated with sewage effluent. Arid Soil Res Rehabil 5:83–96
  • Antoun H, Prevost D. (2005). Ecology of plant growth promoting rhizobacteria. Chapter 1. In: Siddiqui ZA, ed. PGPR: Biocontrol and Biofertilization. Netherlands: Springer, 1–38. (C) 2005
  • Arshad M, Frankenberger WT. (1998). Plant growth-regulating substances in the rhizosphere: microbial production and functions. Adv Agron 62:46–151
  • Atiyeh RM, Arancon NQ, Edwards CA, Metzger JD. (2000). Influence of earthworm-processed pig manure on the growth and yield of greenhouse tomatoes. Bioresource Technol 75:75–180
  • Atiyeh RM, Edwards CA, Subler S, Metzger JD. (2001). Pig manures vermicompost as a component of a horticultural bedding plant medium: effects on physiochemical properties and plant growth. Bioresource Technol 78:11–20
  • Atlas RM, bartha R. (1993). Microbial Ecology-Fundamentls and Applications. Redwood City, CA: Benjamin-Cummings
  • Atlas R, Bartha R. (1997). Microbial ecology. New York: Addison Wesley Longman, 694 p
  • Bahme JB, Schroth MN, VanGundy SD, et al. (1988). Effect of inocula delivery systems on rhizobacterial colonization of underground organs of potato. Phytopathology 78:534–42
  • Bakanchikova TI, Lobanok EV, Pavlova Ivanova LK, et al. (1993). Inhibition of tumor formation process in dicotyledonous plants by Azospirillum brasilense strains. Mikrobiologiya 62:515–23
  • Baldani J, Oliveira A, Guimaraes S, et al. (2000). The role of endophytic diatozotrophs. In: Pedrosa F, Hungria H, Yates G, Newton W, eds. Biological nitrogen fixation (BNF) in nonleguminous plants. Dordrecht: Kluwer, 397–400
  • Baldani VLD, Alvarez MA, Baldani JI, Dobereiner J. (1986). Establishment of inoculated Azospirillum sp. in the rhizosphere and in roots of field grown wheat and sorghum. Plant Soil 90:35–46
  • Baldani VLD, Baldani JL, Reis VM. (2002). Effects of Azospirillum inoculation on root infection and nitrogen incorporation in wheat. Can J Microbiol 29:924–9
  • Bali M, Mukerji KG. (1991). Interaction between VA mycorrhizal fungi and root microflora of jute. Dev Agric For Ecol 24:396–401
  • Barea JM, Azcon AC, Azcon R. (1997). Interactions between mycorrhizal fungi and rhizosphere micro-organisms within the context of sustainable soil–plant systems. In: Gange AC, Brown VK, eds. Multitrophic interactions in terrestrial systems). Cambridge: Blackwell, 65–77
  • Barea JM, Azcon R, Azcon AC. (2002a). Mycorrhizosphere interactions to improve plant fitness and soil quality. Anton Leeuw 81:343–51
  • Barea JM, Gryndler M, Lemanceau PH, et al. (2002b). The rhizosphere of mycorrhizal plants. In: Gianinazzi S, Schuepp H, Barea JM, Haselwandter K, eds. Mycorrhiza technology in agriculture from genes to bioproducts. Basel: Birkhauser, 1–18
  • Barea JM. (1997). Mycorrhiza/bacteria interactions on plant growth promotion. In: Ogoshi A, Kobayashi L, Homma Y, Kodama F, Kondon N, Akino S, eds. Plant growth-promoting rhizobacteria, present status and future prospects. Paris: OCD, 150–8
  • Barka EA, Belarbi A, Hachet C, et al. (2000). Enhancement of in vitro growth and resistance to gray mold of Vitis vinifera co-cultivated with plant growth promoting rhizobacteria. FEMS Microbiol Lett 186:91–5
  • Barker WW, Welch SA, Chu S, Banfield JF. (1998). Experimental observations of the effects of bacteria on aluminosilicate weathering. Am Miner 83:1551–63
  • Barraquio WL, Segubre EM, Gonzalez MS, et al. (2000). The quest for nitrogen fixation in rice. Los Banos, Philippines: IRRI, 93–118
  • Barton LL, Johnson GV, Orbock MS. (1986). The effect of Azospirillum brasilense on iron absrption and translocation by sorghum. J Plant Nutr 9:557–65
  • Bar-Yosef B, Rogers RD, Wolfram JH, Richman E. (1999). Pseudomonas cepacia-mediated rock phosphate solubilization in kaolinite and montmorillonite suspensions. Soil Sci Soc Am J 63:1703–8
  • Bashan Y, de Bahan LE. (2005). Bacteria. In: Hillel D, ed. Encyclopedia of soils in the environment, vol. 1. UK: Elsevier, 103–15
  • Bashan Y, Holguin G, de-Bashan LE. (2004). Azospirillum-plant relationships: physiological, molecular, agricultural, and environmental advances (1997–2003). Can J Microbiol 50:521–77
  • Bashan Y, Holguin G. (1995). Inter-root movement of Azospirillum brasilense and subsequent root colonization of crop and weed seedlings growing in soil. Microbiol Ecol 29:269–81
  • Bashan Y, Holguin G. (1997). Azospirillum-plant relationships: environmental and physiological advances. Can J Microbiol 43:103–21
  • Bashan Y, Juan PH, Luis AL, Macario B. (2002). Alginate micro beads as inoculants carriers for plant growth promoting bacteria. Biol Fert Soils 35:359–68
  • Bashan Y, Levanony H, Mitiku G. (1989a). Changes in proton efflux of intact wheat roots induced by Azospirillum brasilense Cd. Can J Microbiol 35:691–7
