876
Views
5
CrossRef citations to date
0
Altmetric
Review Article

Chondroitinase: A promising therapeutic enzyme

, &
Pages 474-484 | Received 04 Jul 2014, Accepted 27 Aug 2014, Published online: 16 Oct 2014

References

  • Afratis N, Gialeli C, Nikitovic D, et al. (2012). Glycosaminoglycans: key players in cancer cell biology and treatment. FEBS J 279:1177–97
  • Aguiar JAK, Lima CR, Berto AGA, Michelacci YM. (2003). An improved methodology to produce Flavobacterium heparinum chondroitinases, important instruments for diagnosis of diseases. Biotechnol Appl Biochem 37:115–27
  • Aigner T, Loos S, Inwards C, et al. (1999). Chondroblastoma is an osteoid-forming, but not cartilage-forming neoplasm. J Pathol 189:463–9
  • Anno K, Seno N, Mathews MB, et al. (1971). A new dermatan polysulfate, chondroitin sulfate H, from hagfish notochord. Biochim Biophys Acta 237:173–7
  • Asimakopoulou AP, Theocharis AD, Tzanakakis GN, Karamanos NK. (2008). The biological role of chondroitin sulfate in cancer and chondroitin-based anticancer agents. In Vivo 22:385–9
  • Baggio B, Marzaro G, Gambaro G, et al. (1990). Glycosaminoglycan content, oxalate self-exchange and protein phosphorylation in erythrocytes of patients with ‘idiopathic' calcium oxalate nephrolithiasis. Clin Sci (Lond) 79:113–16
  • Batchelor PE, Howells DW. (2003). CNS regeneration: clinical possibility or basic science fantasy?. J Clin Neurosci 10:523–34
  • Bechard D, Gentina T, Delehedde M, et al. (2001). Endocan is a novel chondroitin sulfate/dermatan sulfate proteoglycan that promotes hepatocyte growth factor/scatter factor mitogenic activity. J Biol Chem 276:48341–9
  • Bhisitkul RB. (2001). Anticipation for enzymatic vitreolysis. Br J Ophthalmol 85:1–2
  • Bishop PN, Mcleod D, Reardon A. (1999). Effects of hyaluronan lyase, hyaluronidase, and chondroitin ABC lyase on mammalian vitreous gel. Investig Ophthalmol Visual Sci 40:2173–8
  • Bowness JM. (1957). Application of the carbazole reaction to the estimation of glucuronic acid and glucose in some acidic polysaccharides and in urine. Biochemical J 67:295–300
  • Bradbury EJ, Moon LD, Popat RJ, et al. (2002). Chondroitinase ABC promotes functional recovery after spinal cord injury. Nature 416:636–40
  • Brown MD. (2001). The rationale for and pre-clinical results of chondroitinase ABC in chemonucleolysis. Florida: International Congress Series. Elsevier
  • Busch SA, Silver J. (2007). The role of extracellular matrix in CNS regeneration. Curr Opin Neurobiol 17:120–7
  • Caroni P, Schwab ME. (1988). Antibody against myelin-associated inhibitor of neurite growth neutralizes nonpermissive substrate properties of CNS white matter. Neuron 1:85–96
  • Clemente CD, Windle WF. (1954). Regeneration of severed nerve fibers in the spinal cord of the adult cat. J Comp Neurol 101:691–731
  • Clemons TD, Fitzgerald M, Dunlop SA, et al. (2013). An improved assay for the spectrophotometric determination of chondroitinase ABC activity. New J Chem 37:1944–9
  • Coutinho SD, Paula CR. (2000). Proteinase, phospholipase, hyaluronidase and chondroitin-sulphatase production by Malassezia pachydermatis. Med Mycol 38:73–6
  • Curinga GM, Snow DM, Mashburn C, et al. (2007). Mammalian-produced chondroitinase AC mitigates axon inhibition by chondroitin sulfate proteoglycans. J Neurochem 102:275–88
  • De Assis CM, Gandra RF, Gambale W, et al. (2003). Biosynthesis of chondroitinase and hyaluronidase by different strains of Paracoccidioides brasiliensis. J Med Microbiol 52:479–81
