1,396
Views
56
CrossRef citations to date
0
Altmetric
Review Article

Alternatives to in vivo tests to detect endocrine disrupting chemicals (EDCs) in fish and amphibians – screening for estrogen, androgen and thyroid hormone disruption

, , , , , , , , , & show all
Pages 45-72 | Received 21 Oct 2011, Accepted 04 Oct 2012, Published online: 28 Nov 2012

References

  • Ackermann GE, Brombacher E, Fent K. (2002). Development of a fish reporter gene system for the assessment of estrogenic compounds and sewage treatment plant effluents. Environ Toxicol Chem 21:1864–1875.
  • Afonso LO, Campbell PM, Iwama GK, Devlin RH, Donaldson EM. (1997). The effect of the aromatase inhibitor fadrozole and two polynuclear aromatic hydrocarbons on sex steroid secretion by ovarian follicles of coho salmon. Gen Comp Endocrinol 106:169–174.
  • Ahn RS, Han SJ, Kim SC, Kwon HB. (2007). Effects of butyltin compounds on follicular steroidogenesis in the bullfrog (Rana catesbeiana). Environ Toxicol Pharmacol 24:149–154.
  • Alderton W, Berghmans S, Butler P, Chassaing H, Fleming A, Golder Z, Richards F, Gardner I. (2010). Accumulation and metabolism of drugs and CYP probe substrates in zebrafish larvae. Xenobiotica 40:547–557.
  • Aluru N, Vijayan MM. (2007). Hepatic transcriptome response to glucocorticoid receptor activation in rainbow trout. Physiol Genomics 31:483–491.
  • Andersson PL, Blom A, Johannisson A, Pesonen M, Tysklind M, Berg AH, Olsson PE, Norrgren L. (1999). Assessment of PCBs and hydroxylated PCBs as potential xenoestrogens: in vitro studies based on MCF-7 cell proliferation and induction of vitellogenin in primary culture of rainbow trout hepatocytes. Arch Environ Contam Toxicol 37:145–150.
  • Ankley GT, Jensen KM, Durhan EJ, Makynen EA, Butterworth BC, Kahl MD, Villeneuve DL, Linnum A, Gray LE, Cardon M, Wilson VS. (2005). Effects of two fungicides with multiple modes of action on reproductive endocrine function in the fathead minnow (Pimephales promelas). Toxicol Sci 86:300–308.
  • Ankley GT, Daston GP, Degitz SJ, Denslow ND, Hoke RA, Kennedy SW, Miracle AL, Perkins EJ, Snape J, Tillitt DE, Tyler CR, Versteeg D. (2006). Toxicogenomics in regulatory ecotoxicology. Environ Sci Technol 40:4055–4065.
  • Ankley GT, Defoe DL, Kahl MD, Jensen KM, Makynen EA, Miracle A, Hartig P, Gray LE, Cardon M, Wilson V. (2004). Evaluation of the model anti-androgen flutamide for assessing the mechanistic basis of responses to an androgen in the fathead minnow (Pimephales promelas). Environ Sci Technol 38:6322–6327.
  • Baek HJ, Hwang IJ, Lee YD, Kim HB (2011). Effects of nonylphenol and 3,3′,4,4′,5-pentachlorobiphenyl on in vitro oocyte steroidogenesis in redlip mullet, Chelon haematocheilus. Anim Cells Syst 15:189–196.
  • Belanger SE, Balon EK, Rawlings JM. (2010). Saltatory ontogeny of fishes and sensitive early life stages for ecotoxicology tests. Aquat Toxicol 97:88–95.
  • Bickley LK, Lange A, Winter MJ, Tyler CR. (2009). Evaluation of a carp primary hepatocyte culture system for screening chemicals for oestrogenic activity. Aquat Toxicol 94:195–203.
  • Björkblom C, Olsson PE, Katsiadaki I, Wiklund T. (2007). Estrogen- and androgen-sensitive bioassays based on primary cell and tissue slice cultures from three-spined stickleback (Gasterosteus aculeatus). Comp Biochem Physiol C Toxicol Pharmacol 146:431–442.
  • Björkblom C, Salste L, Katsiadaki I, Wiklund T, Kronberg L. (2008). Detection of estrogenic activity in municipal wastewater effluent using primary cell cultures from three-spined stickleback and chemical analysis. Chemosphere 73:1064–1070.
  • Blanton ML, Specker JL. (2007). The hypothalamic-pituitary-thyroid (HPT) axis in fish and its role in fish development and reproduction. Crit Rev Toxicol 37:97–115.
  • Boyce-Derricott J, Nagler JJ, Cloud JG. (2009). Regulation of hepatic estrogen receptor isoform mRNA expression in rainbow trout (Oncorhynchus mykiss). Gen Comp Endocrinol 161:73–78.
  • Braathen M, Mortensen AS, Sandvik M, Skåre JU, Arukwe A. (2009). Estrogenic effects of selected hydroxy polychlorinated biphenyl congeners in primary culture of Atlantic Salmon (Salmo salar) hepatocytes. Arch Environ Contam Toxicol 56:111–122.
  • Brausch JM, Wages M, Shannahan RD, Perry G, Anderson TA, Maul JD, Mulhearn B, Smith PN. (2010). Surface water mitigates the anti-metamorphic effects of perchlorate in New Mexico spadefoot toads (Spea multiplicata) and African clawed frogs (Xenopus laevis). Chemosphere 78:280–285.
  • Brion F, Le Page Y, Piccini B, Cardoso O, Tong SK, Chung BC, Kah O. (2012). Screening estrogenic activities of chemicals or mixtures in vivo using transgenic (cyp19a1b-GFP) zebrafish embryos. PLoS ONE 7:e36069.
  • Brown SB, Adams BA, Cyr DG, Eales JG. (2004). Contaminant effects on the teleost fish thyroid. Environ Toxicol Chem 23:1680–1701.
  • Carlsson G, Norrgren L. (2007). The impact of the goitrogen 6-propylthiouracil (PTU) on West-African clawed frog (Xenopus tropicalis) exposed during metamorphosis. Aquat Toxicol 82:55–62.
  • Celius T, Haugen TB, Grotmol T, Walther BT. (1999). A sensitive zonagenetic assay for rapid in vitro assessment of estrogenic potency of xenobiotics and mycotoxins. Environ Health Perspect 107:63–68.
  • Chakraborty T, Katsu Y, Zhou LY, Miyagawa S, Nagahama Y, Iguchi T. (2011). Estrogen receptors in medaka (Oryzias latipes) and estrogenic environmental contaminants: an in vitro-in vivo correlation. J Steroid Biochem Mol Biol 123:115–121.
  • Chan WK, Chan KM. (2012). Disruption of the hypothalamic-pituitary-thyroid axis in zebrafish embryo-larvae following waterborne exposure to BDE-47, TBBPA and BPA. Aquat Toxicol 108:106–111.
  • Chen H, Hu J, Yang J, Wang Y, Xu H, Jiang Q, Gong Y, Gu Y, Song H. (2010). Generation of a fluorescent transgenic zebrafish for detection of environmental estrogens. Aquat Toxicol 96:53–61.
  • Cheng Y, Prusoff WH. (1973). Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol 22:3099–3108.
  • Cheshenko K, Brion F, Le Page Y, Hinfray N, Pakdel F, Kah O, Segner H, Eggen RI. (2007). Expression of zebra fish aromatase cyp19a and cyp19b genes in response to the ligands of estrogen receptor and aryl hydrocarbon receptor. Toxicol Sci 96:255–267.
