2,045
Views
142
CrossRef citations to date
0
Altmetric
Review Article

Mitochondrial complex I inhibitor rotenone-induced toxicity and its potential mechanisms in Parkinson’s disease models

, , , , , , , , & show all
Pages 613-632 | Received 10 Sep 2011, Accepted 26 Mar 2012, Published online: 11 May 2012

References

  • Abdin AA, Hamouda HE. (2008). Mechanism of the neuroprotective role of coenzyme Q10 with or without l-dopa in rotenone-induced parkinsonism. Neuropharmacology 55:1340–1346.
  • Ahmadi FA, Linseman DA, Grammatopoulos TN, Jones SM, Bouchard RJ, Freed CR, Heidenreich KA, Zawada WM. (2003). The pesticide rotenone induces caspase-3-mediated apoptosis in ventral mesencephalic dopaminergic neurons. J Neurochem 87:914–921.
  • Alam M, Mayerhofer A, Schmidt WJ. (2004). The neurobehavioral changes induced by bilateral rotenone lesion in medial forebrain bundle of rats are reversed by L-DOPA. Behav Brain Res 151:117–124.
  • Alam M, Schmidt WJ. (2004a). L-DOPA reverses the hypokinetic behaviour and rigidity in rotenone-treated rats. Behav Brain Res 153:439–446.
  • Alam M, Schmidt WJ. (2004b). Mitochondrial complex I inhibition depletes plasma testosterone in the rotenone model of Parkinson’s disease. Physiol Behav 83:395–400.
  • Allen AL, Luo C, Montgomery DL, Rajput AH, Robinson CA, Rajput A. (2009). Vascular pathology in male Lewis rats following short-term, low-dose rotenone administration. Vet Pathol 46:776–782.
  • Arnold B, Cassady SJ, VanLaar VS, Berman SB. (2011). Integrating multiple aspects of mitochondrial dynamics in neurons: age-related differences and dynamic changes in a chronic rotenone model. Neurobiol Dis 41:189–200.
  • Bao L, Avshalumov MV, Rice ME. (2005). Partial mitochondrial inhibition causes striatal dopamine release suppression and medium spiny neuron depolarization via H2O2 elevation, not ATP depletion. J Neurosci 25:10029–10040.
  • Bashkatova V, Alam M, Vanin A, Schmidt WJ. (2004). Chronic administration of rotenone increases levels of nitric oxide and lipid peroxidation products in rat brain. Exp Neurol 186:235–241.
  • Bayersdorfer F, Voigt A, Schneuwly S, Botella JA. (2010). Dopamine-dependent neurodegeneration in Drosophila models of familial and sporadic Parkinson’s disease. Neurobiol Dis 40:113–119.
  • Betarbet R, Sherer TB, Greenamyre JT. (2002). Animal models of Parkinson’s disease. Bioessays 24:308–318.
  • Betarbet R, Sherer TB, MacKenzie G, Garcia-Osuna M, Panov AV, Greenamyre JT. (2000). Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat Neurosci 3:1301–1306.
  • Biehlmaier O, Alam M, Schmidt WJ. (2007). A rat model of Parkinsonism shows depletion of dopamine in the retina. Neurochem Int 50:189–195.
  • Borland MK, Trimmer PA, Rubinstein JD, Keeney PM, Mohanakumar K, Liu L, Bennett JP Jr. (2008). Chronic, low-dose rotenone reproduces Lewy neurites found in early stages of Parkinson’s disease, reduces mitochondrial movement and slowly kills differentiated SH-SY5Y neural cells. Mol Neurodegener 3:21.
  • Braak H, Del Tredici K, Rüb U, de Vos RA, Jansen Steur EN, Braak E. (2003). Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24:197–211.
  • Bretaud S, Lee S, Guo S. (2004). Sensitivity of zebrafish to environmental toxins implicated in Parkinson’s disease. Neurotoxicol Teratol 26:857–864.
  • Bywood PT, Johnson SM. (2003). Mitochondrial complex inhibitors preferentially damage substantia nigra dopamine neurons in rat brain slices. Exp Neurol 179:47–59.
  • Cannon JR, Greenamyre JT. (2010). Neurotoxic in vivo models of Parkinson’s disease recent advances. Prog Brain Res 184:17–33.
  • Cannon JR, Tapias V, Na HM, Honick AS, Drolet RE, Greenamyre JT. (2009). A highly reproducible rotenone model of Parkinson’s disease. Neurobiol Dis 34:279–290.
  • Chaudhuri KR, Schapira AH. (2009). Non-motor symptoms of Parkinson’s disease: dopaminergic pathophysiology and treatment. Lancet Neurol 8:464–474.
  • Chen MJ, Yap YW, Choy MS, Koh CH, Seet SJ, Duan W, Whiteman M, Cheung NS. (2006). Early induction of calpains in rotenone-mediated neuronal apoptosis. Neurosci Lett 397:69–73.
  • Chou AP, Li S, Fitzmaurice AG, Bronstein JM. (2010). Mechanisms of rotenone-induced proteasome inhibition. Neurotoxicology 31:367–372.
  • Condello S, Currò M, Ferlazzo N, Caccamo D, Satriano J, Ientile R. (2011). Agmatine effects on mitochondrial membrane potential and NF-кB activation protect against rotenone-induced cell damage in human neuronal-like SH-SY5Y cells. J Neurochem 116:67–75.
