496
Views
9
CrossRef citations to date
0
Altmetric
Review Articles

A review of exposure and toxicological aspects of carbon nanotubes, and as additives to fire retardants in polymers

, , , &
Pages 74-95 | Received 10 Sep 2014, Accepted 11 Aug 2015, Published online: 20 Oct 2015

References

  • American Conference of Governmental Industrial Hygienists. Documentation of the TLVs and BEIs. Cincinnati, OH: ACGIH; 2005.
  • Aqel A, El-Nour KMMA, Ammar RAA, Al-Warthan A. Carbon nanotubes, science and technology part (I) structure, synthesis and characterisation. Arabian J Chem 2012;5:1–23.
  • Baughman RH, Zakhidov AA, De Heer WA. Carbon nanotubes – the route toward applications. Science 2002;297:787–792.
  • Bethune DS, Klang CH, Vries MS, Gorman G, Savoy R, Vazquez J, Beyers R. Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature 1993;363:605–607.
  • Bello D, Hart AJ, Ahn K, Hallock M, Yamamoto N, Garcia EJ, Ellenbecker MJ, Wardel BL. Particle exposure levels during CVD growth and subsequent handling of vertically-aligned carbon nanotube films. Carbon 2008;46:974–977.
  • Bello D, Wardle BL, Yamamoto N, Devilloria RG, Garcia EJ, Hart AJ, Ahn K, et al. Exposure to nanoscale particles and fibers during machining of hybrid advanced composites containing carbon nanotubes. J Nanoparticle Res 2009;11:231–249.
  • Beyer G. Short communication: carbon nanotubes as flame retardants for polymers. Fire Materials 2002;26:291–293.
  • Blomqvist P, Simonson M, Stec AA, Gylestam D, Karlsson D. Detailed study of distribution patterns of polycyclic aromatic hydrocarbons and isocyanates under different fire conditions. Fire Materials 2014;38:125–144.
  • Bom D, Andrews R, Jacques D, Anthony J, Chen BL, Meier MS, Selegue JP. Thermogravimetric analysis of the oxidation of multiwalled carbon nanotubes: evidence for the role of defect sites in carbon nanotube chemistry. Nano Lett 2002;2:615–619.
  • Bouillard XJ, R’mill B, Moranviller D, Vignes A, Bihan O, Ustache A, Bofim ASJ, et al. Nanosafety by design: risks from nanocomposite/nanowaste combustion. J Nanoparticle Res 2013;15: doi: 10.1007/s11051-013-1519-3.
  • Bourbigot S, Samyn F, Turf T, Duquense S. Nanomorphology and reaction to fire of polyurethane and polyamide nanocomposites containing flame retardants. Polymer Degrad Stab 2010;95:320–326.
  • Cena LG, Peters TM. Characterization and control of airborne particles emitted during production of epoxy/carbon nanotube nanocomposites. J Occup Environ Hygiene 2011;8:86–92.
  • Chivas-Joly C, Motzkus C, Guilliaume E, Ducourtieux S, Saragoza L, Guesta J-ML, Longuet C, et al. Influence of carbon nanotubes on fire behaviour and aerosol emitted during combustion of thermoplastics. Fire Materials 2012; doi:10.1002/fam.2161.
  • Cole MT, Mann M, Teo KBK, Milne WI. Emerging nanotechnologies for manufacturing. In: Ahmed W, Jackson MJ, editors. Chapter 5: Engineered carbon nanotube field emission devices. 2nd ed. Oxford: Elsevier Publishers; 2015. pp. 125–186.
  • Coleman JN, Khan U, Blau WJ, Gun’ko YK. Small but strong: a review of the mechanical properties of carbon nanotube–polymer composites. Carbon 2006; 44:1624–1652.
  • Dai HJ. Carbon nanotubes: opportunities and challenges. Surface Sci 2002;500:218–241.