  • Denholm EM, Lin YQ, Silver PJ. (2001). Anti-tumor activities of chondroitinase AC and chondroitinase B: inhibition of angiogenesis, proliferation and invasion. Eur J Pharmacol 416:213–21
  • Dmitrieva N, Yu L, Viapiano M, et al. (2011). Chondroitinase ABC I-mediated enhancement of oncolytic virus spread and antitumor efficacy. Clin Cancer Res 17:1362–72
  • Dodgson KS, Lloyd AG. (1957). Studies on sulphatases. 18: preparation of chondroitinase-free chondrosulphatase from extracts of Proteus vulgaris. Biochem J 66:532–8
  • Dodgson KS, Lloyd AG, Spencer B. (1957). Studies on sulphatases. 14: a preliminary account of the chondrosulphatase of Proteus vulgaris. Biochem J 65:131–8
  • Esko JD, Kimata K, Lindahl U. (2009). Proteoglycans and sulfated glycosaminoglycans. In: Varki A, Cummings RD, Esko JD, et al., eds. Essentials of Glycobiology. 2nd edition. Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press; 2009. Chapter 16. (Available from: http://www.ncbi.nlm.nih.gov/books/NBK1900/)
  • Esko JD, Rostand KS, Weinke JL. (1988). Tumor formation dependent on proteoglycan biosynthesis. Science 241:1092–6
  • Faassen AE, Schrager JA, Klein DJ, et al. (1992). A cell surface chondroitin sulfate proteoglycan, immunologically related to CD44, is involved in type I collagen-mediated melanoma cell motility and invasion. J Cell Biol 116:521–31
  • Fawcett JW, Asher RA. (1999). The glial scar and central nervous system repair. Brain Res Bull 49:377–91
  • Frazier SB, Roodhouse KA, Hourcade DE, Zhang L. (2008). The quantification of glycosaminoglycans: a comparison of HPLC, carbazole, and alcian blue methods. Open Glycosci 1:31–9
  • Gallagher JT. (1989). The extended family of proteoglycans: social residents of the pericellular zone. Curr Opin Cell Biol 1:1201–18
  • Gandorfer A. (2008). Enzymatic vitreous disruption. Eye 22:1273–7
  • Hageman GS, Russell SR. (1994). Chondroitinase-mediated disinsertion of the primate vitreous body. Invest Ophthalmol Vis Sci 35:1260
  • Hamai A, Hashimoto N, Mochizuki H, et al. (1997). Two distinct chondroitin sulfate ABC lyases. J Biol Chem 272:9123–30
  • Henke CA, Roongta U, Mickelson DJ, et al. (1996). CD44-related chondroitin sulfate proteoglycan, a cell surface receptor implicated with tumor cell invasion, mediates endothelial cell migration on fibrinogen and invasion into a fibrin matrix. J Clin Invest 97:2541–52
  • Hill JJ, Jin K, Mao XO, et al. (2012). Intracerebral chondroitinase ABC and heparan sulfate proteoglycan glypican improve outcome from chronic stroke in rats. Proc Natl Acad USA 109:9155–60
  • Hoogendoorn RJ, Wuisman PI, Smit TH, et al. (2007). Experimental intervertebral disc degeneration induced by chondroitinase ABC in the goat. Spine 32:1816–25
  • Hornebeck W, Birembaut P. (2004). Introduction: stroma reaction and cancer progression. Crit Rev Oncol Hematol 49:177–8
  • Hovingh P, Linker A. (1970). The enzymatic degradation of heparin and heparitin sulfate III. Purification of a heparitinase and a heparinase from flavobacteria. J Biol Chem 245:6170–5
  • Huang Y-C, Hsu S-H, Chen M-T, et al. (2011). Controlled release of chondroitinase ABC in chitosan-based scaffolds and PDLLA microspheres. Carbohydrate Polym 84:788–93
  • Hyatt AJ, Wang D, Kwok JC, et al. (2010). Controlled release of chondroitinase ABC from fibrin gel reduces the level of inhibitory glycosaminoglycan chains in lesioned spinal cord. J Control Rel 147:24–9