  • Bashan Y, Levanony H, Zivvecht O. (1987). The fate of field-inoculated Azospirillum brasilense Cd in wheat rhizosphere during the growing season. Can J Microbiol 33:1074–9
  • Bashan Y, Levanony H. (1989). Factors affecting adsorption of Azospirillum brasilense Cd to root hairs as compared with root surface of wheat. Can J Microbiol 35:936–44
  • Bashan Y, Levanony H. (1990). Current status of Azospirillum inoculation technology: Azospirillum as a challenge for agriculture. Can J Microbiol 36:591–608
  • Bashan Y, Ream Y, Levanony H, Sade A. (1989b). Nonspecific responses in plant growth, yield, and root colonization of noncereal crop plants to inoculation with Azospirillum brasilense Cd. Can J Bot 67:1317–24
  • Bashan Y, Singh M, Levanony H. (1989c). Contribution of Azospirillum brasilense Cd to growth of tomato seedlings is not through nitrogen fixation. Can J Bot 6:2429–34
  • Bashan Y. (1986a). Enhancement of wheat roots colonization and plant development by Azospirillum brasilense Cd. following temporary depression of the rhizosphere microflora. Appl Environ Microbiol 51:1067–71
  • Bashan Y. (1986b). Alginate beads as synthetic inoculant carriers for the slow release of bacteria that affect plant growth. Appl Environ Microbiol 51:1089–98
  • Bashan Y. (1990). Short exposure to Azospirillum brasilense Cd inoculation enhanced proton efflux of intact wheat roots. Can J Microbiol 36:419–25
  • Bedmar EJ, Gouzalez J, Lluch C, Rodelas B. (2006). Fixation of nitrogen: fundamentals and applications. Granada: SEFIN
  • Benik P, Bejbaruah R. (2004). Effect of vermicompost on rice (Oryza sativa) yield and soil-fertility status of rainfed humid sub-tropics. Indian J Agric Sci 74:488–91
  • Bennett PC, Choi WJ, Rogera JR. (1998). Microbial destruction of feldspars. Miner Manag 8:149–50
  • Bolan NS. (1991). A critical review on the role of mycorrhizal fungi in the uptake of phosphorus by plants. Plant Soil 134:189–207
  • Bopaiah BM, Abdul Khader KB. (1989). Effect of biofertilisers on growth of black pepper (Piper nigrum L.). Ind J Agric Sci 59:682–3
  • Buchholz DD, Brown JR. (1993). Potassium in Missouri Soils. Missouri: Agricultural Publication, 9–185
  • Caballero MJ, Carcan MMG, Mascarua EMA. (1992). Field inoculation of wheat (Triticum aestivum) with Azospirillum brasilense under temperate climate. Symbiosis 13:243–53
  • Cartieaux FP, Nussaume L, Robaglia C. (2003). Tales from the underground: molecular plant-rhizobacteria interactions. Plant Cell Environ 26:189–99
  • Cattelan AJ, Hartel PG, Fuhrmann JJ. (1999). Screening for plant growth-promoting rhizobacteria to promote early soybean growth. Soil Sci Soc Am J 63:1670–80
  • Chakraborty U, Chakraborty B, Basnet M, Lanjey Bhutia P. (2005). PGPR mediated induction of resistance in tea plants for management of root rot diseases. In: Gnanamanickam SS, Balasubramanian R, Anand N, eds. Proceedings of the Asian Conference on Emerging Trends in Pl. Microbe Interact, Chennai, India, 42–50
  • Chandra K, Singh T. (1999). Post and present scenario of RBDC. Biofertiliser situation in Orissa. Bhubaneswar: National Institute for Sustainable Tropical Agriculture and Human Action (NISTHAA), 1–7
  • Charest MH, Beauchamp CJ, Antoun H. (2005). Effects of the humic substances of de-inking paper sludge on the antagonism between two compost bacteria and Pythium ultimum. FEMS Microbiol Ecol 52:19–227
  • Charpentier CA, Gadille P, Benoit JP. (1999). Rhizobacteria microencapsulation: properties of Micro particles obtained by spray drying. J Microencapsul 16:215–29
  • Chela GS, Tiwana MS, Thind IS, et al. (1993). Effect of bacterial cultures and nitrogen fertility on the yield and quality of maize fodder (Zea mays L.). Ann Biol 9:83–6
  • Chellamuthu V. (2002). Effect of biofertiliser and inorganic fertiliser in fodder yield of Bajra. Madras Agric J 87:183–5
  • Chiu CY. (2005). Development and application of biofertilizers in Taiwan. Available at http://www.agnet.org/library/eb/565/
  • Cleveland CC, Townsend AR, Schimel DS, et al. (1999). Global patterns of terrestrial biological nitrogen (N2) fixation in natural ecosystems. Global Biogeochem Cyc 13:623–45
  • Crossman SM, Hill WA. (1987). Inoculation of sweet potato with Azospirillum. Hort Sci 22:420–2
  • de Freitas JR, Banerjee MR, Germida JJ. (1997). Phosphate solubilizing rhizobacteria enhance the growth and yield but not phosphorus uptake of canola (Brassica napus L.). Biol Fertil Soils 24:358–64
  • Deepa R. (2000). Mineral phosphate solubilizaiton by fluorescent pseudomonads. M. Sc. (Agri.) Thesis. University of Agricultural Sciences, Dharwad, Karnataka, India