  • De Volder FLM, Tawfick HS, Baughman HR, Hart AJ. Carbon nanotubes: present and future commercial applications. Science 2013;339:535–539.
  • Dittrich B, Wartig K, Hofmann D, Mülhaupt R, Schartel B. Carbon black multiwall carbon nanotubes, expanded graphite and functionalized graphene flame retarded polypropylene nanocomposites. Polymer Adv Technol 2013;24:916–926.
  • Dittrich B, Wartig K, Hofmann D, Mülhaupt R, Schartel B. Flame retardancy through carbon nanomaterials: Carbon black, multiwall nanotubes, expanded graphite, multi-layer graphene and graphene in polypropyene. Polymer Degrad Stab 2013;98:1495–1505.
  • Donaldson K, Aitken R, Tran L, Stone V, Duffin R, Forrest G, Alexandra A. Carbon nanotubes: a review of their properties in relation to pulmonary toxicology and workplace safety. Toxicol Sci 2006;92:5–22.
  • Donaldson K, Poland CA, Murphy FA, MacFarlane M, Chernova T, Schinwald A. Pulmonary toxicity of carbon nanotubes and asbestos — similarities and differences. Adv Drug Deliv Rev 2013;65:2078–2086.
  • Dresselhaus MS, Dresselhaus G, Jorio A. Unusual properties and structure of carbonnanotubes. Ann Rev Materials Res 2004;34:247–278.
  • Endo M, Strano SM, Ajayan MP. Carbon nanotubes: topics in applied physics potential. Berlin: Springer; 2008. pp. 13–62. http://dx.doi.org/10.1007/978-3-540-72865-8_2I.
  • Erdely A, Dahm M, Chen BT, Zeidler-Erdly PC, Freback JE, Birch ME, Evans DE, et al. Carbon nanotube dosimetry: from workplace exposure assessment to inhalation toxicology. Particle Fibre Toxicol 2013;10:1–14.
  • Fenoglio I, Greco G, Tornatis M, Muller J, Rayrnundo-Pinero E, Beguin F, Foneca A, et al. Structural defects play a major role in the acute lung toxicity of multiwall carbon nanotubes: physicochemical aspects. Chem Res Toxicol 2008;21:1690–1697.
  • Fina A, Bocchini S, Camino G. Catalytic fire retardant nanocomposites. Polymer Degrad Stab 2008;93:1647–1655.
  • Grady PB. Carbon nanotube-polymer composites: manufacture, properties and applications. New Jersey: John Wiley & Sons Inc; 2011.
  • Grosse Y et al. on behalf of the IARC Working Group. Carcinogenicity of fluoro-edenite, silicon carbide fibres and whiskers, and carbon nanotubes. Lancet Oncol 2014; http://dx.doi.org/10.1016/S1470-2045(14)71109-X.
  • Han JH, Lee EJ, Lee JH, So KP, Lee YH, Bae GN, Lee S, et al. Monitoring multiwalled carbon nanotube exposure in carbon nanotube research facility. Inhal Toxicol 2008;20:741–749.
  • Harris JFP. Carbon nanotube science: synthesis properties and application. New York: Cambridge University Press; 2009.
  • Hesterberg TW, Chase G, Axten C, Miiller WC, Musselman RP, Kamstrup O, Hadley J, et al. Biopersistence of synthetic vitreous fibers and amosite asbestos in the rat lung following inhalation. Toxicol Appl Pharmacol 1999;155:292–292.
  • Hetzberg T, Blomqvist P. Particles from fires- a screening of common materials found in building. Fire Materials 2003;27:295–314.
  • Hsieh Y, Chou Y, Lin C, Hsieh T, Shu C. Thermal analysis of multi-walled carbon nanotubes by Kissinger’s corrected kinetic equation. Aerosol Air Quality Res 2010;10:212–218.