  • Christianson-Heiska I, Isomaa B. (2008). The use of primary hepatocytes from brown trout (Salmo trutta lacustris) and the fish cell lines RTH-149 and ZF-L for in vitro screening of (anti)estrogenic activity of wood extractives. Toxicol In Vitro 22:589–597.
  • Coady K, Marino T, Thomas J, Currie R, Hancock G, Crofoot J, McNalley L, McFadden L, Geter D, Klecka G. (2010). Evaluation of the amphibian metamorphosis assay: exposure to the goitrogen methimazole and the endogenous thyroid hormone l-thyroxine. Environ Toxicol Chem 29:869–880.
  • Cosnefroy A, Brion F, Guillet B, Laville N, Porcher JM, Balaguer P, Aït-Aïssa S. (2009). A stable fish reporter cell line to study estrogen receptor transactivation by environmental (xeno)estrogens. Toxicol In Vitro 23:1450–1454.
  • Dang Z. (2010). Comparison of relative binding affinities to fish and mammalian estrogen receptors: the regulatory implications. Toxicol Lett 192:298–315.
  • Danzo BJ. (1997). Environmental xenobiotics may disrupt normal endocrine function by interfering with the binding of physiological ligands to steroid receptors and binding proteins. Environ Health Perspect 105:294–301.
  • Degitz SJ, Holcombe GW, Flynn KM, Kosian PA, Korte JJ, Tietge JE. (2005). Progress towards development of an amphibian-based thyroid screening assay using Xenopus laevis. Organismal and thyroidal responses to the model compounds 6-propylthiouracil, methimazole, and thyroxine. Toxicol Sci 87:353–364.
  • Denny JS, Tapper MA, Schmieder PK, Hornung MW, Jensen KM, Ankley GT, Henry TR. (2005). Comparison of relative binding affinities of endocrine active compounds to fathead minnow and rainbow trout estrogen receptors. Environ Toxicol Chem 24:2948–2953.
  • Duarte-Guterman P, Langlois VS, Pauli BD, Trudeau VL. (2010). Expression and T3 regulation of thyroid hormone- and sex steroid-related genes during Silurana (Xenopus) tropicalis early development. Gen Comp Endocrinol 166:428–435.
  • ECHA. (2008). Guidance on information requirements and chemical safety assessment - Chapter R.7b: endpoint specific guidance. Available at: echa.europe.de.
  • Edwards TM, Moore BC, Guillette LJ Jr. (2006). Reproductive dysgenesis in wildlife: a comparative view. Int J Androl 29:109–121.
  • Ekman DR, Hartig PC, Cardon M, Skelton DM, Teng Q, Durhan EJ, Jensen KM, Kahl MD, Villeneuve DL, Gray LE Jr, Collette TW, Ankley GT. (2012). Metabolite profiling and a transcriptional activation assay provide direct evidence of androgen receptor antagonism by bisphenol a in fish. Environ Sci Technol 46:9673–9680.
  • Embry MR, Belanger SE, Braunbeck TA, Galay-Burgos M, Halder M, Hinton DE, Léonard MA, Lillicrap A, Norberg-King T, Whale G. (2010). The fish embryo toxicity test as an animal alternative method in hazard and risk assessment and scientific research. Aquat Toxicol 97:79–87.
  • EMEA/CHMP. (2006). Guideline on the environmental risk assessment of medicinal products for human use. EMEA/CHMP/SWP/4447/00.
  • Etkin W. (1932). Growth and resorption phenomena in anuran metamorphosis. I. Physiol Zool 5:275–300.
  • EU. (1997). European workshop on the impact of endocrine disrupters on human health and wild-life, Weybridge, UK 2–4 December, 1996, Cat. No EUR 17549, DG XII, Brussels. Available at: http://ec.europa.eu/environment/endocrine/documents/reports_en.html.
  • EU. (1998). Directive 98/8/EC of the European Parliament and of the council of 16 February 1998 concerning the placing of biocidal products on the market. OJ Eur Comm L123:1–63.
  • EU. (2004). Directive 2004/28/EC of the European Parliament and the council of 31 March 2004 amending Directive 2001/82/EC on the Community code relating to veterinary medicinal products. OJ Eur Comm L136:58–84.
  • EU. (2006). Regulation (EC) No 1907/2006 of the European parliament and of the council of 18 December 2006 concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH), Official Journal of the European Union L 396/1. OJ Eur Comm L396:1–849.
  • EU. (2009). Regulation (EC) No 1107/2009 of the European parliament and the council of 21 October 2009 concerning the placing of plant protection products on the market and repealing council directives 79/117/EEC and 91/414/EEC. OJ Eur Comm L309:1–50.
  • EU. (2010). Directive 2010/63/EU of the European parliament and of the council of 22 September 2010 on the protection of animals used for scientific purposes. OJ Eur Comm L 276:34–79.
  • Evanson M, Van Der Kraak GJ. (2001). Stimulatory effects of selected PAHs on testosterone production in goldfish and rainbow trout and possible mechanisms of action. Comp Biochem Physiol C Toxicol Pharmacol 130:249–258.
  • Fenner-Crisp P, Maciorowski A, Timm G. (2000). The endocrine disruptor screening program developed by the U.S. Environmental Protection Agency. Ecotoxicology 9: 85–91.
  • Fent K. (2001). Fish cell lines as versatile tools in ecotoxicology: assessment of cytotoxicity, cytochrome P4501A induction potential and estrogenic activity of chemicals and environmental samples. Toxicol In Vitro 15:477–488.
  • Fernandes D, Bebianno MJ, Porte C. (2007). Mitochondrial metabolism of 17α-hydroxyprogesterone in male sea bass (Dicentrarchus labrax): a potential target for endocrine disruptors. Aquat Toxicol 85:258–266.
  • Fini JB, Le Mevel S, Turque N, Palmier K, Zalko D, Cravedi JP, Demeneix BA. (2007). An in vivo multiwell-based fluorescent screen for monitoring vertebrate thyroid hormone disruption. Environ Sci Technol 41:5908–5914.
  • Fini JB, Riu A, Debrauwer L, Hillenweck A, Le Mével S, Chevolleau S, Boulahtouf A, Palmier K, Balaguer P, Cravedi JP, Demeneix BA, Zalko D. (2012a). Parallel biotransformation of tetrabromobisphenol A in Xenopus laevis and mammals: Xenopus as a model for endocrine perturbation studies. Toxicol Sci 125:359–367.
  • Fini JB, Mével SL, Palmier K, Darras VM, Punzon I, Richardson SJ, Clerget-Froidevaux MS, Demeneix BA. (2012b). Thyroid hormone signaling in the Xenopus laevis embryo is functional and susceptible to endocrine disruption. Endocrinology 153:5068–5081.
  • Fort DJ, Rogers RL, Morgan LA, Miller MF, Clark PA, White JA, Paul RR, Stover EL. (2000). Preliminary validation of a short-term morphological assay to evaluate adverse effects on amphibian metamorphosis and thyroid function using Xenopus laevis. J Appl Toxicol 20:419–425.
  • Fort DJ, Stover EL. (1997). Development of short-term, whole-embryo assays to evaluate detrimental effects on amphibian limb development and metamorphosis using Xenopus laevis. In: Dwyer FJ, Donae TR, Hinman ML, eds. Environmental Toxicology and Risk Assessment - Modelling and Risk Assessment. Volume 6. West Conshohocken: American Society for Testing and Materials, 376–390.