  • Iida J, Meijne AM, Knutson JR, et al. (1996). Cell surface chondroitin sulfate proteoglycans in tumor cell adhesion, motility and invasion. Semin Cancer Biol 7:155–62
  • Ikeda M, Naitoh M, Kubota H, et al. (2009). Elastic fiber assembly is disrupted by excessive accumulation of chondroitin sulfate in the human dermal fibrotic disease, keloid. Biochem Biophys Res Commun 390:1221–8
  • Ioachim HL. (1976). The stromal reaction of tumors: an expression of immune surveillance. J Natl Cancer Inst 57:465–75
  • Ishiko T, Naitoh M, Kubota H, et al. (2013). Chondroitinase injection improves keloid pathology by reorganizing the extracellular matrix with regenerated elastic fibers. J Dermatol 40:380–3
  • Isogai Z, Shinomura T, Yamakawa N, et al. (1996). 2B1 antigen characteristically expressed on extracellular matrices of human malignant tumors is a large chondroitin sulfate proteoglycan, PG-M/versican. Cancer Res 56:3902–8
  • Jin Y, Ketschek A, Jiang Z, et al. (2011). Chondroitinase activity can be transduced by a lentiviral vector in vitro and in vivo. J Neurosci Meth 199:208–13
  • Joubert JJ, Van Rensburg EJ, Pitout MJ. (1984). A plate method for demonstrating the breakdown of heparin and chrondroitin sulphate by bacteria. J Microbiol Meth 2:197–202
  • Kalaskar VV, Narayanan K, Subramanyam VM, Rao VJ. (2012). Partial characterisation and therapeutic application of Protease from a fungal species. Indian Drugs 49:42–6
  • Kaneiwa T, Mizumoto S, Sugahara K, Yamada S. (2010). Identification of human hyaluronidase-4 as a novel chondroitin sulfate hydrolase that preferentially cleaves the galactosaminidic linkage in the trisulfated tetrasaccharide sequence. Glycobiology 20:300–9
  • Kasinathan N, Jagani HV, Alex AT, et al. (2014). Strategies for drug delivery to the central nervous system by systemic route. Drug Deliv 1–15
  • Kinoshita A, Yamada S, Haslam SM, et al. (1997). Novel tetrasaccharides isolated from squid cartilage chondroitin sulfate E contain unusual sulfated disaccharide units GlcA(3-O-sulfate)β1–3GalNAc(6-O-sulfate) or GlcA(3-O-sulfate)β1–3GalNAc(4,6-O-disulfate). J Biol Chem 272:19656–65
  • Kitamikado M, Lee YZ. (1975). Chondroitinase-producing bacteria in natural habitats. Appl Microbiol 29:414–21
  • Kjellen L, Lindahl U. (1991). Proteoglycans: structures and interactions. Ann Rev Biochem 60:443–75
  • Knutson JR, Iida J, Fields GB, Mccarthy JB. (1996). CD44/chondroitin sulfate proteoglycan and alpha 2 beta 1 integrin mediate human melanoma cell migration on type IV collagen and invasion of basement membranes. Mol Biol Cell 7:383–96
  • Lee H, Mckeon RJ, Bellamkonda RV. (2010). Sustained delivery of thermostabilized chABC enhances axonal sprouting and functional recovery after spinal cord injury. Proc Natl Acad Sci USA 107:3340–5
  • Lemons ML, Howland DR, Anderson DK. (1999). Chondroitin sulfate proteoglycan immunoreactivity increases following spinal cord injury and transplantation. Exp Neurol 160:51–65
  • Li Q, Yi L, Marek P, Iverson BL. (2013). Commercial proteases: present and future. FEBS Lett 587:1155–63
  • Lin R, Kwok JCF, Crespo D, Fawcett JW. (2008). Chondroitinase ABC has a long-lasting effect on chondroitin sulphate glycosaminoglycan content in the injured rat brain. J Neurochem 104:400–8
  • Linhardt RJ. (2001). Analysis of glycosaminoglycans with polysaccharide lyases. Current protocols in molecular biology. New Jersey: John Wiley & Sons, Inc