  • Del Gallo M, Fabbri P. (1991). Effect of soil organic matter on chickpea inoculated with Azospirillum brasilense and Rhizobium leguminosarum bv. ciceri. Plant Soil 137:171–5
  • Di-Simine CD, Sayer JA, Gadd GM. (1998). Solubilization of zinc phosphate by a strain of Pseudomonas fluorescens isolated from a forest soil. Biol Fert Soils 28:87–94
  • Duffy BK, Simon A, Weller DM. (1996). Combination of Trichoderma koningii with fluorescent pseudomonads for control of take all of wheat. Phytopathology 86:188–94
  • Edwards CA, Burrows I. (1988). The potential of earthworm composts and plant growth media. In: Edwards CA, Neuhauser IP, eds. Earthworms in waste and environmental management. The Hague: SPB Academic, 211–17
  • Esitken A, Pirlak L, Turan M, Sahin F. (2006). Effects of floral and foliar application of plant growth promoting rhizobacteria (PGPR) on yield, growth and nutrition of sweet cherry. Sci Hort 110:324–7
  • Ezawa T, Smith SE, Smith FA. (2002). P metabolism and transport in AM fungi. Plant Soil 244:221–30
  • Fallik E, Okon Y, Fischer M. (1988). Growth response of maize roots to Azospirillum inoculation: effect of soil organic matter content, number of rhizosphere bacteria and timing of inoculation. Soil Biol Biochem 20:45–9
  • Fallik E, Sarig S, Okon Y. (1994). Morphology and physiology of plant roots associated with Azospirillum. In: Okon Y, ed. Azospirillum – plant associations. Boca Raton, FL: CRC Press, 77–84
  • FAO. (1995). Asian network on bio and organic fertilizers. Bangkok: RAP Publication (FAO)
  • Gaind S. (2004). Evaluation of fly ash as a carrier for diazotrophs and phospho bacteria. Bioresource Technol 95:187–90
  • Galloway J. (1998). The global nitrogen cycle: changes and consequences. Environ Pollut 102:15–24
  • Garbeva P, Voesenek K, van Elsas JD, van Veen JA. (2003). Predominant Bacillus sp. in agricultural soil under different management regimes detected via PCR-DGGE. Microbial Ecol 45:302–16
  • Gaume A, Machler F, Frossard E. (2001). Aluminium resistance in two cultivars of Zea mays L.: root exudation of organic acids and influence of phosphorus nutrition. Plant Soil 234:73–81
  • Gaur AC. (1990). Phosphate solubilizing microorganisms as biofertilizers. New Delhi, India: Omega Scientific Publishers, 176 p
  • Ghosh A. (2005). Organic rice farming technology development and its feasibility. Indian Farm 4–7
  • Ghosh AB, Hasan R. (1980). Soil fertility map of India. New Delhi, India: Indian Agricultural Research Institute
  • Glick BR, Jacobson CB, Schwarze MMK, Pasternak JJ. (1994). 1-Aminocyclopropae-1-carboxylic acid deaminases play a role on plant growth by Pseudomonas putida GR12-2. In: Ryder MH, Stephens PM, Bowen GD, eds. Improving plant productivity with rhizosphere bacteria. Adelaide: CSIRO, 150–2
  • Goenadi DH, Siswanto M, Sugiarto Y. (2000). Bioactivation of poorly soluble phosphate rocks with a phosphorus-solubilizing fungus. Soil Sci Soc Am J 64:927–32
  • Gori A, Favilli F. (1995). First results on individual and dual inoculation with Azospirillum – Glomus on wheat. NATO ASI Ser G 37:245–9
  • Govindan M, Chandy KC. (1985). Utilization of the diazotroph, Azospirillum for inducing rooting in pepper cuttings (Piper nigrum L.). Curr Sci 54:1186–7
  • Graham PH. (1999). Biological dinitrogen fixation: symbiotic. In: Sylvia D, Fuhrmann J, Hartel P, Zuberer D, eds. Principles and applications of soil microbiology. Upper Saddle River, NJ: Prentice Hall, 550 p
  • Gransee A, Wittenmayer L. (2000). Qualitative and quantitative analysis of water-soluble root exudates in relation to plant species and development. J Plant Nutr Soil Sci 163:381–5
  • Gull M, Hafeez FY, Saleem M, Malik KA. (2004). Phosphorous uptake and growth promotion of Chick pea by coinoculation of MPS bacteria and a mixed rhizobial culture. Aust J Exp Agric 44:623–8
  • Gutierrez-Manero FJ, Ramos-Solano B, Probanza A, et al. (2001). The plant-growth-promoting rhizobacteria Bacillus pumilus and Bacillus licheniformis produce high amounts of physiologically active gibberellins. Physiol Plant 111:206–11
  • Hamza S, Srinivasan V, Dinesh R. (2009). Nutrient diagnosis of cardamom gardens in south India. Indian J Agric Sci 79:429–32
  • Hedge DM, Dwivedi BS, Subhakara Babu SN. (1999). Biofertilisers for cereal production in India-a review. Indian J Agri Sci 69:73–83
  • Hesham MA. (2005). Coimmobilization of Azospirillum lipoferum and Bacillus megaterium for successful phosphrous and nitrogen nutrition of wheat plants. Food Technol Biotechnol 43:19–27
  • Hill S. (1992). Physiology of nitrogen fixation in free-living heterotrophs. In: Stacey G, Burris RH, Evans HJ, eds. Biological nitrogen fixation. New York: Chapman and Hall, 87–134