  • Gagné F, Blaise C. (2000). Evaluation of environmental estrogens with a fish cell line. Bull Environ Contam Toxicol 65:494–500.
  • Gale WL, Patiño R, Maule AG. (2004). Interaction of xenobiotics with estrogen receptors α and β and a putative plasma sex hormone-binding globulin from channel catfish (Ictalurus punctatus). Gen Comp Endocrinol 136:338–345.
  • Gerbron M, Geraudie P, Rotchell J, Minier C. (2010). A new in vitro screening bioassay for the ecotoxicological evaluation of the estrogenic responses of environmental chemicals using roach (Rutilus rutilus) liver explant culture. Environ Toxicol 25:510–516.
  • Goto Y, Kitamura S, Kashiwagi K, Oofusa K, Tooi O, Yoshizato K, Sato J, Ohta S, Kashiwagi A. (2006). Suppression of amphibian metamorphosis by bisphenol A and related chemical substances. J Health Sci 52:160–168.
  • Halder M, Léonard M, Iguchi T, Oris JT, Ryder K, Belanger SE, Braunbeck TA, Embry MR, Whale G, Norberg-King T, Lillicrap A. (2010). Regulatory aspects on the use of fish embryos in environmental toxicology. Integr Environ Assess Manag 6:484–491.
  • Heimeier RA, Das B, Buchholz DR, Shi YB. (2009). The xenoestrogen bisphenol A inhibits postembryonic vertebrate development by antagonizing gene regulation by thyroid hormone. Endocrinology 150:2964–2973.
  • Hinfray N, Palluel O, Turies C, Cousin C, Porcher JM, Brion F. (2006a). Brain and gonadal aromatase as potential targets of endocrine disrupting chemicals in a model species, the zebrafish (Danio rerio). Environ Toxicol 21:332–337.
  • Hinfray N, Porcher JM, Brion F. (2006b). Inhibition of rainbow trout (Oncorhynchus mykiss) P450 aromatase activities in brain and ovarian microsomes by various environmental substances. Comp Biochem Physiol C Toxicol Pharmacol 144:252–262.
  • Hinther A, Bromba CM, Wulff JE, Helbing CC. (2011). Effects of triclocarban, triclosan, and methyl triclosan on thyroid hormone action and stress in frog and mammalian culture systems. Environ Sci Technol 45:5395–5402.
  • Hinther A, Domanski D, Vawda S, Helbing CC. (2010). C-fin: a cultured frog tadpole tail fin biopsy approach for detection of thyroid hormone-disrupting chemicals. Environ Toxicol Chem 29:380–388.
  • Hoffmann F, Kloas W. (2012a). Effects of environmentally relevant concentrations of the xeno-androgen, methyldihydrotestosterone, on male and female mating behavior in Xenopus laevis. Chemosphere 87:1246–1253.
  • Hoffmann F, Kloas W. (2012b). Estrogens can disrupt amphibian mating behavior. PLoS ONE 7:e32097.
  • Hornung MW, Ankley GT, Schmieder PK. (2003). Induction of an estrogen-responsive reporter gene in rainbow trout hepatoma cells (RTH 149) at 11 or 18 degrees C. Environ Toxicol Chem 22:866–871.
  • Hornung MW, Degitz SJ, Korte LM, Olson JM, Kosian PA, Linnum AL, Tietge JE. (2010). Inhibition of thyroid hormone release from cultured amphibian thyroid glands by methimazole, 6-propylthiouracil, and perchlorate. Toxicol Sci 118:42–51.
  • Huang YW, Matthews JB, Fertuck KC, Zacharewski TR. (2005). Use of Xenopus laevis as a model for investigating in vitro and in vivo endocrine disruption in amphibians. Environ Toxicol Chem 24:2002–2009.
  • Ishihara A, Sawatsubashi S, Yamauchi K. (2003). Endocrine disrupting chemicals: interference of thyroid hormone binding to transthyretins and to thyroid hormone receptors. Mol Cell Endocrinol 199:105–117.
  • Islinger M, Pawlowski S, Hollert H, Völkl A, Braunbeck T. (1999). Measurement of vitellogenin-mRNA expression in primary cultures of rainbow trout hepatocytes in a non-radioactive dot blot/RNAse protection-assay. Sci Total Environ 233:109–122.
  • Jagnytsch O, Opitz R, Lutz I, Kloas W. (2006). Effects of tetrabromobisphenol A on larval development and thyroid hormone-regulated biomarkers of the amphibian Xenopus laevis. Environ Res 101:340–348.
  • Jakobs TC, Schmutzler C, Meissner J, Köhrle J. (1997). The promoter of the human type I 5′-deiodinase gene–mapping of the transcription start site and identification of a DR+4 thyroid-hormone-responsive element. Eur J Biochem 247:288–297.
  • Jakobsson S, Borg B, Haux C, Hyllner SJ. (1999). An 11-ketotestosterone induced kidney-secreted protein: the nest building glue from male three-spined stickleback, Gasterosteus aculeatus. Fish Physiol Biochem 20:79–85.
  • Ji L, Domanski D, Skirrow RC, Helbing CC. (2007). Genistein prevents thyroid hormone-dependent tail regression of Rana catesbeiana tadpoles by targetting protein kinase C and thyroid hormone receptor α. Dev Dyn 236:777–790.
  • Jiao B, Yeung EK, Chan CB, Cheng CH. (2008). Establishment of a transgenic yeast screening system for estrogenicity and identification of the anti-estrogenic activity of malachite green. J Cell Biochem 105:1399–1409.
  • Jin Y, Chen R, Liu W, Fu Z. (2010). Effect of endocrine disrupting chemicals on the transcription of genes related to the innate immune system in the early developmental stage of zebrafish (Danio rerio). Fish Shellfish Immunol 28:854–861.
  • Jin Y, Chen R, Sun L, Qian H, Liu W, Fu Z. (2009). Induction of estrogen-responsive gene transcription in the embryo, larval, juvenile and adult life stages of zebrafish as biomarkers of short-term exposure to endocrine disrupting chemicals. Comp Biochem Physiol C Toxicol Pharmacol 150:414–420.
  • Jobling S, Reynolds T, White R, Parker MG, Sumpter JP. (1995). A variety of environmentally persistent chemicals, including some phthalate plasticizers, are weakly estrogenic. Environ Health Perspect 103:582–587.
  • Jobling S, Sumpter JP. (1993). Detergent components in sewage effluent are weakly oestrogenic to fish: an in vitro study using rainbow trout (Oncorhynchus mykiss) hepatocytes. Aquat Toxicol 27:361–372.
  • Jolly C, Katsiadaki I, Le Belle N, Mayer I, Dufour S. (2006). Development of a stickleback kidney cell culture assay for the screening of androgenic and anti-androgenic endocrine disrupters. Aquat Toxicol 79:158–166.
  • Jolly C, Katsiadaki I, Morris S, Le Belle N, Dufour S, Mayer I, Pottinger TG, Scott AP. (2009). Detection of the anti-androgenic effect of endocrine disrupting environmental contaminants using in vivo and in vitro assays in the three-spined stickleback. Aquat Toxicol 92:228–239.