  • Linhardt RJ, Galliher PM, Cooney CL. (1987). Polysaccharide lyases. Appl Biochem Biotechnol 12:135–76
  • Liu T, Xu J, Chan BP, Chew SY. (2012). Sustained release of neurotrophin-3 and chondroitinase ABC from electrospun collagen nanofiber scaffold for spinal cord injury repair. J Biomed Mater Res Part A 100:236–42
  • Lopez-Lopez F, Rodriguez-Blanco M, Gómez-Ulla F, Marticorena J. (2009). Enzymatic vitreolysis. Curr Diabetes Rev 5:57–62
  • Lü D-S, Shono Y, Oda I, et al. (1997). Effects of chondroitinase ABC and chymopapain on spinal motion segment biomechanics: an in vivo biomechanical, radiologic, and histologic canine study. Spine 22:1828–34
  • Martins JRM, Gadelha MEC, Fonseca SM, et al. (2000). Patients with head and neck tumors excrete a chondroitin sulfate with a low degree of sulfation: a new tool for diagnosis and follow-up of cancer therapy. Otolaryngology – Head Neck Surg 122:115–18
  • Mergenhagen SE. (1958). Spreading factor activity of bacterial chondroitinase. Exp Biol Med 99:700–2
  • Michelacci YM, Dietrich CP. (1975). A comparative study between a chondroitinase B and a chondroitinase AC from Flavobacterium heparinum: isolation of a chondroitinase AC-susceptible dodecasaccharide from chondroitin sulphate B. Biochem J 151:121–9
  • Misra A, Ganesh S, Shahiwala A, Shah SP. (2003). Drug delivery to the central nervous system: a review. J Pharm Pharm 6:252–73
  • Moon LD, Asher RA, Rhodes KE, Fawcett JW. (2001). Regeneration of CNS axons back to their target following treatment of adult rat brain with chondroitinase ABC. Nat Neurosci 4:465–6
  • Muir EM, Fyfe I, Gardiner S, et al. (2010). Modification of N-glycosylation sites allows secretion of bacterial chondroitinase ABC from mammalian cells. J Biotechnol 145:103–10
  • Muzzarelli RAA, Boudrant J, Meyer D, et al. (2012). Current views on fungal chitin/chitosan, human chitinases, food preservation, glucans, pectins and inulin: a tribute to Henri Braconnot, precursor of the carbohydrate polymers science, on the chitin bicentennial. Carbohydrate Poly 87:995–1012
  • Nagarethinam S, Nagappa AN, Udupa N, Rao V. (2012). Microbial L-Asparaginase and its future prospects. Asian J Med Res Review Article 1:159–68
  • Narayanan K, Chopade N, Raj PV, et al. (2013a). Fungal chitinase production and its application in biowaste management. J Sci Indus Res 72:393–9
  • Narayanan K, Chopade ND, Subrahmanyam VM, Rao VJ. (2013b). Strain improvement of a fungus producing chitinase by a chemical mutagen. Indian Drugs 50:25–8
  • Nau R, Sörgel F, Eiffert H. (2010). Penetration of drugs through the blood-cerebrospinal fluid/blood–brain barrier for treatment of central nervous system infections. Clin Microbiol Rev 23:858–83
  • Nazari H, Modarres-Zadeh M, Maleki A. (2010). Pharmacologic vitreolysis. J Ophthal Vis Res 5:44–52
  • Niessen FB, Spauwen PHM, Schalkwijk J, Kon M. (1999). On the nature of hypertrophic scars and keloids: a review. Plastic Reconstr Surg 104:1435–58
  • Nutt CL, Matthews RT, Hockfield S. (2001). Glial tumor invasion: a role for the upregulation and cleavage of BEHAB/brevican. Neuroscientist 7:113–22
  • Pakulska MM, Vulic K, Shoichet MS. (2013). Affinity-based release of chondroitinase ABC from a modified methylcellulose hydrogel. J Control Rel 171:11–16
  • Pizzorusso T, Medini P, Berardi N, et al. (2002). Reactivation of ocular dominance plasticity in the adult visual cortex. Science 298:1248–51