  • Holguin G, Bashan Y. (1996). Nitrogen-fixation by Azospirillum brasilense Cd is promoted when co-cultured with a mangrove rhizosphere bacterium (Staphylococcus sp). Soil Biol Biochem 28:1651–60
  • Hue NV. (1991). Effects of organic acids/anions on P sorption and phyto availability in soils with different mineralogies. Soil Sci 152:463–71
  • International Pepper Community (IPC). (2010). Pepper Statistical Yearbook. Indonesia: Jakarta
  • Ishikawa S, Adu GJJ, Nakamura T, et al. (2002). Genotypic variability in phosphorus solubilizing activity of root exudates by pigeon pea grown in low-nutrient environments. Plant Soil 245:71–81
  • Itzigsohn R, Abbass Z, Sarig S, Okon Y. (1995). Inoculation effects of Azospirillum on sunflowers (Helianthus annus) under different fertilisation and irrigation regimes. NATO ASI Ser Ser 37:503–13
  • Ivanova E, Teunou E, Poncelet D. (2002). Encapsulation of nitrogen fixing bacteria for biofertiliser production. France: Department of Food Process Engineering
  • Jain DK, Patriquin DG. (1984). Root hair deformation, bacterial attachment, and plant growth in wheat – Azospirillum associations. Appl Environ Microbiol 48:1208–13
  • Jambhulkar PP, Sharma P. (2014). Development of bioformulation and delivery system of Pseudomonas fluorescens agaisnt bacterial wilt of rice (Xanthomonas oryzae pv.oryzae). J Environ Biol 35:843–9
  • Jayathilake PKS, Reddy IP, Srihari D, Reddy KR. (2006). Productivity and soil fertility status as influenced by integrated use of N-fixing biofertilisers, organic manures and inorganic fertilisers in onion. J Agric Sci 2:46–58
  • Jeffries P, Barea JM. (2001). Arbuscular mycorrhiza – a key component of sustainable plant–soil ecosystems. In: Hock B, ed. The Mycota. New York: Springer, 95–113
  • Johnson JF, Vance CP, Allan DL. (1996). Phosphorus deficiency in Lupinus albus. Plant Physiol 112:31–41
  • Kale RD, Bano K, Sreenivasa MN, Bagyaraj DJ. (1987). Influence of worm cast on the growth and mycorrhizal colonization of two ornamental plants. South Ind Hort 35:433–7
  • Kale RD, Mallesh BC, Bano K, Bagyaras DJ. (1992.) Influence of vermicompost application on the available micronutrients and selected microbial population. Soil Biol Biochem 24:1317–20
  • Kandiannan K, Sivaraman K, Anandaraj M, Krishnamoorthy KS. (2000). Growth and nutrient content of black pepper cuttings as influenced by inoculation with biofertilisers. J Spices Aroma Crops 9:145–7
  • Kanthaswamy V, Pillai OA, Natarajan S, Thamburaj S. (1996). Studies on nutrient requirement of black pepper (var.Panniyur1). South Ind Hort 44:3–4
  • Kapulnik Y, Okon Y, Hems Y. (1985). Changes in root morphology of wheat caused by Azospirillum inoculation. Can J Microbiol 31:881–7
  • Kapulnik Y, Okon Y, Hems Y. (1987). Yield response of spring wheat cultivars (Triticum aestivum and T. turgidum) to inoculation with Azospirillum brasilense under field conditions. Biol Ferti Soils 4:27–35
  • Kavitha R, Srinivasan V, Hamza S, Anandaraj M. (2007). Phosphate solubilizing bacteria isolated from rhizosphere soil and its growth promotion on black pepper. First International Meeting on Microbial Phosphate Solubilization. Netherlands: Springer, 325–31
  • Kim KY, McDonald GA, Jordan D. (1997). Solubilization of hydroxyapatite by Enterobacter agglomerans and cloned Escherichia coli in culture medium. Biol Ferti Soils 24:347–52
  • Kloepper JW, Lifshitz R, Zablotowicz RM. (1989). Free living bacterial inoculam for enhancing crop productivity. Trends Biotechnol 7:39–43
  • Kloepper JW, Schroth MN, Miller TD. (1980). Effects of rhizosphere colonization by plant growth-promoting rhizobacteria on potato plant development and yield. Phytopathology 70:1078–82
  • Kloepper JW. (1997). Plant growth-promoting rhizobacteria. In: Okon Y, ed. Azospirillum/plant associations. Boca Raton, FL: CRC Press, 137–66
  • Kolb W, Martin P. (1985). Response of plant roots to inoculation with Azospirillum brasilense and to application of indole acetic acid. In: Klingmuller W, ed. Azospirillum III. Genetics, physiology and ecology. Berlin/Heidelberg: Springer-Verlag, 215–21
  • Korikanthimath VS. (2000). Studies on chemical composition of coffee pulp and organic recycling in the coffee and cardamom cropping systems. Crop Res 20:350–4
  • Krishnakumar V, Potty SN. (2002). Nutrition of cardamom. In: Ravindran PN, Madhusoodanan KJ, eds. Cardamom. London, UK: Taylor & Fransis, 125–42
  • Kucey RMN, Janzen HH, Leggett ME. (1989). Microbiologically mediated increases in plant available phosphorus. In: Brady NC, ed. Advances in agronomy. New York: Academic Press, 199–228
  • Kucey RMN. (1988). Alteration of size of wheat root systems and nitrogen fixation by associative nitrogen-fixing bacteria measured under field conditions. Can J Microbiol 34:735–9