  • Huang G, Park JH, Cena LG, Shelton BL, Peters TM. Evaluation of airborne particle emissions from commercial products containing carbon nanotubes. J Nanoparticle Res 2012;14:1231 (1–21).
  • Hou P, Liu C, Cheng H. Purification of carbon nanotubes. Carbon 2008;46:2003–2025.
  • Hull TR, Stec AA, Lebek K, Price D. Factors affecting the combustion toxicity of polymeric materials. Polymer Degrad Stab 2007;92:2239–2246.
  • Iijima S. Helical microtubules of graphitic carbon. Nature 1991;354:56–58.
  • Iijima S, Ichiahshi T. Single-shell carbon nanotubes of 1-nm diameter. Nature 1993;363:603–605.
  • Johnson DR, Methner MM, Kennedy AJ, Steevens JA. Potential for occupational exposure to engineered carbon-based nanomaterials in environmental laboratory studies. Environ Health Perspect, 2010;118:49–54.
  • Joselevich E, Dai H, Liu J, Hata K Windle A. Carbon nanotubes synthesis and organisation. Carbon Nanotubes 2008;111:101–164.
  • Kashiwagi T, Grunke E, Hilding J, Harris R, Awad W, Douglas J. Thermal degradation and flammability properties of poly(propylene)/carbon nanotube composites. Macromol Rapid Commun 2002;23:761–765.
  • Kashiwagi T, Grunke E, Hilding J, Groth K, Harris R, Butler K, SHields J, et al. Thermal and flammability properties of polypropylene/carbon nanotube nanocomposites. Polymer 2004;45:4227–4239.
  • Kashiwagi T, Du F, Douglas JF, Winey KI, Harris RH, Shields JR. Nanoparticle networks reduce the flammability of polymer nanocomposites. Nature Materials 2005;4:928–933.
  • Kayat J, Gajbhiye V, Tekade RK, Jain NK. Pulmonary toxicity of carbon nanotubes: a systematic report. Nanomed Nanotechnol Biol Med 2011;7:40–49.
  • Keller AA, McFerran S, Lazareva A, Suh S. Global life cycle releases of engineered nanomaterials. J Nanoparticle Res 2013;15:1692 (1–17).
  • Krombach F, Munzing S, Allmeling AM, Gerlach JT, Behr J, Dorger M. Cell size of alveolar macrophages: an interspecies comparison. Environ Health Perspect 1997;105:1261–1263.
  • Kingston C, Zepp R, Andrady A, Boverhof D, Fehir R, Hawkins D, Roberts J, et al. Release characteristics of selected carbon nanotube polymer composites. Carbon 2014;68:33–57.
  • Kohler AR, Som C, Helland A, Gottschalk F. Studying the potential release of carbon nanotubes throughout the application life cycle. J Cleaner Prod 2008;16:927–937.
  • Kuhlbusch AJT, Asbach C, Fissan H, GÖhler D, Stintz M. Nanoparticle exposure at nanotechnology workplaces: a review. Particle Fibre Toxicol 2011;8:22.
  • Lam CW, James JT, McCluskey R, Hunter RL. Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol Sci 2004;77:126–134.
  • Lam CW, James JT, Mccluskey R, Arepalli S, Hunter RL. A review of carbon nanotube toxicity and assessment of potential occupational and environmental health risks. Crit Rev Toxicol 2006;36:189–217.
  • Lau K, Gu C, Hui D. A critical review on nanotube and nanotube/nanoclay related polymer composite materials. Compos Pt B Eng 2006;37:425–436.
  • Lehman HL, Terrones M, Mansfield E, Hurst EK, Meunier V. Evaluating the characteristics of multiwall carbon nanotubes. Carbon 2011;49:2581–2602.
  • Liu Y, Zhao Y, Sun B, Chen C. Understanding the toxicity of carbon nanotubes. Acc Chem Res 2013;46:702–713.