  • Corona JC, Gimenez-Cassina A, Lim F, Díaz-Nido J. (2010). Hexokinase II gene transfer protects against neurodegeneration in the rotenone and MPTP mouse models of Parkinson’s disease. J Neurosci Res 88:1943–1950.
  • Coulom H, Birman S. (2004). Chronic exposure to rotenone models sporadic Parkinson’s disease in Drosophila melanogaster. J Neurosci 24:10993–10998.
  • Dhillon AS, Tarbutton GL, Levin JL, Plotkin GM, Lowry LK, Nalbone JT, Shepherd S. (2008). Pesticide/environmental exposures and Parkinson’s disease in East Texas. J Agromedicine 13:37–48.
  • Drechsel DA, Patel M. (2008). Role of reactive oxygen species in the neurotoxicity of environmental agents implicated in Parkinson’s disease. Free Radic Biol Med 44:1873–1886.
  • Drolet RE, Cannon JR, Montero L, Greenamyre JT. (2009). Chronic rotenone exposure reproduces Parkinson’s disease gastrointestinal neuropathology. Neurobiol Dis 36:96–102.
  • Dukes AA, Korwek KM, Hastings TG. (2005). The effect of endogenous dopamine in rotenone-induced toxicity in PC12 cells. Antioxid Redox Signal 7:630–638.
  • Egea J, Rosa AO, Cuadrado A, García AG, López MG. (2007). Nicotinic receptor activation by epibatidine induces heme oxygenase-1 and protects chromaffin cells against oxidative stress. J Neurochem 102:1842–1852.
  • Elbaz A. (2008). LRRK2: bridging the gap between sporadic and hereditary Parkinson’s disease. Lancet Neurol 7:562–564.
  • Ethell DW, Fei Q. (2009). Parkinson-linked genes and toxins that affect neuronal cell death through the Bcl-2 family. Antioxid Redox Signal 11:529–540.
  • Feng Y, Liang ZH, Wang T, Qiao X, Liu HJ, Sun SG. (2006). alpha-Synuclein redistributed and aggregated in rotenone-induced Parkinson’s disease rats. Neurosci Bull 22:288–293.
  • Ferrante RJ, Schulz JB, Kowall NW, Beal MF. (1997). Systemic administration of rotenone produces selective damage in the striatum and globus pallidus, but not in the substantia nigra. Brain Res 753:157–162.
  • Filomeni G, Graziani I, De Zio D, Dini L, Centonze D, Rotilio G, Ciriolo MR. (2010). Neuroprotection of kaempferol by autophagy in models of rotenone-mediated acute toxicity: Possible implications for parkinson’s disease. Neurobiol Aging 33(4):767–785
  • Fiskum G, Starkov A, Polster BM, Chinopoulos C. (2003). Mitochondrial mechanisms of neural cell death and neuroprotective interventions in Parkinson’s disease. Ann N Y Acad Sci 991:111–119.
  • Fleming SM, Zhu C, Fernagut PO, Mehta A, DiCarlo CD, Seaman RL, Chesselet MF. (2004). Behavioral and immunohistochemical effects of chronic intravenous and subcutaneous infusions of varying doses of rotenone. Exp Neurol 187:418–429.
  • Freestone PS, Chung KK, Guatteo E, Mercuri NB, Nicholson LF, Lipski J. (2009). Acute action of rotenone on nigral dopaminergic neurons–involvement of reactive oxygen species and disruption of Ca2+ homeostasis. Eur J Neurosci 30:1849–1859.
  • Gao HM, Hong JS, Zhang W, Liu B. (2002). Distinct role for microglia in rotenone-induced degeneration of dopaminergic neurons. J Neurosci 22:782–790.
  • Gao HM, Hong JS, Zhang W, Liu B. (2003). Synergistic dopaminergic neurotoxicity of the pesticide rotenone and inflammogen lipopolysaccharide: relevance to the etiology of Parkinson’s disease. J Neurosci 23:1228–1236.
  • García-García F, Ponce S, Brown R, Cussen V, Krueger JM. (2005). Sleep disturbances in the rotenone animal model of Parkinson disease. Brain Res 1042:160–168.
  • Greenamyre JT, MacKenzie G, Peng TI, Stephans SE. (1999). Mitochondrial dysfunction in Parkinson’s disease. Biochem Soc Symp 66:85–97.
  • Greene JG, Greenamyre JT, Dingledine R. (2008). Sequential and concerted gene expression changes in a chronic in vitro model of parkinsonism. Neuroscience 152:198–207.
  • Greene JG, Noorian AR, Srinivasan S. (2009). Delayed gastric emptying and enteric nervous system dysfunction in the rotenone model of Parkinson’s disease. Exp Neurol 218:154–161.
  • Hajieva P, Mocko JB, Moosmann B, Behl C. (2009). Novel imine antioxidants at low nanomolar concentrations protect dopaminergic cells from oxidative neurotoxicity. J Neurochem 110:118–132.
  • Heikkila RE, Nicklas WJ, Vyas I, Duvoisin RC. (1985). Dopaminergic toxicity of rotenone and the 1-methyl-4-phenylpyridinium ion after their stereotaxic administration to rats: implication for the mechanism of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine toxicity. Neurosci Lett 62:389–394.
  • Höglinger GU, Féger J, Prigent A, Michel PP, Parain K, Champy P, Ruberg M, Oertel WH, Hirsch EC. (2003). Chronic systemic complex I inhibition induces a hypokinetic multisystem degeneration in rats. J Neurochem 84:491–502.