  • Kumar V, Punia SS, Lakshminarayana K, Narula N. (1999). Effect of phosphate solubilizing analogue resistant mutants of Azotobacter chroococcum on sorghum. Ind J Agric Sci 69:198–200
  • Kundu BS, Gera R, Sharma N, et al. (2002). Host specificity of phosphate solubilizing bacteria. Ind J Microbiol 42:19–21
  • Lau-Wong MM. (1987). Field testing of the effectiveness of bacterial fertiliser in Nepal. Agri Ecosys Environ 19:145–53
  • Lin QM, Rao ZH, Sun YX, et al. (2002). Identification and practical application of silicate dissolving bacteria. Agri Sci China 1:81–5
  • Lin W, Okon Y, Hardy RWF. (1983). Enhanced mineral uptake by Zea mays and Sorghum bicolor roots inoculated with Azospirillum brasilense. Appl Environ Microbiol 45:1775–9
  • Lucy M, Reed E, Glick BR. (2004). Application of free living plant growth-promoting rhizobacteria. Antonie van Leeuwenhoek Int J Gen Mol Microbiol 86:1–25
  • Macalintal EM, Urgel GV. (1992). Effects of Azospirillum inoculated seedpieces and rate of nitrogen application on yields of sugarcane. Philipp Sugar 3:8–10
  • Mahantesh SK, Kempe Gowda K, Niranjan K, Sreeram BS. (2002). Effect of biofertiliser on growth and yield of chilli (Capsicum annum L.) at different levels of nitrogen and phosphrous. J Spices Aroma Crops 11:58–61
  • Marschner H. (1997). Mineral nutrition of higher plants. London: Academic Press
  • Mbah CN, Nkpaji D. (2009). Response of Maize (Zea mays L.) to different rates of wood ash application in acid Ultisol in Southeast Nigeria. J Am Sci 5:53–7
  • Mclean EO, Watson ME. (1985). Soil measurement of plant-available potassium. In: Mundson RDE, ed. Potassium in agriculture. Madison, WI: ASACSSA and SSSA, 277–308
  • Medhi BK, Saikia AJ, Bora SC, et al. (2007). Integrated use of concentrated organic manures, biofertilisers and inorganic NPK on yield, quality and nutrient content of Khasi mandarin (Citrus reticulate). Ind J Agri Sci 41:235–41
  • Meharg AA, Killham K. (1995). Loss of exudates from the roots of perennial ryegrass inoculated with a range of micro-organisms. Plant Soil 170:345–9
  • Memon KS. (1996). Soil and fertiliser phosphorus. In: Bashir E, Bantel R, eds. Soil science. Islamabad: National Book Foundation, 291–316
  • Merbach W, Mirus E, Knof G, et al. (1999). Release of carbon and nitrogen compounds by plant roots and their possible ecological importance. J Plant Nutr Soil Sci 162:373–83
  • Millet E, Avivi Y, Feldman M. (1986). Yield response of various wheat genotypes to inoculation with Azospirillum brasilense. Plant Soil 80:261–6
  • Millet E, Feldman M. (1986). Yield response of a common spring wheat cultivar to inoculation with Azospirillum brasilense at various levels of nitrogen fertilisation. Plant Soil 80:255–9
  • Morgenstern E, Okon Y. (1987). Promotion of plant growth and NO3− and Rb+ uptake in Sorghum bicolor X Sorghum sudanense inoculated with Azospirillum brasilense – Cd. Arid Soil Res Rehabil 1:211–17
  • Murty MG, Ladha JK. (1988). Influence of Azospirillum inoculation on the mineral uptake and growth of rice under hydroponic conditions. Plant Soil 108:281–5
  • Namdeo SL, Gupta SC. (1999). Effect of biofertilisers with different levels of chemical fertilizer on pigeon pea (Cajanus cajan L.). Crop Res 18:29–33
  • Narsian V, Patel HH. (2006). Biodiversity of phosphate solubilizing microorganisms in various rhizosphere soils of Bhavanagar district. Asian J Microbiol Biotech Environ Sci 8:201–4
  • Narula N, Kumar V, Behl RK, et al. (2000). Effect of P solubilizing Azotobacter chroococcum on N, P, K uptake in P responsive wheat genotypes grown under greenhouse conditions. J Plant Nutr Soil Sci 163:393–8
  • Nautiyal CS, Bhadauria S, Kumar P, et al. (2000). Stress induced phosphate solubilization in bacteria isolated from alkaline soils. FEMS Microbiol Lett 182:291–6
  • Nayak B. (2001). Uptake of potash by different plants with the use of potash mobilizing bacteria Frateuria aurantia. PhD thesis, Orissa University of Agricultural Science and Technology, Bhubaneswar, India
  • Nethra NN, Jayaprasad KV, Kale RD. (1999). China aster (Callistephus chinensis L. Ness) cultivation using vermicompost as organic amendment. Crop Res 17:209–15
  • Neumann G, Romheld V. (1999). Root excretion of carboxylic acids and protons in phosphorus deficient plants. Plant Soil 211:121–30
  • Newton WE. (2000). Nitrogen fixation in perspective. In: Pedrosa F, Hungria M, Yates G, Newton W, eds. Nitrogen fixation: from molecules to crop productivity. Dordrecht: Kluwer, 3–8
  • Nikoo K, Asghar H, hamid Reza Z, et al. (2013). Development of new formulations using Trichoderma and Talaro myces fungal antagonists for biological control of sugar beet damping off disease. Crop Protection 53:80–4