  • Ma P, Siddiqui NA, Marom G, Kim J. Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review. Compos Pt A Appl Sci Manufact 2010;41:1345–1367.
  • Madani SY, Mandel A, Seifalian AM. A concise review of carbon nanotube’s toxicology. Nano Rev 2013;4: http://dx.doi.org/10.3402/nano.v4i0.21521.
  • Ma-Hock L, Treumann S, Strauss V, Brill S, Luizi F, Mertler M, Wiench K, et al. Inhalation toxicity of multiwall carbon nanotubes in rats exposed for 3 months. Toxicol Sci 2009;112:468–481.
  • Mercer RR, Scabilloni JF, Hubbs AF, Wang L, Battelli LA, McKinney W, Castranova V, Porter DW. Extrapulmonary transport of MWCNT following inhalation exposure. Particle Fibre Toxicol 2013;10:1–13.
  • Mercer RR, Scabilloni JF, Hubbs AF, Battelli LA, McKinney W, Friend S, Wolfarth MG, et al. Distribution and fibrotic response following inhalation exposure to multi-walled carbon nanotubes. Particle Fibre Toxicol 2013;10:1–14.
  • Methner M, Beaucham C, Crawford C, Hodson L, Geraci C. Field application of the nanoparticle emission assessment technique (NEAT): task-based air monitoring during the processing of engineered nanomaterials (ENM) at four facilities. J Occup Environ Hygiene 2012;9:543–555.
  • Mitchell LA, Gao J, Wal RV, Gigliotti A, Burchiel SW, McDonald JD. Pulmonary and systemic immune response to inhaled multiwalled carbon nanotubes. Toxicol Sci 2007;100:203–214.
  • Muller J, Huaux F, Moreau N, Missona P, Heiliera J, Delos M, Arras M, et al. Respiratory toxicity of multi-wall carbon nanotubes. Toxicol Appl Pharmacol 2005;207:221–231.
  • Muller J, Huaux F, Lison D. Respiratory toxicity of carbon nanotubes: how worried should we be? Carbon 2006;44:1048–1056.
  • Muller J, Huaux F, Fonseca A, Nagy JB, Moreau N, Delos M, Raymundo-Pinero E, et al. Structural defects play a major role in the acute lung toxicity of multiwall carbon nanotubes: toxicological aspects. Chem Res Toxicol 2008;21:1698–1705.
  • Nanocyl. Carbon-nanotubes. Available: http://www.nanocyl.com/en/CNT-Expertise-Centre/Carbon-Nanotubes. 2009 [last accessed 18 March 2014].
  • Nguyen T, Pellegrin B, Bernard C, Gu X, Gorham MJ, Stutznan P, Stanley D, et al. Fate of nanoparticles during life cycle of polymer nanocomposites. J Physics Conf Ser 2011;304:1–12.
  • National Institute for Occupational Safety and Health, Current Intelligence Bulletin 65. Occupational exposure to carbon nanotubes and nanofibers; 2013. pp. 1–156.
  • Nowack B, Bucheli TD. Occurrence, behavior and effects of nanoparticles in the environment. Environ Poll 2007;150:5–22.
  • Nowack B, David MR, Fissan H, Morris H, Shatkin AJ, Stintz M, Zepp R, Brouwer D. Potential release scenarios for carbon nanotubes used in composites. Environ Int 2013;59:1–11.
  • Nyden MR, Harris RH, Kim SY, Davis DR, Marsh DN, Zammarano M. Characterizing particle emission from burning polymer nanocomposites. NSTI-Nanotech 2010;1:717–719.
  • Oberdoster G. Toxicokinetics and effects of fibrous and nonfibrous particles. Inhal Toxicol 2002;14:29–56.
  • Oberdoster G, Oberdoster E, Oberdoster J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 2005;113:823–839.
  • Ostiguy C, Soucy B, Lapointe G, Woods C, Menard L. Health effects of nanoparticles. IRSST Report 2008. pp. 1–114.