  • Höglinger GU, Lannuzel A, Khondiker ME, Michel PP, Duyckaerts C, Féger J, Champy P, Prigent A, Medja F, Lombes A, Oertel WH, Ruberg M, Hirsch EC. (2005). The mitochondrial complex I inhibitor rotenone triggers a cerebral tauopathy. J Neurochem 95:930–939.
  • Hsuan SL, Klintworth HM, Xia Z. (2006). Basic fibroblast growth factor protects against rotenone-induced dopaminergic cell death through activation of extracellular signal-regulated kinases ½ and phosphatidylinositol-3 kinase pathways. J Neurosci 26:4481–4491.
  • Hu LF, Lu M, Tiong CX, Dawe GS, Hu G, Bian JS. (2010). Neuroprotective effects of hydrogen sulfide on Parkinson’s disease rat models. Aging Cell 9:135–146.
  • Huang J, Hao L, Xiong N, Cao X, Liang Z, Sun S, Wang T. (2009). Involvement of glyceraldehyde-3-phosphate dehydrogenase in rotenone-induced cell apoptosis: relevance to protein misfolding and aggregation. Brain Res 1279:1–8.
  • Huang J, Liu H, Gu W, Yan Z, Xu Z, Yang Y, Zhu X, Li Y. (2006). A delivery strategy for rotenone microspheres in an animal model of Parkinson’s disease. Biomaterials 27:937–946.
  • Huang J, Xiong N, Chen C, Xiong J, Jia M, Zhang Z, Cao X, Liang Z, Sun S, Lin Z, Wang T. (2011). Glyceraldehyde-3-phosphate dehydrogenase: activity inhibition and protein overexpression in rotenone models for Parkinson’s disease. Neuroscience 192:598–608.
  • Inden M, Kitamura Y, Abe M, Tamaki A, Takata K, Taniguchi T. (2011). Parkinsonian rotenone mouse model: reevaluation of long-term administration of rotenone in C57BL/6 mice. Biol Pharm Bull 34:92–96.
  • Inden M, Kitamura Y, Takeuchi H, Yanagida T, Takata K, Kobayashi Y, Taniguchi T, Yoshimoto K, Kaneko M, Okuma Y, Taira T, Ariga H, Shimohama S. (2007). Neurodegeneration of mouse nigrostriatal dopaminergic system induced by repeated oral administration of rotenone is prevented by 4-phenylbutyrate, a chemical chaperone. J Neurochem 101:1491–1504.
  • Isenberg JS, Klaunig JE. (2000). Role of the mitochondrial membrane permeability transition (MPT) in rotenone-induced apoptosis in liver cells. Toxicol Sci 53:340–351.
  • Ishido M, Suzuki J. (2010). Inhibition by rotenone of mesencephalic neural stem-cell migration in a neurosphere assay in vitro. Toxicol In Vitro 24:552–557.
  • Jiang H, Ren Y, Zhao J, Feng J. (2004). Parkin protects human dopaminergic neuroblastoma cells against dopamine-induced apoptosis. Hum Mol Genet 13:1745–1754.
  • Jin J, Davis J, Zhu D, Kashima DT, Leroueil M, Pan C, Montine KS, Zhang J. (2007). Identification of novel proteins affected by rotenone in mitochondria of dopaminergic cells. BMC Neurosci 8:67.
  • Kalivendi SV, Yedlapudi D, Hillard CJ, Kalyanaraman B. (2010). Oxidants induce alternative splicing of alpha-synuclein: Implications for Parkinson’s disease. Free Radic Biol Med 48:377–383.
  • Klintworth H, Newhouse K, Li T, Choi WS, Faigle R, Xia Z. (2007). Activation of c-Jun N-terminal protein kinase is a common mechanism underlying paraquat- and rotenone-induced dopaminergic cell apoptosis. Toxicol Sci 97:149–162.
  • Kotake Y, Ohta S. (2003). MPP+ analogs acting on mitochondria and inducing neuro-degeneration. Curr Med Chem 10:2507–2516.
  • Kweon GR, Marks JD, Krencik R, Leung EH, Schumacker PT, Hyland K, Kang UJ. (2004). Distinct mechanisms of neurodegeneration induced by chronic complex I inhibition in dopaminergic and non-dopaminergic cells. J Biol Chem 279:51783–51792.
  • Lamensdorf I, Eisenhofer G, Harvey-White J, Nechustan A, Kirk K, Kopin IJ. (2000). 3,4-Dihydroxyphenylacetaldehyde potentiates the toxic effects of metabolic stress in PC12 cells. Brain Res 868:191–201.
  • Landrigan PJ, Sonawane B, Butler RN, Trasande L, Callan R, Droller D. (2005). Early environmental origins of neurodegenerative disease in later life. Environ Health Perspect 113:1230–1233.
  • Langston JW, Forno LS, Tetrud J, Reeves AG, Kaplan JA, Karluk D. (1999). Evidence of active nerve cell degeneration in the substantia nigra of humans years after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine exposure. Ann Neurol 46:598–605.
  • Lapointe N, St-Hilaire M, Martinoli MG, Blanchet J, Gould P, Rouillard C, Cicchetti F. (2004). Rotenone induces non-specific central nervous system and systemic toxicity. FASEB J 18:717–719.