  • Nirmala Devi SS, Abdul Wahab A, Salley Mathew K. (1995). Seedling vigour in chilli as influenced by seed treatment with Azospirilum. Ind Hort 43:54–6
  • Nybe EV, Filite S. (2003). Organic manures and biofertilisers on nutrient availability and yield of black pepper. J Trop Agric 41:52–5
  • Nybe EV, Nair PCS, Wahid PA. (1989). Relationships of foliar nutrient levels with yield in black pepper (Piper nigrum L.). Trop Agric 66:345–9
  • O'Hara GW, Davey MR, Lucas JA. (1987). Effect of inoculation of Zea mays with Azospirillum brasilense strains under temperate conditions. Can J Microbiol 27:871–7
  • Okon Y, Hadar Y. (1987). Microbial inoculants as crop yield enhancers. CRC Crit Rev Biotechnol 6:61–85
  • Okon Y. (1985). Azospirillum as a potential inoculant for agriculture. Trends Biotechnol 3:223–8
  • Omer SA. (1998). The role of rock-phosphate-solubilizing fungi and vesicular arbuscular mycorrhiza (VAM) in growth of wheat plants fertilised with rock phosphate. World J Microbiol Biotechnol 14:211–8
  • Pankaj T, Anita P. (2008). Recovery of plant growth promoting rhizobacteria from sodium alginate beads after three years following storage at 4 °C. J Ind Microbiol Biotechnol 35:205–9
  • Panwar JDS, Opmal S, Singh O. (2000). Response of Azospirillum and Bacillus on growth and yield of wheat under field conditions. Ind J Plant Physiol 5:108–10
  • Patidar M, Mali AL. (2004). Effect of farm yard manure, fertility levels and biofertilisers on growth, yield and quality of sorghum (Sorghum bicolour). Ind J Agron 49:117–20
  • Paul D, Sarma YR, Srinivasan V, Anandaraj M. (2005). Pseudomonas fluorescens mediated vigour in black pepper (Piper nigrum L.) under greenhouse cultivation. Ann Microbiol 55:171–4
  • Paul EA, Clark FE. (1989). Soil microbiology and biochemistry. San Diego, CA: Academic Press
  • Piceno YM, Lovell CR. (2000). Stability of natural bacterial communities: nutrient addition effects on rhizosphere diazotroph assemblage composition. Microbial Ecol 39:32–40
  • Pillai VS, Sasikumaran S, Nambiar PKV. (1987). N, P and K requirement of black pepper. Agric Res J Kerala 25:74–80
  • Pillai VS, Chandy KC, Sasikumaran S, Nambiar PKV. (1979). Response of Panniyur-1 variety to nitrogen and lime application. Ind Cocoa Arecanut Spices J 3:35–8
  • Pooja S, Dudeja SS, Neeru N. (2007). Development of multiple co inoculants of different biofertilisers and their interaction with plants. Arch Agron Soil Sci 53:221–30
  • Preininger E, Gyur J, Istuan B, et al. (2003). A new approach biolistic method, for the bombardment of living nitrogen fixing bacteria in to plant tissues. In Vitro Cell Dev Biol 39:443–9
  • Prescott L, Harley J, Klein DA. (1999). Microbiology. Boston: Mc-Graw-Hill
  • Probanza A, Lucas Garca JA, Ruiz Palomino M, et al. (2002). Pinus pinea L. seedling growth and bacterial rhizosphere structure after inoculation with PGPR Bacillus (B. licheniformis CECT 5106 and B. pumilus CECT 5105). Appl Soil Ecol 20:75–84
  • Probanza A, Lucas JA, Acero N, Gutierrez-Manero FJ. (1996). The influence of native rhizobacteria on European alder (Alnus glutinosa L. Gaertn) growth: characterization of growth promoting and growth inhibiting bacterial strains. Plant Soil 182:59–66
  • Puente ME, Bashan Y. (1993). Effect of inoculation with Azospirillum brasilense strains on the germination and seedlings growth of the giant columnar Cardon cactus (Pachycereus pringlei). Symbiosis 15:49–60
  • Ramos B, Garca JAL, Probanza A, et al. (2003). Alterations in the rhizobacterial community associated with European alder growth when inoculated with PGPR strain Bacillus licheniformis. Environ Exp Bot 49:61–8
  • Rao CVS, Sachan IP, Johri BN. (1999). Influence of fluorescent pseudomonads on growth and nodulation of lentil (Lens esculentus) in Fusarium infested soil. Ind J Microbiol 39:23–9
  • Reddy MS, Kumar S, Babita K, Reddy MS. (2002). Bio solubilization of poorly soluble rock phosphates by Aspergillus tubingensis and Aspergillus niger. Bioresource Technol 84:187–9
  • Rekha PD, Wai AL, Arun AB, Chui CY. (2007). Effect of free and encapsulated Psedomonas putida CC-FR2-4 and Bacillus subtilis CC-pg104 on plant growth under gnotobiotic conditions. Bioresource Technol 98:447–51
  • Rennie RJ. (1981). A single medium for the isolation of acetylene-reducing (dinitrogen-fixing) bacteria from soils. Can J Microbiol 27:8–14
  • Renugadevi J, Balamurugan P. (2002). Effect of biofertiliser in seed yield and seed quality in sunflower. Madras Agri J 89:135–7
  • Sadanandan AK, Korikanthimath VS, Hamza S. (1990). Potassium in soils of cardamom plantations. Proceedings of national seminar on potassium in plantation crops; 1990; University of Agricultural Sciences, Bangalore, India
  • Sadasivam KV, Tyagi RK, Ramarethinam S. (1986). Evaluation of some agricultural wastes as carriers for bacterial inoculants. Agri Wastes 17:301–6