  • Jones I, Lindberg C, Jakobsson S, Hellqvist A, Hellman U, Borg B, Olsson PE. (2001). Molecular cloning and characterization of spiggin. An androgen-regulated extraorganismal adhesive with structural similarities to von Willebrand Factor-related proteins. J Biol Chem 276:17857–17863.
  • Kah O, Anglade I, Leprêtre E, Dubourg P, de Monbrison D. (1993). The reproductive brain in fish. Fish Physiol Biochem 11:85–98.
  • Kaneko M, Okada R, Yamamoto K, Nakamura M, Mosconi G, Polzonetti-Magni AM, Kikuyama S. (2008). Bisphenol A acts differently from and independently of thyroid hormone in suppressing thyrotropin release from the bullfrog pituitary. Gen Comp Endocrinol 155:574–580.
  • Katsu Y, Hinago M, Sone K, Urushitani H, Guillette LJ Jr, Iguchi T. (2007). In vitro assessment of transcriptional activation of the estrogen and androgen receptors of mosquito fish, Gambusia affinis affinis. Mol Cell Endocrinol 276:10–17.
  • Kavlock RJ, Daston GP, DeRosa C, Fenner-Crisp P, Gray LE, Kaattari S, Lucier G, Luster M, Mac MJ, Maczka C, Miller R, Moore J, Rolland R, Scott G, Sheehan DM, Sinks T, Tilson HA. (1996). Research needs for the risk assessment of health and environmental effects of endocrine disruptors: a report of the U.S. EPA-sponsored workshop. Environ Health Perspect 104 Suppl 4:715–740.
  • Kim BH, Takemura A, Kim SJ, Lee YD. (2003). Vitellogenin synthesis via androgens in primary cultures of tilapia hepatocytes. Gen Comp Endocrinol 132:248–255.
  • Kime DE. (1998). Endocrine Disruption in Fish. Dordrecht, NL: Kluwer Academic Publishers.
  • Kitamura S, Kato T, Iida M, Jinno N, Suzuki T, Ohta S, Fujimoto N, Hanada H, Kashiwagi K, Kashiwagi A. (2005). Anti-thyroid hormonal activity of tetrabromobisphenol A, a flame retardant, and related compounds: affinity to the mammalian thyroid hormone receptor, and effect on tadpole metamorphosis. Life Sci 76:1589–1601.
  • Kloas W. (2002). Amphibians as a model for the study of endocrine disruptors. Int Rev Cytol 216:1–57.
  • Kloas W, Lutz I, Einspanier R. (1999). Amphibians as a model to study endocrine disruptors: II. Estrogenic activity of environmental chemicals in vitro and in vivo. Sci Total Environ 225:59–68.
  • Kloas W, Schrag B, Ehnes C, Segner H. (2000). Binding of xenobiotics to hepatic estrogen receptor and plasma sex steroid binding protein in the teleost fish, the common carp (Cyprinus carpio). Gen Comp Endocrinol 119:287–299.
  • Knacker T, Boettcher M, Frische T, Rufli H, Stolzenberg HC, Teigeler M, Zok S, Braunbeck T, Schäfers C. (2010). Environmental effect assessment for sexual endocrine-disrupting chemicals: fish testing strategy. Integr Environ Assess Manag 6:653–662.
  • Kortner TM, Arukwe A. (2007a). Effects of 17α-methyltestosterone exposure on steroidogenesis and cyclin-B mRNA expression in previtellogenic oocytes of Atlantic cod (Gadus morhua). Comp Biochem Physiol C Toxicol Pharmacol 146:569–580.
  • Kortner TM, Arukwe A. (2007b). The xenoestrogen, 4-nonylphenol, impaired steroidogenesis in previtellogenic oocyte culture of Atlantic cod (Gadus morhua) by targeting the StAR protein and P450scc expressions. Gen Comp Endocrinol 150:419–429.
  • Kristensen T, Baatrup E, Bayley M. (2005). 17α-ethinylestradiol reduces the competitive reproductive fitness of the male guppy (Poecilia reticulata). Biol Reprod 72:150–156.
  • Krøvel AV, Søfteland L, Torstensen BE, Olsvik PA. (2010). Endosulfan in vitro toxicity in Atlantic salmon hepatocytes obtained from fish fed either fish oil or vegetable oil. Comp Biochem Physiol C Toxicol Pharmacol 151:175–186.
  • Kudo Y, Yamauchi K. (2005). In vitro and in vivo analysis of the thyroid disrupting activities of phenolic and phenol compounds in Xenopus laevis. Toxicol Sci 84:29–37.
  • Kudo Y, Yamauchi K, Fukazawa H, Terao Y. (2006). In vitro and in vivo analysis of the thyroid system-disrupting activities of brominated phenolic and phenol compounds in Xenopus laevis. Toxicol Sci 92:87–95.
  • Kunz PY, Fent K. (2006). Multiple hormonal activities of UV filters and comparison of in vivo and in vitro estrogenic activity of ethyl-4-aminobenzoate in fish. Aquat Toxicol 79:305–324.
  • Kunz PY, Galicia HF, Fent K. (2006). Comparison of in vitro and in vivo estrogenic activity of UV filters in fish. Toxicol Sci 90:349–361.
  • Kurauchi K, Nakaguchi Y, Tsutsumi M, Hori H, Kurihara R, Hashimoto S, Ohnuma R, Yamamoto Y, Matsuoka S, Kawai S, Hirata T, Kinoshita M. (2005). In vivo visual reporter system for detection of estrogen-like substances by transgenic medaka. Environ Sci Technol 39:2762–2768.
  • Lanno RP, Dixon DG. (1994). Chronic toxicity of waterborne thiocyanate to the fathead minnow (Pimephales promelas): a partial life-cycle study. Environ Toxicol Chem 13:1423–1432.
  • Lanno RP, Dixon DG. (1996a). Chronic toxicity of waterborne thiocyanate to rainbow trout (Oncorhynchus mykiss). Can J Fish Aquat Sci 53:2137–2146.
  • Lanno RP, Dixon DG. (1996b). The comparative chronic toxicity of thiocyanate and cyanide to rainbow trout. Aquat Toxicol 36:177–187.
  • Latonnelle K, Le Menn F, Kaushik SJ, Bennetau-Pelissero C. (2002a). Effects of dietary phytoestrogens in vivo and in vitro in rainbow trout and Siberian sturgeon: interests and limits of the in vitro studies of interspecies differences. Gen Comp Endocrinol 126:39–51.
  • Latonnelle K, Fostier A, Le Menn F, Bennetau-Pelissero C. (2002b). Binding affinities of hepatic nuclear estrogen receptors for phytoestrogens in rainbow trout (Oncorhynchus mykiss) and Siberian sturgeon (Acipenser baeri). Gen Comp Endocrinol 129:69–79.
  • Leaños-Castañeda O, Van Der Kraak G. (2007). Functional characterization of estrogen receptor subtypes, ERα and ERβ, mediating vitellogenin production in the liver of rainbow trout. Toxicol Appl Pharmacol 224:116–125.
  • Leaver MJ, Diab A, Boukouvala E, Williams TD, Chipman JK, Moffat CF, Robinson CD, George SG. (2010). Hepatic gene expression in flounder chronically exposed to multiply polluted estuarine sediment: absence of classical exposure ‘biomarker’ signals and induction of inflammatory, innate immune and apoptotic pathways. Aquat Toxicol 96:234–245.