  • Lawal HO, Chang HY, Terrell AN, Brooks ES, Pulido D, Simon AF, Krantz DE. (2010). The Drosophila vesicular monoamine transporter reduces pesticide-induced loss of dopaminergic neurons. Neurobiol Dis 40:102–112.
  • Lev N, Ickowicz D, Melamed E, Offen D. (2008). Oxidative insults induce DJ-1 upregulation and redistribution: implications for neuroprotection. Neurotoxicology 29:397–405.
  • Li X, Liu Z, Tamashiro K, Shi B, Rudnicki DD, Ross CA, Moran TH, Smith WW. (2010). Synphilin-1 exhibits trophic and protective effects against Rotenone toxicity. Neuroscience 165:455–462.
  • Lin Z, Zhao Y, Chung CY, Zhou Y, Xiong N, Glatt CE, Isacson O. (2010). High regulatability favors genetic selection in SLC18A2, a vesicular monoamine transporter essential for life. FASEB J 24:2191–2200.
  • Zhang L, Wang T.. (2008). A study of neurotoxicity of rotennone on dopaminergic neurons in the cultured slices of the substantia nigra in rats. Stroke Nerv Dis 04:209–212.
  • Marey-Semper I, Gelman M, Lévi-Strauss M. (1995). A selective toxicity toward cultured mesencephalic dopaminergic neurons is induced by the synergistic effects of energetic metabolism impairment and NMDA receptor activation. J Neurosci 15:5912–5918.
  • Martin FL, Williamson SJ, Paleologou KE, Hewitt R, El-Agnaf OM, Allsop D. (2003). Fe(II)-induced DNA damage in alpha-synuclein-transfected human dopaminergic BE(2)-M17 neuroblastoma cells: detection by the Comet assay. J Neurochem 87:620–630.
  • Meulener M, Whitworth AJ, Armstrong-Gold CE, Rizzu P, Heutink P, Wes PD, Pallanck LJ, Bonini NM. (2005). Drosophila DJ-1 mutants are selectively sensitive to environmental toxins associated with Parkinson’s disease. Curr Biol 15:1572–1577.
  • Meurers BH, Zhu C, Fernagut PO, Richter F, Hsia YC, Fleming SM, Oh M, Elashoff D, Dicarlo CD, Seaman RL, Chesselet MF. (2009). Low dose rotenone treatment causes selective transcriptional activation of cell death related pathways in dopaminergic neurons in vivo. Neurobiol Dis 33:182–192.
  • Ming M, Li X, Fan X, Yang D, Li L, Chen S, Gu Q, Le W. (2009). Retinal pigment epithelial cells secrete neurotrophic factors and synthesize dopamine: possible contribution to therapeutic effects of RPE cell transplantation in Parkinson’s disease. J Transl Med 7:53.
  • Mocko JB, Kern A, Moosmann B, Behl C, Hajieva P. (2010). Phenothiazines interfere with dopaminergic neurodegeneration in Caenorhabditis elegans models of Parkinson’s disease. Neurobiol Dis 40:120–129.
  • Moldzio R, Piskernik C, Radad K, Rausch WD. (2008). Rotenone damages striatal organotypic slice culture. Ann N Y Acad Sci 1148:530–535.
  • Moldzio R, Radad K, Krewenka C, Kranner B, Duvigneau JC, Wang Y, Rausch WD. (2010). Effects of epigallocatechin gallate on rotenone-injured murine brain cultures. J Neural Transm 117:5–12.
  • Monti B, Gatta V, Piretti F, Raffaelli SS, Virgili M, Contestabile A. (2010). Valproic acid is neuroprotective in the rotenone rat model of Parkinson’s disease: involvement of alpha-synuclein. Neurotox Res 17:130–141.
  • Moon Y, Lee KH, Park JH, Geum D, Kim K. (2005). Mitochondrial membrane depolarization and the selective death of dopaminergic neurons by rotenone: protective effect of coenzyme Q10. J Neurochem 93:1199–1208.
  • Mulcahy P, Walsh S, Paucard A, Rea K, Dowd E. (2011). Characterisation of a novel model of parkinson’s disease by intra-striatal infusion of the pesticide rotenone. Neuroscience 181:234–242.
  • Mullett SJ, Hinkle DA. (2009). DJ-1 knock-down in astrocytes impairs astrocyte-mediated neuroprotection against rotenone. Neurobiol Dis 33:28–36.
  • Naoi M, Maruyama W, Shamoto-Nagai M, Yi H, Akao Y, Tanaka M. (2005). Oxidative stress in mitochondria: decision to survival and death of neurons in neurodegenerative disorders. Mol Neurobiol 31:81–93.
  • Nehru B, Verma R, Khanna P, Sharma SK. (2008). Behavioral alterations in rotenone model of Parkinson’s disease: attenuation by co-treatment of centrophenoxine. Brain Res 1201:122–127.
  • Newhouse K, Hsuan SL, Chang SH, Cai B, Wang Y, Xia Z. (2004). Rotenone-induced apoptosis is mediated by p38 and JNK MAP kinases in human dopaminergic SH-SY5Y cells. Toxicol Sci 79:137–146.
  • Norazit A, Meedeniya AC, Nguyen MN, Mackay-Sim A. (2010). Progressive loss of dopaminergic neurons induced by unilateral rotenone infusion into the medial forebrain bundle. Brain Res 1360:119–129.