  • Saha KC, Sannigrahi S, Mandal LN. (1985). Effect of inoculation of Azospirillum lipoferum on nitrogen fixation in rhizosphere soil, their association with roots, yield and nitrogen uptake by mustard (Brassica juncea). Plant Soil 87:273–80
  • Sahgal M, Johri BN. (2003). The changing face of rhizobial systematics. Curr Sci 84:43–8
  • Sahin F, Cakmakci R, Kantar F. (2004). Sugar beet and barley yields in relation to inoculation with N2-fixing and phosphate solubilizing bacteria. Plant Soil 265:123–9
  • Samaneh S, Asghar H, Hamid Reza Z, et al. (2014). Application of new formulations of Pseudomonas aureofaciens for biocontrol of cotton seedling damping off. J Plant Protection Research 54:334–9
  • Sangeeth K, Suseela Bhai R, Srinivasan V. (2012). Paenibacillus glucanilyticus, a promising potassium solubilizing bacterium isolated from black pepper (Piper nigrum L.) rhizosphere. J Spices Aromat Crops 21:118–24
  • Sangeeth K. (2011). Development and formulation of effective biofertilisers for management of Black pepper and cardamom [PhD Thesis]. Mangalore University, Karnataka, India. 252 p
  • Sangeeth KP, Bhai RS, Srinivasan V. (2008). Isolation and selection of indigenous Azospirillum inoculants for their influence on growth and nutrient uptake of rooted cuttings of black pepper. J Spices Aromat Crops 17:128–33
  • Sarig S, Blum A, Okon Y. (1988). Improvement of the water status and yield of field grown grain sorghum (Sorghum bicolor) by inoculation with Azospirillum brasilense. J Agri Sci 110:271–7
  • Saxena AK, Tilak KVBR. (1994). Interaction among beneficial microorganisms. Ind J Microbiol 34:91–106
  • Saxena AK, Tilak KVBR. (1998) Free-living nitrogen fixers: its role in crop production. In: Verma AK, ed. Microbes for health, wealth and sustainable environment. India: Malhotra Publishing Company
  • Schachtman DP, Reid RJ, Ayling SM. (1998). Phosphorus uptake by plants: from soil to cell. Plant Physiol 116:447–53
  • Shah S, Karkhanis V, Desai A. (1992). Isolation and characterization of siderophore, with antimicrobial activity from Azospirillum lipoferum M. Curr Microbiol 25:347–51
  • Sharma M, Pandey CS, Mahapatra BS. (2008). Effect of biofertilisers on yield and nutrient uptake by rice and wheat in rice-wheat cropping system under organic mode of cultivation. J Ecofreind Agri 3:19–23
  • Shivakrishnaswamy CR, Kulkarni JH, Alagawadi AR. (2003). Effect of dual inoculation of N fixers and P solubilisers on growth and yield of sugarcane. Proceedings of first national symposium on MPS; 2003; UAS, Dharwad, India, 170–5
  • Shrivastav S, Yadav KS, Kundu BS. (2004). Prospects of using phosphate solubilising Pseudomonas as Biofungicide. Ind J Microbiol 44:91–4
  • Smith RL, Schank SC, Milam JR, Baltensperger AA. (1984b). Responses of Sorghum and Pennisetum species to the N2-fixing bacterium Azospirillum brasilense. Appl Environ Microbiol 47:1331–6
  • Smith SE, Read DJ. (1997). Mycorrhizal symbiosis. San Diego: Academic Press
  • Somasegaran P. (1985). Inoculant production with diluted liquid cultures of Rhizobium sp. and autoclaved peat: evaluation of dilutents, Rhizobium sp. peats, sterility requirements, storage and plant effectiveness. Appl Enviorn Microbiol 50:398–405
  • Somers E, Vanderleyden J, Srinivasan M. (2004). Rhizosphere bacterial signalling: a love parade beneath our feet. Crit Rev Microbiol 30:205–40
  • Son HJ, Kim YG, Lee SJ. (2003). Isolation, identification and physiological characteristics of biofertiliser resources, insoluble phosphate solubilizing bacteria. Korean J Microbiol 39:51–5
  • Sparks DL, Huang PM. (1985). Physical chemistry of soil potassium. In: Munson RD, ed. Potassium in agriculture. Madison, WI: ASA, 201–76
  • Sukumar J, Padma SD, Thimma Reddy H. (2003). Effect of combined inoculation of Bacillus megaterium and Azospirillum brasilense on mulberry leaf yield. J Soil Biol Ecol 23:5–9
  • Sundara B, Natarajan V, Hari K. (2002). Influence of phosphorus solubilizing bacteria on the changes in soil available phosphorus and sugarcane and sugar yields. Field Crops Res 77:43–9
  • Suthar S. (2006). Effect of vermicompost and inorganic fertiliser on wheat (Triticum aesticum) production. Nat Environ Pollut Technol 5:197–201
  • Suthar S. (2007). Nutrient changes and biodynamics of epigeic earthworm Perionyx excavatus P. during recycling of some agricultural wastes. Bioresource Technol 98:1608–14
  • Suthar S. (2008). Bioconversion of post harvest crop residues and cattle shed manure into value-added products using earthworms Eudrilus eugeniae K. Ecol Eng 32:206–14
  • Sutruedee P, Dusit A, Wilawan C, et al. (2013). Bioformulation Pseudomonas fluorescens SP007 agaisnt dirty panicle disease of rice. Afr J Microbiol Res 7:5274–83