  • Lee HJ, Chattopadhyay S, Gong EY, Ahn RS, Lee K. (2003). Antiandrogenic effects of bisphenol A and nonylphenol on the function of androgen receptor. Toxicol Sci 75:40–46.
  • Lee PS, Pankhurst NW, King HR. (2006). Effects of aromatase inhibitors on in vitro steroidogenesis by Atlantic salmon (Salmo salar) gonadal and brain tissue. Comp Biochem Physiol, Part A Mol Integr Physiol 145:195–203.
  • Legler J, Zeinstra LM, Schuitemaker F, Lanser PH, Bogerd J, Brouwer A, Vethaak AD, De Voogt P, Murk AJ, Van der Burg B. (2002). Comparison of in vivo and in vitro reporter gene assays for short-term screening of estrogenic activity. Environ Sci Technol 36:4410–4415.
  • Letcher RJ, Sanderson JT, Bokkers A, Giesy JP, van den Berg M. (2005). Effects of bisphenol A-related diphenylalkanes on vitellogenin production in male carp (Cyprinus carpio) hepatocytes and aromatase (CYP19) activity in human H295R adrenocortical carcinoma cells. Toxicol Appl Pharmacol 209:95–104.
  • Lim W, Nguyen NH, Yang HY, Scanlan TS, Furlow JD. (2002). A thyroid hormone antagonist that inhibits thyroid hormone action in vivo. J Biol Chem 277:35664–35670.
  • Liu C, Du Y, Zhou B. (2007). Evaluation of estrogenic activities and mechanism of action of perfluorinated chemicals determined by vitellogenin induction in primary cultured tilapia hepatocytes. Aquat Toxicol 85:267–277.
  • Liu S, Chang J, Zhao Y, Zhu G. (2011). Changes of thyroid hormone levels and related gene expression in zebrafish on early life stage exposure to triadimefon. Environ Toxicol Pharmacol 32:472–477.
  • Lizardo-Daudt HM, Bains OS, Singh CR, Kennedy CJ. (2008). Cadmium chloride-induced disruption of testicular steroidogenesis in rainbow trout, Oncorhynchus mykiss. Arch Environ Contam Toxicol 55:103–110.
  • Loomis AK, Thomas P. (2000). Effects of estrogens and xenoestrogens on androgen production by Atlantic croaker testes in vitro: evidence for a nongenomic action mediated by an estrogen membrane receptor. Biol Reprod 62:995–1004.
  • Loomis AK, Thomas P. (1999). Binding characteristics of estrogen receptor (ER) in Atlantic croaker (Micropogonias undulatus) testis: different affinity for estrogens and xenobiotics from that of hepatic ER. Biol Reprod 61:51–60.
  • Lutz I, Blödt S, Kloas W. (2005). Regulation of estrogen receptors in primary cultured hepatocytes of the amphibian Xenopus laevis as estrogenic biomarker and its application in environmental monitoring. Comp Biochem Physiol C Toxicol Pharmacol 141:384–392.
  • Lutz I, Kloas W. (1999). Amphibians as a model to study endocrine disruptors: I. Environmental pollution and estrogen receptor binding. Sci Total Environ 225:49–57.
  • Madigou T, Le Goff P, Salbert G, Cravedi JP, Segner H, Pakdel F, Valotaire Y. (2001). Effects of nonylphenol on estrogen receptor conformation, transcriptional activity and sexual reversion in rainbow trout (Oncorhynchus mykiss). Aquat Toxicol 53:173–186.
  • Marlatt VL, Gerrie E, Wiens S, Jackson F, Moon TW, Trudeau VL. (2012). Estradiol and triiodothyronine differentially modulate reproductive and thyroidal genes in male goldfish. Fish Physiol Biochem 38:283–296.
  • Marlatt VL, Hewitt LM, Van Der Kraak G. (2006). Utility of in vitro test methods to assess the activity of xenoestrogens in fish. Environ Toxicol Chem 25:3204–3212.
  • Matthews J, Celius T, Halgren R, Zacharewski T. (2000). Differential estrogen receptor binding of estrogenic substances: a species comparison. J Steroid Biochem Mol Biol 74:223–234.
  • McGinnis CL, Crivello JF. (2011). Elucidating the mechanism of action of tributyltin (TBT) in zebrafish. Aquat Toxicol 103:25–31.
  • Miller WL. (1988). Molecular biology of steroid hormone synthesis. Endocr Rev 9:295–318.
  • Mitsui N, Tooi O, Kawahara A. (2007). Vitellogenin-inducing activities of natural, synthetic, and environmental estrogens in primary cultured Xenopus laevis hepatocytes. Comp Biochem Physiol C Toxicol Pharmacol 146:581–587.
  • Miyata K, Ose K. (2012). Thyroid hormone-disrupting effects and the amphibian metamorphosis assay. J Toxicol Pathol 25:1–9.
  • Molina-Molina JM, Escande A, Pillon A, Gomez E, Pakdel F, Cavaillès V, Olea N, Aït-Aïssa S, Balaguer P. (2008). Profiling of benzophenone derivatives using fish and human estrogen receptor-specific in vitro bioassays. Toxicol Appl Pharmacol 232:384–395.
  • Mondal S, Mukhopadhyay B, Bhattacharya S. (1997). Inorganic mercury binding to fish oocyte plasma membrane induces steroidogenesis and translatable messenger RNA synthesis. Biometals 10:285–290.
  • Morgado I, Hamers T, Van der Ven L, Power DM. (2007). Disruption of thyroid hormone binding to sea bream recombinant transthyretin by ioxinyl and polybrominated diphenyl ethers. Chemosphere 69:155–163.
  • Nakai M. (2003). Receptor binding assay and reporter gene assay of medaka. Medaka Oryzias latipes. Japan: Ministry of the Environment, 21–26. Available at: http://www.env.go.jp/chemi/end/pdfs/e06_chapter2.pdf.
  • Nakari T, Pessala P. (2005). In vitro estrogenicity of polybrominated flame retardants. Aquat Toxicol 74:272–279.
  • Navas JM, Segner H. (2000). Antiestrogenicity of β-naphthoflavone and PAHs in cultured rainbow trout hepatocytes: evidence for a role of the arylhydrocarbon receptor. Aquat Toxicol 51:79–92.
  • Nieuwkoop PD, Faber J. (1956). Normal Table of Xenopus laevis (Daudin). A Systematical and Chronological Survey of the Development from the Fertilized Egg till the End of Metamorphosis. Guilders, Amsterdam: North-Holland Publishing Company.
  • Nimrod AC, Benson WH. (1997). Xenobiotic interaction with and alteration of channel catfish estrogen receptor. Toxicol Appl Pharmacol 147:381–390.
  • Nishizuka M, Heitaku S, Maekawa S, Nishikawa J-I, Imagawa M. (2004). Development of standardized in vitro assay system for estrogen receptors and species specificity of binding ability of 4-nonylphenol and p-octylphenol. J Health Sci 50:511–517.
  • Nomura Y, Mitsui N, Bhawal UK, Sawajiri M, Tooi O, Takahashi T, Okazaki M. (2006). Estrogenic activity of phthalate esters by in vitro VTG assay using primary-cultured Xenopus hepatocytes. Dent Mater J 25:533–537.
  • OECD. (2006a). Report of the initial work towards the validation of the 21-day fish screening assay for the detection of endocrine active substances (Phase 1a). ENV/JM/MONO (2006)27.