  • Pauluhn J. Subchronic 13-week inhalation exposure of rats to multiwalled carbon nanotubes: toxic effects are determined by density of agglomerate structures, not fibrillar structures. Toxicol Sci 2010;113:226–242.
  • Poland CA, Duffin R, Kinloch I, Maynard A, Wallace WAH, Seaton A, Stone V, et al. Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nature Nanotechnol 2008;3:423–428.
  • Porter DW, Hubbs AF, Chen BT, McKinney W, Mercer RR, Wolfarth MG, Battelli L, et al. Acute pulmonary dose–responses to inhaled multi-walled carbon nanotubes. Nanotoxicology 2013;1179–1194.
  • Popov VN. Carbon nanotubes: properties and application. Materials Sci Eng R Rep 2004;43:61–102.
  • Prasek J, Drbohlavova J, Chomoucka J, Hubalek J, Jasek O, Adam V, Kizek R. Methods for carbon nanotubes synthesis-review. J Materials Chem 2011;21:15872–15884.
  • Prousek J. Fenton chemistry in biology and medicine. Pure Appl Chem 2007;79:2325–2338.
  • Rafique MAM, Iqbal J. Production of carbon nanotubes by different routes – a review. J Encapsul Adsorp Sci 2011;1:29–34.
  • Ruemmeli MH, Kramberger C, Schaeffel F, Borowiak-Palen E, Gemming T, Rellinghaus B, Jost O, et al. Catalyst size dependencies for carbon nanotube synthesis. Physica Status Solidi B-Basic Solid State Physics 2007;244:3911–3915.
  • Saito R, Dresselhaus G, Dresselhaus MS. Physical properties of carbon nanotubes. London: Imperial College Press; 1998.
  • Sargent LM, Porter DW, Staska LM, Hubbs AF, Lowry DT, Battelli L, Siegrist KJ, et al. Promotion of lung adenocarcinoma following inhalation exposure to multi-walled carbon nanotubes. Particle Fibre Toxicol 2014; 11:1–18.
  • Schartel B, Potschke P, Knoll U, Abdel-Goad M. Fire behaviour of polyamide 6/multiwall carbon nanotube nanocomposites. Eur Polymer J 2005;41:1061–1070.
  • Schinwald A, Murphy A, Prina-Mello A, Poland CA, Byrne F, Moyia D, Glass JR, et al. The threshold length for fiber-induced acute pleural inflammation: shedding light on the early events in asbestos-induced mesothelioma. Toxicol Sci 2012;128:461–470.
  • Schlagenhauf L, Chu TTB, Buha J, Nuesch F, Wang J. Release of carbon nanotubes from an epoxy-based nanocomposite during an abrasion process. Environ Sci Technol 2012;46:7366–7372.
  • Schlagenhauf L, Nuesch F, Wang J. Release of carbon nanotubes from polymer nanocomposites. Fibres 2014;2:108–127.
  • Shvedova AA, Kisin ER, Mercer R, Murray AR, Johnson VJ, Potapovich AI, Tyurina YY, et al. Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice. Am J Physiol Lung Cell Mol Physiol 2005;289:L698–L708.
  • Shvedova AA, Kisin E, Murray AR, Johnson VJ, Gorelik O, Arepalli S, Hubbs AF, et al. Inhalation vs. aspiration of single-walled carbon nanotubes in C57BL/6 mice: inflamemation, fibrosis, oxidative stress, and mutagenesis. Am J Physiol Lung Cell Mol Physiol 2008;295:L552–L565.
  • Stec AA, Hull TR, Lebek K, Purser JA, Purser DA. The effect of temperature and ventilation condition on the toxic product yields from burning polymers. Fire Materials 2008;32:49–60.
  • Stec AA, Readman J, Blomqvist P, Gylestam D, Karlsson D, Wojtalewicz D, Dlugogorski BZ. Analysis of toxic effluents released from PVC carpet under different fire conditions. Chemosphere 2013;90:65–71.