  • Pizzorusso T, Medini P, Landi S, et al. (2006). Structural and functional recovery from early monocular deprivation in adult rats. Proc Natl Acad USA 103:8517–22
  • Prabhakar V, Sasisekharan R. (2006). The biosynthesis and catabolism of galactosaminoglycans. Adv Pharmacol (San Diego, CA) 53:69–115
  • Reissig JL, Strominger JL, Leloir LF. (1955). A modified colorimetric method for the estimation of N-acetylamino sugars. J Biol Chem 217:959–66
  • Ricciardelli C, Mayne K, Sykes PJ, et al. (1997). Elevated stromal chondroitin sulfate glycosaminoglycan predicts progression in early-stage prostate cancer. Clin Cancer Res 3:983–92
  • Rudge JS, Silver J. (1990). Inhibition of neurite outgrowth on astroglial scars in vitro. J Neurosci 10:3594–603
  • Sabu A. (2003). Sources, properties and applications of microbial therapeutic enzymes. Indian J Biotechnol 2:334–41
  • Saito H, Yamagata T, Suzuki S. (1968). Enzymatic methods for the determination of small quantities of isomeric chondroitin sulfates. J Biol Chem 243:1536–42
  • Salyers AA, Kotarski SF. (1980). Induction of chondroitin sulfate lyase activity in Bacteroides thetaiotaomicron. J Bacteriol 143:781–8
  • Salyers AA, Vercellotti JR, West SE, Wilkins TD. (1977). Fermentation of mucin and plant polysaccharides by strains of Bacteroides from the human colon. Appl Environ Microbiol 33:319–22
  • Sasaki M, Takahashi T, Miyahara K, Hirose T. (2001). Effects of chondroitinase ABC on intradiscal pressure in sheep: an in vivo study. Spine 26:463–8
  • Shimizu MT, Almeida NQ, Fantinato V, Unterkircher CS. (1996). Studies on hyaluronidase, chondroitin sulphatase, proteinase and phospholipase secreted by Candida species. Mycoses 39:161–7
  • Shimizu MT, Jorge AO, Unterkircher CS, et al. (1995). Hyaluronidase and chondroitin sulphatase production by different species of Candida. J Med Vet Mycol 33:27–31
  • Smith RF, Willett NP. (1968). Rapid plate method for screening hyaluronidase and chondroitin sulfatase-producing microorganisms. Appl Microbiol 16:1434–6
  • Snow DM, Lemmon V, Carrino DA, et al. (1990). Sulfated proteoglycans in astroglial barriers inhibit neurite outgrowth in vitro. Exp Neurol 109:111–30
  • Soleman S, Yip PK, Duricki DA, Moon LDF. (2012). Delayed treatment with chondroitinase ABC promotes sensorimotor recovery and plasticity after stroke in aged rats. Brain 135:1210–23
  • Staubach F, Nober V, Janknecht P. (2004). Enzyme-assisted vitrectomy in enucleated pig eyes: a comparison of hyaluronidase, chondroitinase, and plasmin. Curr Eye Res 29:261–8
  • Sugahara K, Mikami T. (2007). Chondroitin/dermatan sulfate in the central nervous system. Curr Opin Struct Biol 17:536–45
  • Sugahara K, Mikami T, Uyama T, et al. (2003). Recent advances in the structural biology of chondroitin sulfate and dermatan sulfate. Curr Opin Struct Biol 13:612–20
  • Sugahara K, Tanaka Y, Yamada S, et al. (1996). Novel sulfated oligosaccharides containing 3-o-sulfated glucuronic acid from king crab cartilage chondroitin sulfate K unexpected degradation by chondroitinase ABC. J Biol Chem 271:26745–54
  • Sugimura T, Kato F, Mimatsu K, et al. (1996). Experimental chemonucleolysis with chondroitinase ABC in monkeys. Spine 21:161–5
  • Sugiura N, Ikeda M, Shioiri T, et al. (2013). Chondroitinase from baculovirus Bombyx mori nucleopolyhedrovirus and chondroitin sulfate from silkworm Bombyx mori. Glycobiology 23:1520–30