  • OECD. (2006b). Report of the validation of the 21-day fish screening assay for the detection of endocrine substances (Phase 1b), series on testing and assessment, Number 61, ENV/JM/MONO(2006)29.
  • OECD. (2007). Final report of the validation of the amphibian metamorphosis assay: Phase 1 – optimisation of the test protocol. Available at: www.oecd.org.
  • OECD. (2008). Report of the validation of the amphibian metamorphosis assay (Phase 3). Available at: www.oecd.org.
  • OECD. (2009a). Draft detailed review paper on environmental endocrine disruptor screening: the use of receptor binding and transactivation assays in fish, Paris 16 April, 2009. Available at: www.oecd.org.
  • OECD. (2009b). OECD guideline 231 for the testing of chemicals - The amphibian metamorphosis assay. Draft test guideline version 11/3/2008. Available at: www.oecd.org.
  • OECD. (2009c). OECD guideline 456 for the testing of chemicals - The H295R Steroidogenesis Assay, Paris 16 December 2009. Available at: www.oedc.org.
  • OECD. (2012). Information on OECD work related to endocrine disrupters. Available at: www.oecd.org.
  • OECD 212. (1998). OECD guideline for testing of chemicals. Test No. 212: fish, short-term toxicity test on embryo and sac-fry stages.
  • Oka T, Tooi O, Mitsui N, Miyahara M, Ohnishi Y, Takase M, Kashiwagi A, Shinkai T, Santo N, Iguchi T. (2008). Effect of atrazine on metamorphosis and sexual differentiation in Xenopus laevis. Aquat Toxicol 87:215–226.
  • Okoumassoun LE, Averill-Bates D, Gagné F, Marion M, Denizeau F. (2002). Assessing the estrogenic potential of organochlorine pesticides in primary cultures of male rainbow trout (Oncorhynchus mykiss) hepatocytes using vitellogenin as a biomarker. Toxicology 178:193–207.
  • Olsen CM, Meussen-Elholm ET, Hongslo JK, Stenersen J, Tollefsen KE. (2005). Estrogenic effects of environmental chemicals: an interspecies comparison. Comp Biochem Physiol C Toxicol Pharmacol 141:267–274.
  • Olsson PE, Berg AH, von Hofsten J, Grahn B, Hellqvist A, Larsson A, Karlsson J, Modig C, Borg B, Thomas P. (2005). Molecular cloning and characterization of a nuclear androgen receptor activated by 11-ketotestosterone. Reprod Biol Endocrinol 3:37.
  • Opitz R, Braunbeck T, Bögi C, Pickford DB, Nentwig G, Oehlmann J, Tooi O, Lutz I, Kloas W. (2005). Description and initial evaluation of a Xenopus metamorphosis assay for detection of thyroid system-disrupting activities of environmental compounds. Environ Toxicol Chem 24:653–664.
  • Opitz R, Kloas W. (2010). Developmental regulation of gene expression in the thyroid gland of Xenopus laevis tadpoles. Gen Comp Endocrinol 168:199–208.
  • Opitz R, Schmidt F, Braunbeck T, Wuertz S, Kloas W. (2009). Perchlorate and ethylenethiourea induce different histological and molecular alterations in a non-mammalian vertebrate model of thyroid goitrogenesis. Mol Cell Endocrinol 298:101–114.
  • Park EA, Jerden DC, Bahouth SW. (1995). Regulation of phosphoenolpyruvate carboxykinase gene transcription by thyroid hormone involves two distinct binding sites in the promoter. Biochem J 309 (Pt 3):913–919.
  • Parrott JL, Kohli J, Sherry JP, Hewitt LM. (2011). In vivo and in vitro mixed-function oxygenase activity and vitellogenin induction in fish and in fish and rat liver cells by stilbenes isolated from scotch pine (Pinus sylvestris). Arch Environ Contam Toxicol 60:116–123.
  • Passos AL, Pinto PI, Power DM, Canario AV. (2009). A yeast assay based on the gilthead sea bream (teleost fish) estrogen receptor β for monitoring estrogen mimics. Ecotoxicol Environ Saf 72:1529–1537.
  • Pawlowski S, Islinger M, Völkl A, Braunbeck T. (2000). Temperature-dependent vitellogenin-mRNA expression in primary cultures of rainbow trout (Oncorhynchus mykiss) hepatocytes at 14 and 18 degrees C. Toxicol In Vitro 14:531–540.
  • Pelayo S, Oliveira E, Thienpont B, Babin PJ, Raldúa D, André M, Piña B. (2012). Triiodothyronine-induced changes in the zebrafish transcriptome during the eleutheroembryonic stage: implications for bisphenol A developmental toxicity. Aquat Toxicol 110–111:114–122.
  • Pelissero C, Lenczowski MJ, Chinzi D, Davail-Cuisset B, Sumpter JP, Fostier A. (1996). Effects of flavonoids on aromatase activity, an in vitro study. J Steroid Biochem Mol Biol 57:215–223.
  • Peter RE, Yu KL. (1997). Neuroendocrine regulation of ovulation in fishes: basic and applied aspects. Rev Fish Biol Fisher 7:173–197.
  • Petersen K, Tollefsen KE. (2011). Assessing combined toxicity of estrogen receptor agonists in a primary culture of rainbow trout (Oncorhynchus mykiss) hepatocytes. Aquat Toxicol 101:186–195.
  • Phartyal R, Singh LB, Goswami SV, Sehgal N. (2005). In vitro induction of vitellogenin by estradiol 17 β in isolated hepatocytes of catfish, Clarias gariepinus. Fish Physiol Biochem 31:241–245.
  • Pickford DB, Hetheridge MJ, Caunter JE, Hall AT, Hutchinson TH. (2003). Assessing chronic toxicity of bisphenol A to larvae of the African clawed frog (Xenopus laevis) in a flow-through exposure system. Chemosphere 53:223–235.
  • Pickford DB. (2010). Screening chemicals for thyroid-disrupting activity: a critical comparison of mammalian and amphibian models. Crit Rev Toxicol 40:845–892.
  • Power DM, Llewellyn L, Faustino M, Nowell MA, Björnsson BT, Einarsdottir IE, Canario AV, Sweeney GE. (2001). Thyroid hormones in growth and development of fish. Comp Biochem Physiol C Toxicol Pharmacol 130:447–459.
  • Qin X, Xia X, Yang Z, Yan S, Zhao Y, Wei R, Li Y, Tian M, Zhao X, Qin Z, Xu X. (2010). Thyroid disruption by technical decabromodiphenyl ether (DE-83R) at low concentrations in Xenopus laevis. J Environ Sci (China) 22:744–751.
  • Quassinti L, Maccari E, Murri O, Bramucci M. (2009). Effects of paraquat and glyphosate on steroidogenesis in gonads of the frog Rana esculenta in vitro. Pestic Biochem Physiol 93:91–95.
  • Raldúa D, Babin PJ. (2009). Simple, rapid zebrafish larva bioassay for assessing the potential of chemical pollutants and drugs to disrupt thyroid gland function. Environ Sci Technol 43:6844–6850.
  • Rani KV, Sehgal N, Goswami SV, Prakash O. (2010). Relative potencies of natural estrogens on vitellogenin and choriogenin levels in the Indian freshwater spotted snakehead, Channa punctata: in vivo and in vitro studies. Fish Physiol Biochem 36:587–595.