  • Ogburn KD, Figueiredo-Pereira ME. (2006). Cytoskeleton/endoplasmic reticulum collapse induced by prostaglandin J2 parallels centrosomal deposition of ubiquitinated protein aggregates. J Biol Chem 281:23274–23284.
  • Olanow CW, Kieburtz K, Schapira AH. (2008). Why have we failed to achieve neuroprotection in Parkinson’s disease? Ann Neurol 64 Suppl 2:S101–S110.
  • Orth M, Tabrizi SJ, Schapira AH, Cooper JM. (2003). Alpha-synuclein expression in HEK293 cells enhances the mitochondrial sensitivity to rotenone. Neurosci Lett 351:29–32.
  • Pan-Montojo F, Anichtchik O, Dening Y, Knels L, Pursche S, Jung R, Jackson S, Gille G, Spillantini MG, Reichmann H, Funk RH. (2010). Progression of Parkinson’s disease pathology is reproduced by intragastric administration of rotenone in mice. PLoS ONE 5:e8762.
  • Pan T, Kondo S, Le W, Jankovic J. (2008). The role of autophagy-lysosome pathway in neurodegeneration associated with Parkinson’s disease. Brain 131:1969–1978.
  • Pan T, Li X, Xie W, Jankovic J, Le W. (2005). Valproic acid-mediated Hsp70 induction and anti-apoptotic neuroprotection in SH-SY5Y cells. FEBS Lett 579:6716–6720.
  • Pan T, Rawal P, Wu Y, Xie W, Jankovic J, Le W. (2009). Rapamycin protects against rotenone-induced apoptosis through autophagy induction. Neuroscience 164:541–551.
  • Parkinson J. (2002). An essay on the shaking palsy. 1817. J Neuropsychiatry Clin Neurosci 14:223–36; discussion 222.
  • Perry TL, Yong VW. (1986). Idiopathic Parkinson’s disease, progressive supranuclear palsy and glutathione metabolism in the substantia nigra of patients. Neurosci Lett 67:269–274.
  • Pienaar IS, Götz J, Feany MB. (2010). Parkinson’s disease: insights from non-traditional model organisms. Prog Neurobiol 92:558–571.
  • Priyadarshi A, Khuder SA, Schaub EA, Priyadarshi SS. (2001). Environmental risk factors and Parkinson’s disease: a metaanalysis. Environ Res 86:122–127.
  • Przedborski S, Ischiropoulos H. (2005). Reactive oxygen and nitrogen species: weapons of neuronal destruction in models of Parkinson’s disease. Antioxid Redox Signal 7:685–693.
  • Quesada A, Micevych P, Handforth A. (2009). C-terminal mechano growth factor protects dopamine neurons: a novel peptide that induces heme oxygenase-1. Exp Neurol 220:255–266.
  • Radad K, Rausch WD, Gille G. (2006). Rotenone induces cell death in primary dopaminergic culture by increasing ROS production and inhibiting mitochondrial respiration. Neurochem Int 49:379–386.
  • Ramachandiran S, Hansen JM, Jones DP, Richardson JR, Miller GW. (2007). Divergent mechanisms of paraquat, MPP+, and rotenone toxicity: oxidation of thioredoxin and caspase-3 activation. Toxicol Sci 95:163–171.
  • Ravanel P, Tissut M, Douce R. (1984). Effects of rotenoids on isolated plant mitochondria. Plant Physiol 75:414–420.
  • Ravenstijn PG, Merlini M, Hameetman M, Murray TK, Ward MA, Lewis H, Ball G, Mottart C, de Ville de Goyet C, Lemarchand T, van Belle K, O’Neill MJ, Danhof M, de Lange EC. (2008). The exploration of rotenone as a toxin for inducing Parkinson’s disease in rats, for application in BBB transport and PK-PD experiments. J Pharmacol Toxicol Methods 57:114–130.
  • Ren Y, Zhao J, Feng J. (2003). Parkin binds to alpha/beta tubulin and increases their ubiquitination and degradation. J Neurosci 23:3316–3324.
  • Richter F, Hamann M, Richter A. (2007). Chronic rotenone treatment induces behavioral effects but no pathological signs of parkinsonism in mice. J Neurosci Res 85:681–691.
  • Rick CE, Ebert A, Virag T, Bohn MC, Surmeier DJ. (2006). Differentiated dopaminergic MN9D cells only partially recapitulate the electrophysiological properties of midbrain dopaminergic neurons. Dev Neurosci 28:528–537.
  • Riederer P, Sofic E, Rausch WD, Schmidt B, Reynolds GP, Jellinger K, Youdim MB. (1989). Transition metals, ferritin, glutathione, and ascorbic acid in parkinsonian brains. J Neurochem 52:515–520.
  • Rojo AI, Cavada C, de Sagarra MR, Cuadrado A. (2007). Chronic inhalation of rotenone or paraquat does not induce Parkinson’s disease symptoms in mice or rats. Exp Neurol 208:120–126.
  • Ruan Q, Harrington AJ, Caldwell KA, Caldwell GA, Standaert DG. (2010). VPS41, a protein involved in lysosomal trafficking, is protective in Caenorhabditis elegans and mammalian cellular models of Parkinson’s disease. Neurobiol Dis 37:330–338.