  • Sugiura N, Setoyama Y, Chiba M, et al. (2011). Baculovirus envelope protein ODV-E66 is a novel chondroitinase with distinct substrate specificity. J Biol Chem 286:29026–34
  • Suwiwat S, Ricciardelli C, Tammi R, et al. (2004). Expression of extracellular matrix components versican, chondroitin sulfate, tenascin, and hyaluronan, and their association with disease outcome in node-negative breast cancer. Clin Cancer Res 10:2491–8
  • Takegawa K, Iwahara K, Iwahara S. (1991). Purification and properties of chondroitinase produced by a bacterium isolated from soil. J Ferment Bioeng 72:128–31
  • Takeuchi J. (1965). Growth-promoting effect of chondroitin sulphate on solid Ehrlich ascites tumour. Nature 207:537–8
  • Takeuchi J. (1966). Effect of chondroitin sulphate on the growth of solid Ehrlich ascites tumour under the influence of hydrocortisone. Br J Cancer 20:847–51
  • Takeuchi J. (1972). Effect of chondroitinases on the growth of solid Ehrlich ascites tumour. Br J Cancer 26:115–19
  • Tester NJ, Howland DR. (2008). Chondroitinase ABC improves basic and skilled locomotion in spinal cord injured cats. Exp Neurol 209:483–96
  • Tester NJ, Plaas AH, Howland DR. (2007). Effect of body temperature on chondroitinase ABC's ability to cleave chondroitin sulfate glycosaminoglycans. J Neurosci Res 85:1110–18
  • Theocharis AD, Tsolakis I, Tzanakakis GN, Karamanos NK. (2006). Chondroitin sulfate as a key molecule in the development of atherosclerosis and cancer progression. Adv Pharmacol 53:281–95
  • Thurston CF. (1974). Induction and catabolite repression of chondroitinase in batch and chemostat cultures of Proteus vulgaris. J Gen Microbiol 80:515–22
  • Tripathi CKM, Banga J, Mishra V. (2012). Microbial heparin/heparan sulphate lyases: potential and applications. Appl Microbiol Biotechnol 94:307–21
  • Vorobyov V, Kwok JCF, Fawcett JW, Sengpiel F. (2013). Effects of digesting chondroitin sulfate proteoglycans on plasticity in cat primary visual cortex. J Neurosci 33:234–43
  • Wegrowski Y, Maquart FX. (2006). Chondroitin sulfate proteoglycans in tumor progression. Adv Pharmacol 53:297–321
  • Whiteman P. (1973). The quantitative measurement of alcian blue-glycosaminoglycan complexes. Biochem J 131:343–50
  • Williams SJ, Davies GJ. (2001). Protein–carbohydrate interactions: learning lessons from nature. Trends Biotechnol 19:356–62
  • Windle WF. (1956). Regeneration of axons in the vertebrate central nervous system. Physiol Rev 36:427–40
  • Windle WF, Chambers WW. (1950). Regeneration in the spinal cord of the cat and dog. J Comp Neurol 93:241–57
  • Wisniewski H-G, Sweet MH, Stern R. (2005). An assay for bacterial and eukaryotic chondroitinases using a chondroitin sulfate-binding protein. Analy Biochem 347:42–8
  • Yagi Y, Muroga E, Naitoh M, et al. (2012). An ex vivo model employing keloid-derived cell-seeded collagen sponges for therapy development. J Investig Dermatol 133:386–93
  • Yamada H, Watanabe K, Shimonaka M, Yamaguchi Y. (1994). Molecular cloning of brevican, a novel brain proteoglycan of the aggrecan/versican family. J Biol Chem 269:10119–26
  • Yamagata T, Saito H, Habuchi O, Suzuki S. (1968). Purification and properties of bacterial chondroitinases and chondrosulfatases. J Biol Chem 243:1523–35
  • Zou P, Zou K, Muramatsu H, et al. (2003). Glycosaminoglycan structures required for strong binding to midkine, a heparin-binding growth factor. Glycobiology 13:35–42

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.