  • Rankouhi TR, Sanderson JT, van Holsteijn I, van Kooten P, Bosveld AT, van den Berg M. (2005). Effects of environmental and natural estrogens on vitellogenin production in hepatocytes of the brown frog (Rana temporaria). Aquat Toxicol 71:97–101.
  • Rankouhi TR, Sanderson JT, van Holsteijn I, van Leeuwen C, Vethaak AD, van den Berg M. (2004). Effects of natural and synthetic estrogens and various environmental contaminants on vitellogenesis in fish primary hepatocytes: comparison of bream (Abramis brama) and carp (Cyprinus carpio). Toxicol Sci 81:90–102.
  • Regaib Oguz A, Unal G. (2011). The effects of 17α-ethynylestradiol, 4-nonylphenol and phenol red on vitellogenin synthesis in juvenile Chalcalburnus tarichi primary hepatocyte culture. Toxicol Ind Health 27:379–384.
  • Reif DM, Martin MT, Tan SW, Houck KA, Judson RS, Richard AM, Knudsen TB, Dix DJ, Kavlock RJ. (2010). Endocrine profiling and prioritization of environmental chemicals using ToxCast data. Environ Health Perspect 118:1714–1720.
  • Rider CV, Hartig PC, Cardon MC, Wilson VS. (2009a). Comparison of chemical binding to recombinant fathead minnow and human estrogen receptors α in whole cell and cell-free binding assays. Environ Toxicol Chem 28:2175–2181.
  • Rider CV, Hartig PC, Cardon MC, Wilson VS. (2009b). Development of a competitive binding assay system with recombinant estrogen receptors from multiple species. Toxicol Lett 184:85–89.
  • Rutishauser BV, Pesonen M, Escher BI, Ackermann GE, Aerni HR, Suter MJ, Eggen RI. (2004). Comparative analysis of estrogenic activity in sewage treatment plant effluents involving three in vitro assays and chemical analysis of steroids. Environ Toxicol Chem 23:857–864.
  • Salam MA, Sawada T, Ohya T, Ninomiya K, Hayashi S. (2008). Detection of environmental estrogenicity using transgenic medaka hatchlings (Oryzias latipes) expressing the GFP-tagged choriogenin L gene. J Environ Sci Health A Tox Hazard Subst Environ Eng 43:272–277.
  • Sanderson JT. (2006). The steroid hormone biosynthesis pathway as a target for endocrine-disrupting chemicals. Toxicol Sci 94:3–21.
  • Sassi-Messai S, Gibert Y, Bernard L, Nishio S, Ferri Lagneau KF, Molina J, Andersson-Lendahl M, Benoit G, Balaguer P, Laudet V. (2009). The phytoestrogen genistein affects zebrafish development through two different pathways. PLoS ONE 4:e4935.
  • Sayed Ael-D, Mahmoud UM, Mekkawy IA. (2012). Reproductive biomarkers to identify endocrine disruption in Clarias gariepinus exposed to 4-nonylphenol. Ecotoxicol Environ Saf 78:310–319.
  • Schmieder P, Tapper M, Linnum A, Denny J, Kolanczyk R, Johnson R. (2000). Optimization of a precision-cut trout liver tissue slice assay as a screen for vitellogenin induction: comparison of slice incubation techniques. Aquat Toxicol 49:251–268.
  • Schmieder PK, Tapper MA, Denny JS, Kolanczyk RC, Sheedy BR, Henry TR, Veith GD. (2004). Use of trout liver slices to enhance mechanistic interpretation of estrogen receptor binding for cost-effective prioritization of chemicals within large inventories. Environ Sci Technol 38:6333–6342.
  • Scholz S, Klüver N. (2009). Effects of endocrine disrupters on sexual, gonadal development in fish. Sex Dev 3:136–151.
  • Scholz S, Mayer I. (2008). Molecular biomarkers of endocrine disruption in small model fish. Mol Cell Endocrinol 293:57–70.
  • Scholz S, Schirmer K, Altenburger R. (2010). Pharmaceutical contaminants in urban water cycles - a discussion of novel concepts for environmental risk assessment. In: Kassinos F, Bester K, Kümmerer K, eds. Xenobiotics in the Urban Water Cycle: Mass Flows, Environmental Processes and Mitigation Strategiesed. Heidelberg: Springer, 227–243.
  • Schriks M, Zvinavashe E, Furlow JD, Murk AJ. (2006). Disruption of thyroid hormone-mediated Xenopus laevis tadpole tail tip regression by hexabromocyclododecane (HBCD) and 2,2′,3,3′,4,4′,5,5′,6-nona brominated diphenyl ether (BDE206). Chemosphere 65:1904–1908.
  • Schulz RW, Goos HJT. (1999). Puberty in male fish: concepts and recent developments with special reference to the African catfish (Clarias gariepinus). Aquaculture 177:5–12.
  • Shen O, Wu W, Du G, Liu R, Yu L, Sun H, Han X, Jiang Y, Shi W, Hu W, Song L, Xia Y, Wang S, Wang X. (2011). Thyroid disruption by Di-n-butyl phthalate (DBP) and mono-n-butyl phthalate (MBP) in Xenopus laevis. PLoS ONE 6:e19159.
  • Sinzelle L, Thuret R, Hwang HY, Herszberg B, Paillard E, Bronchain OJ, Stemple DL, Dhorne-Pollet S, Pollet N. (2012). Characterization of a novel Xenopus tropicalis cell line as a model for in vitro studies. Genesis 50:316–324.
  • Smeets JM, Rankouhi TR, Nichols KM, Komen H, Kaminski NE, Giesy JP, van den Berg M. (1999a). In vitro vitellogenin production by carp (Cyprinus carpio) hepatocytes as a screening method for determining (anti)estrogenic activity of xenobiotics. Toxicol Appl Pharmacol 157:68–76.
  • Smeets JM, van Holsteijn I, Giesy JP, Seinen W, van den Berg M. (1999b). Estrogenic potencies of several environmental pollutants, as determined by vitellogenin induction in a carp hepatocyte assay. Toxicol Sci 50:206–213.
  • Smith JS, Thomas P. (1990). Binding characteristics of the hepatic estrogen receptor of the spotted seatrout, Cynoscion nebulosus. Gen Comp Endocrinol 77:29–42.
  • Sperry TS, Thomas P. (2000). Androgen binding profiles of two distinct nuclear androgen receptors in Atlantic croaker (Micropogonias undulatus). J Steroid Biochem Mol Biol 73:93–103.
  • Spink DC, Johnson JA, Connor SP, Aldous KM, Gierthy JF. (1994). Stimulation of 17 β-estradiol metabolism in MCF-7 cells by bromochloro- and chloromethyl-substituted dibenzo-p-dioxins and dibenzofurans: correlations with antiestrogenic activity. J Toxicol Environ Health 41:451–466.
  • Staels B, Hum DW, Miller WL. (1993). Regulation of steroidogenesis in NCI-H295 cells: a cellular model of the human fetal adrenal. Mol Endocrinol 7:423–433.
  • Strähle U, Scholz S, Geisler R, Greiner P, Hollert H, Rastegar S, Schumacher A, Selderslaghs I, Weiss C, Witters H, Braunbeck T. (2012). Zebrafish embryos as an alternative to animal experiments–a commentary on the definition of the onset of protected life stages in animal welfare regulations. Reprod Toxicol 33:128–132.
  • Sugiyama S, Shimada N, Miyoshi H, Yamauchi K. (2005). Detection of thyroid system-disrupting chemicals using in vitro and in vivo screening assays in Xenopus laevis. Toxicol Sci 88:367–374.