  • Saha S, Guillily MD, Ferree A, Lanceta J, Chan D, Ghosh J, Hsu CH, Segal L, Raghavan K, Matsumoto K, Hisamoto N, Kuwahara T, Iwatsubo T, Moore L, Goldstein L, Cookson M, Wolozin B. (2009). LRRK2 modulates vulnerability to mitochondrial dysfunction in Caenorhabditis elegans. J Neurosci 29:9210–9218.
  • Sai Y, Wu Q, Le W, Ye F, Li Y, Dong Z. (2008). Rotenone-induced PC12 cell toxicity is caused by oxidative stress resulting from altered dopamine metabolism. Toxicol In Vitro 22:1461–1468.
  • Samantaray S, Ray SK, Ali SF, Banik NL. (2006). Calpain activation in apoptosis of motoneurons in cell culture models of experimental parkinsonism. Ann N Y Acad Sci 1074:349–356.
  • Santiago RM, Barbieiro J, Lima MM, Dombrowski PA, Andreatini R, Vital MA. (2010). Depressive-like behaviors alterations induced by intranigral MPTP, 6-OHDA, LPS and rotenone models of Parkinson’s disease are predominantly associated with serotonin and dopamine. Prog Neuropsychopharmacol Biol Psychiatry 34:1104–1114.
  • Sapkota K, Kim S, Park SE, Kim SJ. (2011). Detoxified extract of Rhus verniciflua stokes inhibits rotenone-induced apoptosis in human dopaminergic cells, SH-SY5Y. Cell Mol Neurobiol 31:213–223.
  • Saravanan KS, Sindhu KM, Mohanakumar KP. (2005). Acute intranigral infusion of rotenone in rats causes progressive biochemical lesions in the striatum similar to Parkinson’s disease. Brain Res 1049:147–155.
  • Savitt JM, Dawson VL, Dawson TM. (2006). Diagnosis and treatment of Parkinson disease: molecules to medicine. J Clin Invest 116:1744–1754.
  • Saybasili H, Yüksel M, Haklar G, Yalçin AS. (2001). Effect of mitochondrial electron transport chain inhibitors on superoxide radical generation in rat hippocampal and striatal slices. Antioxid Redox Signal 3:1099–1104.
  • Schober A. (2004). Classic toxin-induced animal models of Parkinson’s disease: 6-OHDA and MPTP. Cell Tissue Res 318:215–224.
  • Seaton TA, Cooper JM, Schapira AH. (1997). Free radical scavengers protect dopaminergic cell lines from apoptosis induced by complex I inhibitors. Brain Res 777:110–118.
  • Seo BB, Nakamaru-Ogiso E, Flotte TR, Yagi T, Matsuno-Yagi A. (2002). A single-subunit NADH-quinone oxidoreductase renders resistance to mammalian nerve cells against complex I inhibition. Mol Ther 6:336–341.
  • Shaikh S, Nicholson LF. (2008). Advanced glycation end products induce in vitro cross-linking of alpha-synuclein and accelerate the process of intracellular inclusion body formation. J Neurosci Res 86:2071–2082.
  • Shaikh SB, Nicholson LF. (2009). Effects of chronic low dose rotenone treatment on human microglial cells. Mol Neurodegener 4:55.
  • Sherer TB, Betarbet R, Stout AK, Lund S, Baptista M, Panov AV, Cookson MR, Greenamyre JT. (2002). An in vitro model of Parkinson’s disease: linking mitochondrial impairment to altered alpha-synuclein metabolism and oxidative damage. J Neurosci 22:7006–7015.
  • Sherer TB, Betarbet R, Testa CM, Seo BB, Richardson JR, Kim JH, Miller GW, Yagi T, Matsuno-Yagi A, Greenamyre JT. (2003a). Mechanism of toxicity in rotenone models of Parkinson’s disease. J Neurosci 23:10756–10764.
  • Sherer TB, Kim JH, Betarbet R, Greenamyre JT. (2003b). Subcutaneous rotenone exposure causes highly selective dopaminergic degeneration and alpha-synuclein aggregation. Exp Neurol 179:9–16.
  • Sherer TB, Richardson JR, Testa CM, Seo BB, Panov AV, Yagi T, Matsuno-Yagi A, Miller GW, Greenamyre JT. (2007). Mechanism of toxicity of pesticides acting at complex I: relevance to environmental etiologies of Parkinson’s disease. J Neurochem 100:1469–1479.
  • Sindhu KM, Saravanan KS, Mohanakumar KP. (2005). Behavioral differences in a rotenone-induced hemiparkinsonian rat model developed following intranigral or median forebrain bundle infusion. Brain Res 1051:25–34.
  • Solis O, Limón DI, Flores-Hernández J, Flores G. (2007). Alterations in dendritic morphology of the prefrontal cortical and striatum neurons in the unilateral 6-OHDA-rat model of Parkinson’s disease. Synapse 61:450–458.
  • Starkov AA, Polster BM, Fiskum G. (2002). Regulation of hydrogen peroxide production by brain mitochondria by calcium and Bax. J Neurochem 83:220–228.
  • Steidinger TU, Standaert DG, Yacoubian TA. (2011). A neuroprotective role for angiogenin in models of Parkinson’s disease. J Neurochem 116:334–341.
  • Tai KK, Truong DD. (2002). Activation of adenosine triphosphate-sensitive potassium channels confers protection against rotenone-induced cell death: therapeutic implications for Parkinson’s disease. J Neurosci Res 69:559–566.