  • Swati Y, Juhi Y, Samuel GS. (2011). Performance of Azospirillum for improving growth, yield and yield attributing characters of maize (Zea mays L.) in presence of nitrogen fertiliser. Res J Agric Sci 2:139–41
  • Tang WH. (1994). Yield increasing bacteria (YIB) and biocontrol of sheath blight of rice. In: Ryder MJ, Thomma BHPJ, Erggemont K, Tierens FMJ, Broekaert WF, eds. Improving plant productivity with rhizosphere bacteria. Plant Physiol 121:1093–101
  • Tapia-Hernandez A, Mascarua Esparza MA, Caballero Mellado J. (1990). Production of bacteriocins and siderophore-like activity by Azospirillum brasilense. Microbios 64:73–83
  • Timmusk S, Nicander B, Granhall U, Tillberg E. (1999). Cytokinin production by Paenibacillus polymyxa. Soil Biol Biochem 31:1847–52
  • Ullman WJ, Kirchman DL, Welch SA. (1996). Laboratory evidence for microbially mediated silicate mineral dissolution in nature. Chem Geol 132:11–17
  • Vahid A, Mir Naser S (2011). Influence of different plant densities and plant growth promoting rhizobacteria (pgpr) on yield and yield attributes of corn (zea maize l.). Recent Res Sci Technol 3:63–6
  • Vance C. (1998). Legume symbiotic nitrogen fixation: agronomic aspects. In: Spaink H, Kondorosi A, Hooykaas P, eds. The Rhizobiaceae: molecular biology of plant-associated bacteria. Dordrecht: Kluwer, 509–13
  • Vance CP, Uhde SC, Allan DL. (2003). Phosphorus acquisition and use: critical adaptations by plants for securing a non renewable resource. New Phytol 157:423–47
  • Vandevivere P, Welch SA, Ullman WJ, Kirchman DL. (1994). Enhanced dissolution of silicate minerals by bacteria at near-neutral pH. Microbial Ecol 27:241–51
  • Vassilev N, Vassileva M, Nicolaeva I. (2006). Simultaneous P solubilizing and biocontrol activity of microorganisms: potentials and future trends. Appl Microbiol Biotechnol 71:137–44
  • Vazquez MM, Cesar S, Azcon R, Barea JM. (2000a). Interaction between arbuscular mycorrhizal fungi and other microbial inoculants (Azospirillum, Pseudomonas, Trichoderma) and their effects on microbial population. Appl Soil Ecol 15:261–72
  • Vazquez P, Holguin G, Puente ME, et al. (2000b). Phosphate solubilizing microorganisms associated with the rhizosphere of mangroves in a semiarid coastal lagoon. Biol Fert Soils 30:460–8
  • Veeraswamy J, Padmavathi T, Venkateswarlu K. (1992). Interaction effects of Glomus intraradices and Azospirillum lipoferum on sorghum. Ind J Microbiol 32:305–8
  • Vessey KJ. (2003). Plant growth promoting rhizobacteria as biofertilisers. Plant Soil 255:571–86
  • Viveganandgan G, Jauhri KS. (2000). Growth and survival of phosphate solubilizing bacteria in calcium alginate. Microbiol Res 155:205–7
  • Volpin H, Kapulnik Y. (1994). Interaction of Azospirillum with beneficial soil microorganisms. In: Okon Y, ed. Azospirillum/plant associations. Boca Raton, FL: CRC Press, 111–18
  • Wahid OA, Mehana TA. (2000). Impact of phosphate solubilizing fungi on the yield and phosphorus uptake by wheat and faba bean plants. Microbiol Res 155:221–7
  • Wani SP. (1992). Role of biofertilisers in upland crop production. Semi-Arid Tropics. India: ICRISAT
  • Watanabe I, Lin C. (1984). Response of wetland rice to inoculation with Azospirillum lipoferum and Pseudomonas sp. Soil Sci Plant Nutr 30:117–24
  • Waterer J, Vessey J, Stobbe E, Soper R. (1994). Yield and symbiotic nitrogen fixation in a pea mustard intercrop as influenced by N fertiliser addition. Soil Biol Biochem 26:447–53
  • Whitelaw MA. (2000). Growth promotion of plants inoculated with phosphate solubilizing fungi. Adv Agron 69:99–151
  • Wu SC, Cao ZH, Li ZG, et al. (2005). Effects of biofertiliser containing N-fixer and K solubilizers and AM fungi on maize growth: a greenhouse trial. Geoderma 125:155–66
  • Yasar E, Sezai E, Ayhan H, Ramazan C. (2010). Effects of plant growth promoting rhizobacteria (PGPR) on rooting and root growth of kiwifruit (Actinidia deliciosa) stem cuttings. Biol Res 43:91–8
  • Zaady E, Okon Y, Perevolotsky A. (1994). Growth response of Mediterranean herbaceous swards to inoculation with Azospirillum brasilense. J Range Manage 47:12–15
  • Zhang FS, Ma J, Cao YP. (1997). Phosphorus deficiency enhances root exudation of low molecular weight organic acids and utilization of sparingly soluble inorganic phosphates by radish (Raphanus sativus L.) and rape (Brassica napus L.) plants. Plant Soil 196:261–4
  • Zuberer DA. (1999). Biological dinitrogen fixation: Introduction and non-symbiotic. In: Sylvia D, Fuhrmann J, Hartel P, Zuberer D, eds. Principles and applications of soil microbiology. Upper Saddle River, NJ: Prentice Hall, 295–321

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.