  • Takeo J, Yamashita S. (2000). Rainbow trout androgen receptor-α fails to distinguish between any of the natural androgens tested in transactivation assay, not just 11-ketotestosterone and testosterone. Gen Comp Endocrinol 117:200–206.
  • Terrien X, Fini JB, Demeneix BA, Schramm KW, Prunet P. (2011). Generation of fluorescent zebrafish to study endocrine disruption and potential crosstalk between thyroid hormone and corticosteroids. Aquat Toxicol 105:13–20.
  • Thienpont B, Tingaud-Sequeira A, Prats E, Barata C, Babin PJ, Raldúa D. (2011). Zebrafish eleutheroembryos provide a suitable vertebrate model for screening chemicals that impair thyroid hormone synthesis. Environ Sci Technol 45:7525–7532.
  • Tietge JE, Holcombe GW, Flynn KM, Kosian PA, Korte JJ, Anderson LE, Wolf DC, Degitz SJ. (2005). Metamorphic inhibition of Xenopus laevis by sodium perchlorate: effects on development and thyroid histology. Environ Toxicol Chem 24:926–933.
  • Tollefsen KE, Julie Nilsen A. (2008). Binding of alkylphenols and alkylated non-phenolics to rainbow trout (Oncorhynchus mykiss) hepatic estrogen receptors. Ecotoxicol Environ Saf 69:163–172.
  • Tollefsen KE, Mathisen R, Stenersen J. (2002). Estrogen mimics bind with similar affinity and specificity to the hepatic estrogen receptor in Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss). Gen Comp Endocrinol 126:14–22.
  • Tollefsen KE, Eikvar S, Finne EF, Fogelberg O, Gregersen IK. (2008). Estrogenicity of alkylphenols and alkylated non-phenolics in a rainbow trout (Oncorhynchus mykiss) primary hepatocyte culture. Ecotoxicol Environ Saf 71:370–383.
  • Tong SK, Mouriec K, Kuo MW, Pellegrini E, Gueguen MM, Brion F, Kah O, Chung BC. (2009). A cyp19a1b-gfp (aromatase B) transgenic zebrafish line that expresses GFP in radial glial cells. Genesis 47:67–73.
  • Tremblay L, Van der Kraak G. (1998). Use of a series of homologous in vitro and in vivo assays to evaluate the endocrine modulating actions of β-sitosterol in rainbow trout. Aquat Toxicol 43:149–162.
  • Tyler CR, Eerden VD, Jobling S, Panter G, Sumpter JP. (1996). Measurement of vitellogenin, a biomarker for exposure to oestrogenic chemicals, in a wide variety of cyprinid fish. J Comp Physiol B 166:418–426.
  • Tyler CR, Jobling S, Sumpter JP. (1998). Endocrine disruption in wildlife: a critical review of the evidence. Crit Rev Toxicol 28:319–361.
  • Urushitani H, Nakai M, Inanaga H, Shimohigashi Y, Shimizu A, Katsu Y, Iguchi T. (2003). Cloning and characterization of estrogen receptor α in mummichog, Fundulus heteroclitus. Mol Cell Endocrinol 203:41–50.
  • US EPA. (2011). Endocrine Disruptor Screening Program for the 21st Century (EDSP21 Work Plan): the incorporation of in silico models and in vitro high throughput assays in the Endocrine Disruptor Screening Program (EDSP) for prioritization and screening. Available at: www.epa.gov.
  • Vang SH, Kortner TM, Arukwe A. (2007). Steroidogenic acute regulatory (StAR) protein and cholesterol side-chain cleavage (P450scc) as molecular and cellular targets for 17α-ethynylestradiol in salmon previtellogenic oocytes. Chem Res Toxicol 20:1811–1819.
  • Veldhoen N, Skirrow RC, Osachoff H, Wigmore H, Clapson DJ, Gunderson MP, Van Aggelen G, Helbing CC. (2006). The bactericidal agent triclosan modulates thyroid hormone-associated gene expression and disrupts postembryonic anuran development. Aquat Toxicol 80:217–227.
  • Villeneuve DL, Knoebl I, Kahl MD, Jensen KM, Hammermeister DE, Greene KJ, Blake LS, Ankley GT. (2006). Relationship between brain and ovary aromatase activity and isoform-specific aromatase mRNA expression in the fathead minnow (Pimephales promelas). Aquat Toxicol 76:353–368.
  • Villeneuve DL, Ankley GT, Makynen EA, Blake LS, Greene KJ, Higley EB, Newsted JL, Giesy JP, Hecker M. (2007a). Comparison of fathead minnow ovary explant and H295R cell-based steroidogenesis assays for identifying endocrine-active chemicals. Ecotoxicol Environ Saf 68:20–32.
  • Villeneuve DL, Larkin P, Knoebl I, Miracle AL, Kahl MD, Jensen KM, Makynen EA, Durhan EJ, Carter BJ, Denslow ND, Ankley GT. (2007b). A graphical systems model to facilitate hypothesis-driven ecotoxicogenomics research on the teleost brain-pituitary-gonadal axis. Environ Sci Technol 41:321–330.
  • WHO. (2002). World Health Organization: Global assessment of the state-of-the-science of endocrine disruptors. In: Damstra T, Barlow S, Bergman A, Kavlock R, Van Der Kraak G, eds. Report WHO/PCS/EDC/02.2, 180, Geneva.
  • Wilson VS, Cardon MC, Gray LE Jr, Hartig PC. (2007). Competitive binding comparison of endocrine-disrupting compounds to recombinant androgen receptor from fathead minnow, rainbow trout, and human. Environ Toxicol Chem 26:1793–1802.
  • Wilson VS, Cardon MC, Thornton J, Korte JJ, Ankley GT, Welch J, Gray LE Jr, Hartig PC. (2004). Cloning and in vitro expression and characterization of the androgen receptor and isolation of estrogen receptor α from the fathead Minnow (Pimephales promelas). Environ Sci Technol 38:6314–6321.
  • Yamauchi K, Eguchi R, Shimada N, Ishihara A. (2002). The effects of endocrine-disrupting chemicals on thyroid hormone binding to Xenopus laevis transthyretin and thyroid hormone receptor. Clin Chem Lab Med 40:1250–1256.
  • Yamauchi K, Prapunpoj P, Richardson SJ. (2000). Effect of diethylstilbestrol on thyroid hormone binding to amphibian transthyretins. Gen Comp Endocrinol 119:329–339.
  • Zhang X, Yu RM, Jones PD, Lam GK, Newsted JL, Gracia T, Hecker M, Hilscherova K, Sanderson T, Wu RS, Giesy JP. (2005). Quantitative RT-PCR methods for evaluating toxicant-induced effects on steroidogenesis using the H295R cell line. Environ Sci Technol 39:2777–2785.
  • Zhao B, Liu ZT, Xu ZF. (2006a). Assessing the anti-estrogenic activity of sodium pentachlorophenol in primary cultures of juvenile goldfish (Carassius auratus) hepatocytes using vitellogenin as a biomarker. J Environ Sci (China) 18:519–524.
  • Zhao B, Yang J, Liu Z, Xu Z, Qiu Y, Sheng G. (2006b). Joint anti-estrogenic effects of PCP and TCDD in primary cultures of juvenile goldfish hepatocytes using vitellogenin as a biomarker. Chemosphere 65:359–364.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.