  • Takeuchi H, Yanagida T, Inden M, Takata K, Kitamura Y, Yamakawa K, Sawada H, Izumi Y, Yamamoto N, Kihara T, Uemura K, Inoue H, Taniguchi T, Akaike A, Takahashi R, Shimohama S. (2009). Nicotinic receptor stimulation protects nigral dopaminergic neurons in rotenone-induced Parkinson’s disease models. J Neurosci Res 87:576–585.
  • Tanner CM, Kamel F, Ross GW, Hoppin JA, Goldman SM, Korell M, Marras C, Bhudhikanok GS, Kasten M, Chade AR, Comyns K, Richards MB, Meng C, Priestley B, Fernandez HH, Cambi F, Umbach DM, Blair A, Sandler DP, Langston JW. (2011). Rotenone, paraquat and parkinson’s disease. Environ Health Perspect 119 (6): doi:10.1289/ehp.1002839
  • Tantucci M, Mariucci G, Taha E, Spaccatini C, Tozzi A, Luchetti E, Calabresi P, Ambrosini MV. (2009). Induction of heat shock protein 70 reduces the alteration of striatal electrical activity caused by mitochondrial impairment. Neuroscience 163:735–740.
  • Testa CM, Sherer TB, Greenamyre JT. (2005). Rotenone induces oxidative stress and dopaminergic neuron damage in organotypic substantia nigra cultures. Brain Res Mol Brain Res 134:109–118.
  • Thiffault C, Langston JW, Di Monte DA. (2000). Increased striatal dopamine turnover following acute administration of rotenone to mice. Brain Res 885:283–288.
  • Tian YY, Tang CJ, Wang JN, Feng Y, Chen XW, Wang L, Qiao X, Sun SG. (2007). Favorable effects of VEGF gene transfer on a rat model of Parkinson disease using adeno-associated viral vectors. Neurosci Lett 421:239–244.
  • Toulouse A, Sullivan AM. (2008). Progress in Parkinson’s disease-where do we stand? Prog Neurobiol 85:376–392.
  • Uversky VN. (2004). Neurotoxicant-induced animal models of Parkinson’s disease: understanding the role of rotenone, maneb and paraquat in neurodegeneration. Cell Tissue Res 318:225–241.
  • Ved R, Saha S, Westlund B, Perier C, Burnam L, Sluder A, Hoener M, Rodrigues CM, Alfonso A, Steer C, Liu L, Przedborski S, Wolozin B. (2005). Similar patterns of mitochondrial vulnerability and rescue induced by genetic modification of alpha-synuclein, parkin, and DJ-1 in Caenorhabditis elegans. J Biol Chem 280:42655–42668.
  • Vehovszky A, Szabó H, Hiripi L, Elliott CJ, Hernádi L. (2007). Behavioural and neural deficits induced by rotenone in the pond snail Lymnaea stagnalis. A possible model for Parkinson’s disease in an invertebrate. Eur J Neurosci 25:2123–2130.
  • Venderova K, Kabbach G, Abdel-Messih E, Zhang Y, Parks RJ, Imai Y, Gehrke S, Ngsee J, Lavoie MJ, Slack RS, Rao Y, Zhang Z, Lu B, Haque ME, Park DS. (2009). Leucine-Rich Repeat Kinase 2 interacts with Parkin, DJ-1 and PINK-1 in a Drosophila melanogaster model of Parkinson’s disease. Hum Mol Genet 18:4390–4404.
  • Visanji NP, O’Neill MJ, Duty S. (2006). Nicotine, but neither the alpha4beta2 ligand RJR2403 nor an alpha7 nAChR subtype selective agonist, protects against a partial 6-hydroxydopamine lesion of the rat median forebrain bundle. Neuropharmacology 51:506–516.
  • Wang C, Lu R, Ouyang X, Ho MW, Chia W, Yu F, Lim KL. (2007). Drosophila overexpressing parkin R275W mutant exhibits dopaminergic neuron degeneration and mitochondrial abnormalities. J Neurosci 27:8563–8570.
  • Wang X, Qin ZH, Leng Y, Wang Y, Jin X, Chase TN, Bennett MC. (2002). Prostaglandin A1 inhibits rotenone-induced apoptosis in SH-SY5Y cells. J Neurochem 83:1094–1102.
  • Wang XJ, Xu JX. (2005). Possible involvement of Ca2+ signaling in rotenone-induced apoptosis in human neuroblastoma SH-SY5Y cells. Neurosci Lett 376:127–132.
  • Wang Y, Gulis G, Buckner S, Johnson PC, Sullivan D, Busenlehner L, Marcus S. (2010). The MAP kinase Pmk1 and protein kinase A are required for rotenone resistance in the fission yeast, Schizosaccharomyces pombe. Biochem Biophys Res Commun 399:123–128.
  • Wang Y, Wang X, Liu L, Wang X. (2009). HDAC inhibitor trichostatin A-inhibited survival of dopaminergic neuronal cells. Neurosci Lett 467:212–216.
  • Watabe M, Nakaki T. (2004). Rotenone induces apoptosis via activation of bad in human dopaminergic SH-SY5Y cells. J Pharmacol Exp Ther 311:948–953.
  • Watabe M, Nakaki T. (2007). Mitochondrial complex I inhibitor rotenone-elicited dopamine redistribution from vesicles to cytosol in human dopaminergic SH-SY5Y cells. J Pharmacol Exp Ther 323:499–507.