  • Sobek A, Bucheli DT. Testing the resistance of single- and multi-walled carbon nanotubes to chemothermal oxidation used to isolate soot from environmental samples. Environ Poll 2009;157:1065–1071.
  • Takagi A, Hirose A, Nishimura T, Fukumori N, Ogata A, Ohashi N, Kitajima S, Kamno J. Induction of mesothelioma in p53+/- mouse by intaperitoneal application of multi-wall carbon nanotube. J Toxicol Sci 2008;33:105–116.
  • Teo KBK, Chhowalla M, Amaratunga GA, Milne WI, Pirio G, Legagneux P, Wyczisk F, et al. Field emission from dense, sparse and patterned arrays of carbon nanofibers. Appl Phys Lett 2002;80:2011–2013.
  • Terrones M. Science and technology of the twenty-first century: synthesis, properties and applications of carbon nanotubes. Ann Rev Materials Res 2003;33:419–501.
  • Thostenson ET, Ren Z, Chou T. Advances in the science and technology of carbon nanotubes and their composites: a review. Compos Sci Technol 2001;61:1899–1912.
  • Titus E, Ali N, Cabral G, Gracio J, Babu PR, Jackson MJ. Chemically functionalized carbon nanotubes and their characterization using thermogravimetric analysis Fourier transform infrared, and Raman spectroscopy. J Materials Eng Perform 2006;15:182–186.
  • Tomanek D, Jorio A, Dresselhaus MS, Dresselhaus G. Introduction to the important and exciting aspects of carbon-nanotube science and technology. Carbon Nanotubes 2008;111:1–12.
  • Treacy MMJ, Ebbesen TW, Gibson JM. Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 1996;381:678–680.
  • Umeda Y, Kasai T, Saito M, Kondo H, Toya T, Aiso S, Okuda H, et al. Two-week toxicity of multi-walled carbon nanotubes by whole- body inhalation exposure in rats. J Toxicol Pathol 2013;26:131–140.
  • Warheit DB. What is currently known about the health risks related to carbon nanotube exposures? Carbon 2006;44:1064–1069.
  • Wohlleben W, Brill S, Meier MW, Mertler M, Cox G, Hirth S, Von Vacano B, et al. On the lifecycle of nanocomposites: comparing released fragments and their in-vivo hazards from three release mechanisms and four nanocomposites. Small 2011;7:2384–2395.
  • Wohlleben W, Meier MW, Vogel S, Landsieldel R, Cox G, Hirth S, Tomovic Z. Elastic CNT-polyurethane nanocomposite: synthesis, performance and assessment of fragments released during use. Nanoscale 2013;5:369–380.
  • Wu Z, Wang H, Tian X. Mechanical and flame-retardant properties of styrene-ethylene-butylene-styrene/carbon nanotube composites containing bisphenol A bis(diphenyl phosphate). Compos Sci Technol 2013;82:8–14.
  • Development of safe and eco-friendly flame retardant materials based on CNT co-additives for commodity polymers. 2013. Available: http://www.deroca.eu/DEROCA_WEB/UK/Home.awp
  • Ye L, Wu Q, Qu B. Synergistic effects and mechanism of multiwalled carbon nanotubes with magnesium hydroxide in halogen-free flame retardant EVA/MH/MWNT nanocomposites. Polymer Degrad Stab 2009;94:751–756.
  • Yudianti R, Onggo H, Sudirman Saito Y, Iwata T, Azuma J. Analysis of functional group sited multi-wall carbon nanotube surface. Open Materials Sci J 2011;5:242–247.
  • Zhao CG, Ji LJ, Liu HJ, Hu GJ, Zhang SM, Yang MS, Yang ZZ. Functionalized carbon nanotubes containing isocyanate groups. J Solid State Chem 2004;177:4394–4398.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.