  • Watabe M, Nakaki T. (2008). Mitochondrial complex I inhibitor rotenone inhibits and redistributes vesicular monoamine transporter 2 via nitration in human dopaminergic SH-SY5Y cells. Mol Pharmacol 74:933–940.
  • Wolozin B, Saha S, Guillily M, Ferree A, Riley M. (2008). Investigating convergent actions of genes linked to familial Parkinson’s disease. Neurodegener Dis 5:182–185.
  • Wu YN, Johnson SW. (2007). Rotenone potentiates NMDA currents in substantia nigra dopamine neurons. Neurosci Lett 421:96–100.
  • Wu YN, Johnson SW. (2009). Rotenone reduces Mg2+-dependent block of NMDA currents in substantia nigra dopamine neurons. Neurotoxicology 30:320–325.
  • Xiong N, Cao X, Zhang Z, Huang J, Chen C, Zhang Z, Jia M, Xiong J, Liang Z, Sun S, Lin Z, Wang T. (2010). Long-term efficacy and safety of human umbilical cord mesenchymal stromal cells in rotenone-induced hemiparkinsonian rats. Biol Blood Marrow Transplant 16:1519–1529.
  • Xiong N, Huang J, Chen C, Zhao Y, Zhang Z, Jia M, Hou L, Yang H, Cao X, Liang Z, Zhang Y, Sun S, Lin Z, Wang T. (2011a). Dl-3-n-butylphthalide, a natural antioxidant, protects dopamine neurons in rotenone models for parkinson’s disease. Neurobiol Aging doi: 10.1016/j.neurobiolaging.2011.03.007.
  • Xiong N, Huang J, Zhang Z, Zhang Z, Xiong J, Liu X, Jia M, Wang F, Chen C, Cao X, Liang Z, Sun S, Lin Z, Wang T. (2009a). Stereotaxical infusion of rotenone: a reliable rodent model for Parkinson’s disease. PLoS ONE 4:e7878.
  • Xiong N, Jia M, Chen C, Xiong J, Zhang Z, Huang J, Hou L, Yang H, Cao X, Liang Z, Sun S, Lin Z, Wang T. (2011b). Potential autophagy enhancers attenuate rotenone-induced toxicity in SH-SY5Y. Neuroscience 199:292–302.
  • Xiong N, Xiong J, Khare G, Chen C, Huang J, Zhao Y, Zhang Z, Qiao X, Feng Y, Reesaul H, Zhang Y, Sun S, Lin Z, Wang T. (2011c). Edaravone guards dopamine neurons in a rotenone model for Parkinson’s disease. PLoS ONE 6:e20677.
  • Xiong N, Zhang Z, Huang J, Chen C, Zhang Z, Jia M, Xiong J, Liu X, Wang F, Cao X, Liang X, Sun S, Lin Z, Wang T (2010b). Vegf-expressing human umbilical cord mesenchymal stem cells, an improved therapy strategy for parkinson’s disease. Gene Ther 18:394–402
  • Xiong N, Zhang Z, Huang J, Chen C, Zhang Z, Jia M, Xiong J, Liu X, Wang F, Cao X, Liang Z, Sun S, Lin Z, Wang T. (2011d). VEGF-expressing human umbilical cord mesenchymal stem cells, an improved therapy strategy for Parkinson’s disease. Gene Ther 18:394–402.
  • Xiong Y, Ding H, Xu M, Gao J. (2009b). Protective effects of asiatic acid on rotenone- or H2O2-induced injury in SH-SY5Y cells. Neurochem Res 34:746–754.
  • Xu Y, Zhang Z, Qin K, Papa SM, Cao X. (2009). Quantitative autoradiographic study on receptor regulation in the basal ganglia in rat model of levodopa-induced motor complications. J Huazhong Univ Sci Technol Med Sci 29:156–162.
  • Yang Y, Liu X, Ding JH, Sun J, Long Y, Wang F, Yao HH, Hu G. (2004). Effects of iptakalim on rotenone-induced cytotoxicity and dopamine release from PC12 cells. Neurosci Lett 366:53–57.
  • Zeevalk GD, Bernard LP. (2005). Energy status, ubiquitin proteasomal function, and oxidative stress during chronic and acute complex I inhibition with rotenone in mesencephalic cultures. Antioxid Redox Signal 7:662–672.
  • Zhang H, Jia H, Liu J, Ao N, Yan B, Shen W, Wang X, Li X, Luo C, Liu J. (2010a). Combined R-alpha-lipoic acid and acetyl-L-carnitine exerts efficient preventative effects in a cellular model of Parkinson’s disease. J Cell Mol Med 14:215–225.
  • Zhang Z, Cao X, Xiong N, Wang H, Huang J, Sun S, Liang Z, Wang T. (2010b). DNA polymerase-beta is required for 1-methyl-4-phenylpyridinium-induced apoptotic death in neurons. Apoptosis 15:105–115.
  • Zhang ZX, Roman GC, Hong Z, Wu CB, Qu QM, Huang JB, Zhou B, Geng ZP, Wu JX, Wen HB, Zhao H, Zahner GE. (2005). Parkinson’s disease in China: prevalence in Beijing, Xian, and Shanghai. Lancet 365:595–597.
  • Zhou F, Yao HH, Wu JY, Ding JH, Sun T, Hu G. (2008). Opening of microglial K(ATP) channels inhibits rotenone-induced neuroinflammation. J Cell Mol Med 12:1559–1570.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.